boost/math/distributions/hypergeometric.hpp
// Copyright 2008 Gautam Sewani
// Copyright 2008 John Maddock
// Copyright 2021 Paul A. Bristow
//
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_DISTRIBUTIONS_HYPERGEOMETRIC_HPP
#define BOOST_MATH_DISTRIBUTIONS_HYPERGEOMETRIC_HPP
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/math/distributions/complement.hpp>
#include <boost/math/distributions/detail/hypergeometric_pdf.hpp>
#include <boost/math/distributions/detail/hypergeometric_cdf.hpp>
#include <boost/math/distributions/detail/hypergeometric_quantile.hpp>
#include <boost/math/special_functions/fpclassify.hpp>
#include <cstdint>
namespace boost { namespace math {
template <class RealType = double, class Policy = policies::policy<> >
class hypergeometric_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
hypergeometric_distribution(std::uint64_t r, std::uint64_t n, std::uint64_t N) // Constructor. r=defective/failures/success, n=trials/draws, N=total population.
: m_n(n), m_N(N), m_r(r)
{
static const char* function = "boost::math::hypergeometric_distribution<%1%>::hypergeometric_distribution";
RealType ret;
check_params(function, &ret);
}
// Accessor functions.
std::uint64_t total() const
{
return m_N;
}
std::uint64_t defective() const // successes/failures/events
{
return m_r;
}
std::uint64_t sample_count()const
{
return m_n;
}
bool check_params(const char* function, RealType* result)const
{
if(m_r > m_N)
{
*result = boost::math::policies::raise_domain_error<RealType>(
function, "Parameter r out of range: must be <= N but got %1%", static_cast<RealType>(m_r), Policy());
return false;
}
if(m_n > m_N)
{
*result = boost::math::policies::raise_domain_error<RealType>(
function, "Parameter n out of range: must be <= N but got %1%", static_cast<RealType>(m_n), Policy());
return false;
}
return true;
}
bool check_x(std::uint64_t x, const char* function, RealType* result)const
{
if(x < static_cast<std::uint64_t>((std::max)(INT64_C(0), static_cast<std::int64_t>(m_n + m_r) - static_cast<std::int64_t>(m_N))))
{
*result = boost::math::policies::raise_domain_error<RealType>(
function, "Random variable out of range: must be > 0 and > m + r - N but got %1%", static_cast<RealType>(x), Policy());
return false;
}
if(x > (std::min)(m_r, m_n))
{
*result = boost::math::policies::raise_domain_error<RealType>(
function, "Random variable out of range: must be less than both n and r but got %1%", static_cast<RealType>(x), Policy());
return false;
}
return true;
}
private:
// Data members:
std::uint64_t m_n; // number of items picked or drawn.
std::uint64_t m_N; // number of "total" items.
std::uint64_t m_r; // number of "defective/successes/failures/events items.
}; // class hypergeometric_distribution
typedef hypergeometric_distribution<double> hypergeometric;
template <class RealType, class Policy>
inline const std::pair<std::uint64_t, std::uint64_t> range(const hypergeometric_distribution<RealType, Policy>& dist)
{ // Range of permissible values for random variable x.
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4267)
#endif
const auto r = dist.defective();
const auto n = dist.sample_count();
const auto N = dist.total();
const auto l = static_cast<std::uint64_t>((std::max)(INT64_C(0), static_cast<std::int64_t>(n + r) - static_cast<std::int64_t>(N)));
const auto u = (std::min)(r, n);
return std::make_pair(l, u);
#ifdef _MSC_VER
# pragma warning(pop)
#endif
}
template <class RealType, class Policy>
inline const std::pair<std::uint64_t, std::uint64_t> support(const hypergeometric_distribution<RealType, Policy>& d)
{
return range(d);
}
template <class RealType, class Policy>
inline RealType pdf(const hypergeometric_distribution<RealType, Policy>& dist, const std::uint64_t& x)
{
static const char* function = "boost::math::pdf(const hypergeometric_distribution<%1%>&, const %1%&)";
RealType result = 0;
if(!dist.check_params(function, &result))
return result;
if(!dist.check_x(x, function, &result))
return result;
return boost::math::detail::hypergeometric_pdf<RealType>(
x, dist.defective(), dist.sample_count(), dist.total(), Policy());
}
template <class RealType, class Policy, class U>
inline RealType pdf(const hypergeometric_distribution<RealType, Policy>& dist, const U& x)
{
BOOST_MATH_STD_USING
static const char* function = "boost::math::pdf(const hypergeometric_distribution<%1%>&, const %1%&)";
RealType r = static_cast<RealType>(x);
auto u = static_cast<std::uint64_t>(lltrunc(r, typename policies::normalise<Policy, policies::rounding_error<policies::ignore_error> >::type()));
if(u != r)
{
return boost::math::policies::raise_domain_error<RealType>(
function, "Random variable out of range: must be an integer but got %1%", r, Policy());
}
return pdf(dist, u);
}
template <class RealType, class Policy>
inline RealType cdf(const hypergeometric_distribution<RealType, Policy>& dist, const std::uint64_t& x)
{
static const char* function = "boost::math::cdf(const hypergeometric_distribution<%1%>&, const %1%&)";
RealType result = 0;
if(!dist.check_params(function, &result))
return result;
if(!dist.check_x(x, function, &result))
return result;
return boost::math::detail::hypergeometric_cdf<RealType>(
x, dist.defective(), dist.sample_count(), dist.total(), false, Policy());
}
template <class RealType, class Policy, class U>
inline RealType cdf(const hypergeometric_distribution<RealType, Policy>& dist, const U& x)
{
BOOST_MATH_STD_USING
static const char* function = "boost::math::cdf(const hypergeometric_distribution<%1%>&, const %1%&)";
RealType r = static_cast<RealType>(x);
auto u = static_cast<std::uint64_t>(lltrunc(r, typename policies::normalise<Policy, policies::rounding_error<policies::ignore_error> >::type()));
if(u != r)
{
return boost::math::policies::raise_domain_error<RealType>(
function, "Random variable out of range: must be an integer but got %1%", r, Policy());
}
return cdf(dist, u);
}
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<hypergeometric_distribution<RealType, Policy>, std::uint64_t>& c)
{
static const char* function = "boost::math::cdf(const hypergeometric_distribution<%1%>&, const %1%&)";
RealType result = 0;
if(!c.dist.check_params(function, &result))
return result;
if(!c.dist.check_x(c.param, function, &result))
return result;
return boost::math::detail::hypergeometric_cdf<RealType>(
c.param, c.dist.defective(), c.dist.sample_count(), c.dist.total(), true, Policy());
}
template <class RealType, class Policy, class U>
inline RealType cdf(const complemented2_type<hypergeometric_distribution<RealType, Policy>, U>& c)
{
BOOST_MATH_STD_USING
static const char* function = "boost::math::cdf(const hypergeometric_distribution<%1%>&, const %1%&)";
RealType r = static_cast<RealType>(c.param);
auto u = static_cast<std::uint64_t>(lltrunc(r, typename policies::normalise<Policy, policies::rounding_error<policies::ignore_error> >::type()));
if(u != r)
{
return boost::math::policies::raise_domain_error<RealType>(
function, "Random variable out of range: must be an integer but got %1%", r, Policy());
}
return cdf(complement(c.dist, u));
}
template <class RealType, class Policy>
inline RealType quantile(const hypergeometric_distribution<RealType, Policy>& dist, const RealType& p)
{
BOOST_MATH_STD_USING // for ADL of std functions
// Checking function argument
RealType result = 0;
const char* function = "boost::math::quantile(const hypergeometric_distribution<%1%>&, %1%)";
if (false == dist.check_params(function, &result))
return result;
if(false == detail::check_probability(function, p, &result, Policy()))
return result;
return static_cast<RealType>(detail::hypergeometric_quantile(p, RealType(1 - p), dist.defective(), dist.sample_count(), dist.total(), Policy()));
} // quantile
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<hypergeometric_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions
// Checking function argument
RealType result = 0;
const char* function = "quantile(const complemented2_type<hypergeometric_distribution<%1%>, %1%>&)";
if (false == c.dist.check_params(function, &result))
return result;
if (false == detail::check_probability(function, c.param, &result, Policy()))
return result;
return static_cast<RealType>(detail::hypergeometric_quantile(RealType(1 - c.param), c.param, c.dist.defective(), c.dist.sample_count(), c.dist.total(), Policy()));
} // quantile
// https://www.wolframalpha.com/input/?i=kurtosis+hypergeometric+distribution
template <class RealType, class Policy>
inline RealType mean(const hypergeometric_distribution<RealType, Policy>& dist)
{
return static_cast<RealType>(dist.defective() * dist.sample_count()) / dist.total();
} // RealType mean(const hypergeometric_distribution<RealType, Policy>& dist)
template <class RealType, class Policy>
inline RealType variance(const hypergeometric_distribution<RealType, Policy>& dist)
{
RealType r = static_cast<RealType>(dist.defective());
RealType n = static_cast<RealType>(dist.sample_count());
RealType N = static_cast<RealType>(dist.total());
return n * r * (N - r) * (N - n) / (N * N * (N - 1));
} // RealType variance(const hypergeometric_distribution<RealType, Policy>& dist)
template <class RealType, class Policy>
inline RealType mode(const hypergeometric_distribution<RealType, Policy>& dist)
{
BOOST_MATH_STD_USING
RealType r = static_cast<RealType>(dist.defective());
RealType n = static_cast<RealType>(dist.sample_count());
RealType N = static_cast<RealType>(dist.total());
return floor((r + 1) * (n + 1) / (N + 2));
}
template <class RealType, class Policy>
inline RealType skewness(const hypergeometric_distribution<RealType, Policy>& dist)
{
BOOST_MATH_STD_USING
RealType r = static_cast<RealType>(dist.defective());
RealType n = static_cast<RealType>(dist.sample_count());
RealType N = static_cast<RealType>(dist.total());
return (N - 2 * r) * sqrt(N - 1) * (N - 2 * n) / (sqrt(n * r * (N - r) * (N - n)) * (N - 2));
} // RealType skewness(const hypergeometric_distribution<RealType, Policy>& dist)
template <class RealType, class Policy>
inline RealType kurtosis_excess(const hypergeometric_distribution<RealType, Policy>& dist)
{
// https://www.wolframalpha.com/input/?i=kurtosis+hypergeometric+distribution shown as plain text:
// mean | (m n)/N
// standard deviation | sqrt((m n(N - m) (N - n))/(N - 1))/N
// variance | (m n(1 - m/N) (N - n))/((N - 1) N)
// skewness | (sqrt(N - 1) (N - 2 m) (N - 2 n))/((N - 2) sqrt(m n(N - m) (N - n)))
// kurtosis | ((N - 1) N^2 ((3 m(N - m) (n^2 (-N) + (n - 2) N^2 + 6 n(N - n)))/N^2 - 6 n(N - n) + N(N + 1)))/(m n(N - 3) (N - 2) (N - m) (N - n))
// Kurtosis[HypergeometricDistribution[n, m, N]]
RealType m = static_cast<RealType>(dist.defective()); // Failures or success events. (Also symbols K or M are used).
RealType n = static_cast<RealType>(dist.sample_count()); // draws or trials.
RealType n2 = n * n; // n^2
RealType N = static_cast<RealType>(dist.total()); // Total population from which n draws or trials are made.
RealType N2 = N * N; // N^2
// result = ((N - 1) N^2 ((3 m(N - m) (n^2 (-N) + (n - 2) N^2 + 6 n(N - n)))/N^2 - 6 n(N - n) + N(N + 1)))/(m n(N - 3) (N - 2) (N - m) (N - n));
RealType result = ((N-1)*N2*((3*m*(N-m)*(n2*(-N)+(n-2)*N2+6*n*(N-n)))/N2-6*n*(N-n)+N*(N+1)))/(m*n*(N-3)*(N-2)*(N-m)*(N-n));
// Agrees with kurtosis hypergeometric distribution(50,200,500) kurtosis = 2.96917
// N[kurtosis[hypergeometricdistribution(50,200,500)], 55] 2.969174035736058474901169623721804275002985337280263464
return result;
} // RealType kurtosis_excess(const hypergeometric_distribution<RealType, Policy>& dist)
template <class RealType, class Policy>
inline RealType kurtosis(const hypergeometric_distribution<RealType, Policy>& dist)
{
return kurtosis_excess(dist) + 3;
} // RealType kurtosis_excess(const hypergeometric_distribution<RealType, Policy>& dist)
}} // namespaces
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // include guard