boost/math/distributions/detail/hypergeometric_pdf.hpp
// Copyright 2008 Gautam Sewani
// Copyright 2008 John Maddock
//
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
#define BOOST_MATH_DISTRIBUTIONS_DETAIL_HG_PDF_HPP
#include <boost/math/constants/constants.hpp>
#include <boost/math/special_functions/lanczos.hpp>
#include <boost/math/special_functions/gamma.hpp>
#include <boost/math/special_functions/pow.hpp>
#include <boost/math/special_functions/prime.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <algorithm>
#include <cstdint>
#ifdef BOOST_MATH_INSTRUMENT
#include <typeinfo>
#endif
namespace boost{ namespace math{ namespace detail{
template <class T, class Func>
void bubble_down_one(T* first, T* last, Func f)
{
using std::swap;
T* next = first;
++next;
while((next != last) && (!f(*first, *next)))
{
swap(*first, *next);
++first;
++next;
}
}
template <class T>
struct sort_functor
{
sort_functor(const T* exponents) : m_exponents(exponents){}
bool operator()(std::size_t i, std::size_t j)
{
return m_exponents[i] > m_exponents[j];
}
private:
const T* m_exponents;
};
template <class T, class Lanczos, class Policy>
T hypergeometric_pdf_lanczos_imp(T /*dummy*/, std::uint64_t x, std::uint64_t r, std::uint64_t n, std::uint64_t N, const Lanczos&, const Policy&)
{
BOOST_MATH_STD_USING
BOOST_MATH_INSTRUMENT_FPU
BOOST_MATH_INSTRUMENT_VARIABLE(x);
BOOST_MATH_INSTRUMENT_VARIABLE(r);
BOOST_MATH_INSTRUMENT_VARIABLE(n);
BOOST_MATH_INSTRUMENT_VARIABLE(N);
BOOST_MATH_INSTRUMENT_VARIABLE(typeid(Lanczos).name());
T bases[9] = {
T(n) + static_cast<T>(Lanczos::g()) + 0.5f,
T(r) + static_cast<T>(Lanczos::g()) + 0.5f,
T(N - n) + static_cast<T>(Lanczos::g()) + 0.5f,
T(N - r) + static_cast<T>(Lanczos::g()) + 0.5f,
1 / (T(N) + static_cast<T>(Lanczos::g()) + 0.5f),
1 / (T(x) + static_cast<T>(Lanczos::g()) + 0.5f),
1 / (T(n - x) + static_cast<T>(Lanczos::g()) + 0.5f),
1 / (T(r - x) + static_cast<T>(Lanczos::g()) + 0.5f),
1 / (T(N - n - r + x) + static_cast<T>(Lanczos::g()) + 0.5f)
};
T exponents[9] = {
n + T(0.5f),
r + T(0.5f),
N - n + T(0.5f),
N - r + T(0.5f),
N + T(0.5f),
x + T(0.5f),
n - x + T(0.5f),
r - x + T(0.5f),
N - n - r + x + T(0.5f)
};
int base_e_factors[9] = {
-1, -1, -1, -1, 1, 1, 1, 1, 1
};
int sorted_indexes[9] = {
0, 1, 2, 3, 4, 5, 6, 7, 8
};
#ifdef BOOST_MATH_INSTRUMENT
BOOST_MATH_INSTRUMENT_FPU
for(unsigned i = 0; i < 9; ++i)
{
BOOST_MATH_INSTRUMENT_VARIABLE(i);
BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
}
#endif
std::sort(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
#ifdef BOOST_MATH_INSTRUMENT
BOOST_MATH_INSTRUMENT_FPU
for(unsigned i = 0; i < 9; ++i)
{
BOOST_MATH_INSTRUMENT_VARIABLE(i);
BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
}
#endif
do{
exponents[sorted_indexes[0]] -= exponents[sorted_indexes[1]];
bases[sorted_indexes[1]] *= bases[sorted_indexes[0]];
if((bases[sorted_indexes[1]] < tools::min_value<T>()) && (exponents[sorted_indexes[1]] != 0))
{
return 0;
}
base_e_factors[sorted_indexes[1]] += base_e_factors[sorted_indexes[0]];
bubble_down_one(sorted_indexes, sorted_indexes + 9, sort_functor<T>(exponents));
#ifdef BOOST_MATH_INSTRUMENT
for(unsigned i = 0; i < 9; ++i)
{
BOOST_MATH_INSTRUMENT_VARIABLE(i);
BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
}
#endif
}while(exponents[sorted_indexes[1]] > 1);
//
// Combine equal powers:
//
std::size_t j = 8;
while(exponents[sorted_indexes[j]] == 0) --j;
while(j)
{
while(j && (exponents[sorted_indexes[j-1]] == exponents[sorted_indexes[j]]))
{
bases[sorted_indexes[j-1]] *= bases[sorted_indexes[j]];
exponents[sorted_indexes[j]] = 0;
base_e_factors[sorted_indexes[j-1]] += base_e_factors[sorted_indexes[j]];
bubble_down_one(sorted_indexes + j, sorted_indexes + 9, sort_functor<T>(exponents));
--j;
}
--j;
#ifdef BOOST_MATH_INSTRUMENT
BOOST_MATH_INSTRUMENT_VARIABLE(j);
for(unsigned i = 0; i < 9; ++i)
{
BOOST_MATH_INSTRUMENT_VARIABLE(i);
BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
}
#endif
}
#ifdef BOOST_MATH_INSTRUMENT
BOOST_MATH_INSTRUMENT_FPU
for(unsigned i = 0; i < 9; ++i)
{
BOOST_MATH_INSTRUMENT_VARIABLE(i);
BOOST_MATH_INSTRUMENT_VARIABLE(bases[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(base_e_factors[i]);
BOOST_MATH_INSTRUMENT_VARIABLE(sorted_indexes[i]);
}
#endif
T result;
BOOST_MATH_INSTRUMENT_VARIABLE(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])));
BOOST_MATH_INSTRUMENT_VARIABLE(exponents[sorted_indexes[0]]);
{
BOOST_FPU_EXCEPTION_GUARD
result = pow(bases[sorted_indexes[0]] * exp(static_cast<T>(base_e_factors[sorted_indexes[0]])), exponents[sorted_indexes[0]]);
}
BOOST_MATH_INSTRUMENT_VARIABLE(result);
for(std::size_t i = 1; (i < 9) && (exponents[sorted_indexes[i]] > 0); ++i)
{
BOOST_FPU_EXCEPTION_GUARD
if(result < tools::min_value<T>())
return 0; // short circuit further evaluation
if(exponents[sorted_indexes[i]] == 1)
result *= bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]]));
else if(exponents[sorted_indexes[i]] == 0.5f)
result *= sqrt(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])));
else
result *= pow(bases[sorted_indexes[i]] * exp(static_cast<T>(base_e_factors[sorted_indexes[i]])), exponents[sorted_indexes[i]]);
BOOST_MATH_INSTRUMENT_VARIABLE(result);
}
result *= Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n + 1))
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r + 1))
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n + 1))
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - r + 1))
/
( Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N + 1))
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(x + 1))
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(n - x + 1))
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(r - x + 1))
* Lanczos::lanczos_sum_expG_scaled(static_cast<T>(N - n - r + x + 1)));
BOOST_MATH_INSTRUMENT_VARIABLE(result);
return result;
}
template <class T, class Policy>
T hypergeometric_pdf_lanczos_imp(T /*dummy*/, std::uint64_t x, std::uint64_t r, std::uint64_t n, std::uint64_t N, const boost::math::lanczos::undefined_lanczos&, const Policy& pol)
{
BOOST_MATH_STD_USING
return exp(
boost::math::lgamma(T(n + 1), pol)
+ boost::math::lgamma(T(r + 1), pol)
+ boost::math::lgamma(T(N - n + 1), pol)
+ boost::math::lgamma(T(N - r + 1), pol)
- boost::math::lgamma(T(N + 1), pol)
- boost::math::lgamma(T(x + 1), pol)
- boost::math::lgamma(T(n - x + 1), pol)
- boost::math::lgamma(T(r - x + 1), pol)
- boost::math::lgamma(T(N - n - r + x + 1), pol));
}
template <class T>
inline T integer_power(const T& x, int ex)
{
if(ex < 0)
return 1 / integer_power(x, -ex);
switch(ex)
{
case 0:
return 1;
case 1:
return x;
case 2:
return x * x;
case 3:
return x * x * x;
case 4:
return boost::math::pow<4>(x);
case 5:
return boost::math::pow<5>(x);
case 6:
return boost::math::pow<6>(x);
case 7:
return boost::math::pow<7>(x);
case 8:
return boost::math::pow<8>(x);
}
BOOST_MATH_STD_USING
#ifdef __SUNPRO_CC
return pow(x, T(ex));
#else
return static_cast<T>(pow(x, ex));
#endif
}
template <class T>
struct hypergeometric_pdf_prime_loop_result_entry
{
T value;
const hypergeometric_pdf_prime_loop_result_entry* next;
};
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4510 4512 4610)
#endif
struct hypergeometric_pdf_prime_loop_data
{
const std::uint64_t x;
const std::uint64_t r;
const std::uint64_t n;
const std::uint64_t N;
std::size_t prime_index;
std::uint64_t current_prime;
};
#ifdef _MSC_VER
#pragma warning(pop)
#endif
template <class T>
T hypergeometric_pdf_prime_loop_imp(hypergeometric_pdf_prime_loop_data& data, hypergeometric_pdf_prime_loop_result_entry<T>& result)
{
while(data.current_prime <= data.N)
{
std::uint64_t base = data.current_prime;
std::uint64_t prime_powers = 0;
while(base <= data.N)
{
prime_powers += data.n / base;
prime_powers += data.r / base;
prime_powers += (data.N - data.n) / base;
prime_powers += (data.N - data.r) / base;
prime_powers -= data.N / base;
prime_powers -= data.x / base;
prime_powers -= (data.n - data.x) / base;
prime_powers -= (data.r - data.x) / base;
prime_powers -= (data.N - data.n - data.r + data.x) / base;
base *= data.current_prime;
}
if(prime_powers)
{
T p = integer_power<T>(static_cast<T>(data.current_prime), static_cast<int>(prime_powers));
if((p > 1) && (tools::max_value<T>() / p < result.value))
{
//
// The next calculation would overflow, use recursion
// to sidestep the issue:
//
hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
data.current_prime = prime(static_cast<unsigned>(++data.prime_index));
return hypergeometric_pdf_prime_loop_imp<T>(data, t);
}
if((p < 1) && (tools::min_value<T>() / p > result.value))
{
//
// The next calculation would underflow, use recursion
// to sidestep the issue:
//
hypergeometric_pdf_prime_loop_result_entry<T> t = { p, &result };
data.current_prime = prime(static_cast<unsigned>(++data.prime_index));
return hypergeometric_pdf_prime_loop_imp<T>(data, t);
}
result.value *= p;
}
data.current_prime = prime(static_cast<unsigned>(++data.prime_index));
}
//
// When we get to here we have run out of prime factors,
// the overall result is the product of all the partial
// results we have accumulated on the stack so far, these
// are in a linked list starting with "data.head" and ending
// with "result".
//
// All that remains is to multiply them together, taking
// care not to overflow or underflow.
//
// Enumerate partial results >= 1 in variable i
// and partial results < 1 in variable j:
//
hypergeometric_pdf_prime_loop_result_entry<T> const *i, *j;
i = &result;
while(i && i->value < 1)
i = i->next;
j = &result;
while(j && j->value >= 1)
j = j->next;
T prod = 1;
while(i || j)
{
while(i && ((prod <= 1) || (j == 0)))
{
prod *= i->value;
i = i->next;
while(i && i->value < 1)
i = i->next;
}
while(j && ((prod >= 1) || (i == 0)))
{
prod *= j->value;
j = j->next;
while(j && j->value >= 1)
j = j->next;
}
}
return prod;
}
template <class T, class Policy>
inline T hypergeometric_pdf_prime_imp(std::uint64_t x, std::uint64_t r, std::uint64_t n, std::uint64_t N, const Policy&)
{
hypergeometric_pdf_prime_loop_result_entry<T> result = { 1, 0 };
hypergeometric_pdf_prime_loop_data data = { x, r, n, N, 0, prime(0) };
return hypergeometric_pdf_prime_loop_imp<T>(data, result);
}
template <class T, class Policy>
T hypergeometric_pdf_factorial_imp(std::uint64_t x, std::uint64_t r, std::uint64_t n, std::uint64_t N, const Policy&)
{
BOOST_MATH_STD_USING
BOOST_MATH_ASSERT(N <= boost::math::max_factorial<T>::value);
T result = boost::math::unchecked_factorial<T>(static_cast<unsigned>(n));
T num[3] = {
boost::math::unchecked_factorial<T>(static_cast<unsigned>(r)),
boost::math::unchecked_factorial<T>(static_cast<unsigned>(N - n)),
boost::math::unchecked_factorial<T>(static_cast<unsigned>(N - r))
};
T denom[5] = {
boost::math::unchecked_factorial<T>(static_cast<unsigned>(N)),
boost::math::unchecked_factorial<T>(static_cast<unsigned>(x)),
boost::math::unchecked_factorial<T>(static_cast<unsigned>(n - x)),
boost::math::unchecked_factorial<T>(static_cast<unsigned>(r - x)),
boost::math::unchecked_factorial<T>(static_cast<unsigned>(N - n - r + x))
};
std::size_t i = 0;
std::size_t j = 0;
while((i < 3) || (j < 5))
{
while((j < 5) && ((result >= 1) || (i >= 3)))
{
result /= denom[j];
++j;
}
while((i < 3) && ((result <= 1) || (j >= 5)))
{
result *= num[i];
++i;
}
}
return result;
}
template <class T, class Policy>
inline typename tools::promote_args<T>::type
hypergeometric_pdf(std::uint64_t x, std::uint64_t r, std::uint64_t n, std::uint64_t N, const Policy&)
{
BOOST_FPU_EXCEPTION_GUARD
typedef typename tools::promote_args<T>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef typename lanczos::lanczos<value_type, Policy>::type evaluation_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
value_type result;
if(N <= boost::math::max_factorial<value_type>::value)
{
//
// If N is small enough then we can evaluate the PDF via the factorials
// directly: table lookup of the factorials gives the best performance
// of the methods available:
//
result = detail::hypergeometric_pdf_factorial_imp<value_type>(x, r, n, N, forwarding_policy());
}
else if(N <= boost::math::prime(boost::math::max_prime - 1))
{
//
// If N is no larger than the largest prime number in our lookup table
// (104729) then we can use prime factorisation to evaluate the PDF,
// this is slow but accurate:
//
result = detail::hypergeometric_pdf_prime_imp<value_type>(x, r, n, N, forwarding_policy());
}
else
{
//
// Catch all case - use the lanczos approximation - where available -
// to evaluate the ratio of factorials. This is reasonably fast
// (almost as quick as using logarithmic evaluation in terms of lgamma)
// but only a few digits better in accuracy than using lgamma:
//
result = detail::hypergeometric_pdf_lanczos_imp(value_type(), x, r, n, N, evaluation_type(), forwarding_policy());
}
if(result > 1)
{
result = 1;
}
if(result < 0)
{
result = 0;
}
return policies::checked_narrowing_cast<result_type, forwarding_policy>(result, "boost::math::hypergeometric_pdf<%1%>(%1%,%1%,%1%,%1%)");
}
}}} // namespaces
#endif