Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.
PrevUpHomeNext

Examples

Dimension Example
Unit Example
Quantity Example
Kitchen Sink Example using SI units
Conversion Example
User Defined Types
Complex Example
Performance Example
Radar Beam Height
Heterogeneous Unit Example
Absolute and Relative Temperature Example
Runtime Conversion Factor Example
Units with Non-base Dimensions
Output for Composite Units
Automatically Scaled Units
Conversion Factor
Runtime Units
Interoperability with Boost.Lambda

(dimension.cpp)

By using MPL metafunctions and the template specializations for operations on composite dimensions (defined in boost/units/dimension.hpp) it is possible to perform compile time arithmetic according to the dimensional analysis rules described above to produce new composite dimensions :

typedef mpl::times<length_dimension,mass_dimension>::type   LM_type;
typedef mpl::divides<length_dimension,time_dimension>::type L_T_type;
typedef static_root<
    mpl::divides<energy_dimension,mass_dimension>::type,
    static_rational<2>
>::type    V_type;

outputting (with symbol demangling, implemented in utility.hpp)

length_dimension  = list<dim<length_base_dimension, static_rational<1l, 1l> >, dimensionless_type>
mass_dimension    = list<dim<mass_base_dimension, static_rational<1l, 1l> >, dimensionless_type>
time_dimension    = list<dim<time_base_dimension, static_rational<1l, 1l> >, dimensionless_type>
energy_dimension  = list<dim<length_base_dimension, static_rational<2l, 1l> >, list<dim<mass_base_dimension, static_rational<1l, 1l> >, list<dim<time_base_dimension, static_rational<-2l, 1l> >, dimensionless_type> > >
LM_type      = list<dim<length_base_dimension, static_rational<1l, 1l> >, list<dim<mass_base_dimension, static_rational<1l, 1l> >, dimensionless_type> >
L_T_type     = list<dim<length_base_dimension, static_rational<1l, 1l> >, list<dim<time_base_dimension, static_rational<-1l, 1l> >, dimensionless_type> >
V_type       = list<dim<length_base_dimension, static_rational<1l, 1l> >, list<dim<time_base_dimension, static_rational<-1l, 1l> >, dimensionless_type> >

(unit.cpp)

This example demonstrates the use of the simple but functional unit system implemented in test_system.hpp

const length                    L;
const mass                      M;
// needs to be namespace-qualified because of global time definition
const boost::units::test::time  T;
const energy                    E;

We can perform various algebraic operations on these units, resulting in the following output:

L             = m
L+L           = m
L-L           = m
L/L           = dimensionless
meter*meter   = m^2
M*(L/T)*(L/T) = m^2 kg s^-2
M*(L/T)^2     = m^2 kg s^-2
L^3           = m^3
L^(3/2)       = m^(3/2)
2vM           = kg^(1/2)
(3/2)vM       = kg^(2/3)

(quantity.cpp)

This example demonstrates how to use quantities of our toy unit system :

quantity<length> L = 2.0*meters;                     // quantity of length
quantity<energy> E = kilograms*pow<2>(L/seconds);    // quantity of energy

giving us the basic quantity functionality :

L                                 = 2 m
L+L                               = 4 m
L-L                               = 0 m
L*L                               = 4 m^2
L/L                               = 1 dimensionless
L*meter                           = 2 m^2
kilograms*(L/seconds)*(L/seconds) = 4 m^2 kg s^-2
kilograms*(L/seconds)^2           = 4 m^2 kg s^-2
L^3                               = 8 m^3
L^(3/2)                           = 2.82843 m^(3/2)
2vL                               = 1.41421 m^(1/2)
(3/2)vL                           = 1.5874 m^(2/3)

As a further demonstration of the flexibility of the system, we replace the double value type with a std::complex<double> value type (ignoring the question of the meaningfulness of complex lengths and energies) :

quantity<length,std::complex<double> > L(std::complex<double>(3.0,4.0)*meters);
quantity<energy,std::complex<double> > E(kilograms*pow<2>(L/seconds));

and find that the code functions exactly as expected with no additional work, delegating operations to std::complex<double> and performing the appropriate dimensional analysis :

L                                 = (3,4) m
L+L                               = (6,8) m
L-L                               = (0,0) m
L*L                               = (-7,24) m^2
L/L                               = (1,0) dimensionless
L*meter                           = (3,4) m^2
kilograms*(L/seconds)*(L/seconds) = (-7,24) m^2 kg s^-2
kilograms*(L/seconds)^2           = (-7,24) m^2 kg s^-2
L^3                               = (-117,44) m^3
L^(3/2)                           = (2,11) m^(3/2)
2vL                               = (2,1) m^(1/2)
(3/2)vL                           = (2.38285,1.69466) m^(2/3)

(kitchen_sink.cpp)

This example provides a fairly extensive set of tests covering most of the quantity functionality. It uses the SI unit system defined in boost/units/systems/si.hpp.

If we define a few units and associated quantities,

/// scalar
const double    s1 = 2;

const long                  x1 = 2;
const static_rational<4,3>  x2;

/// define some units
force       u1 = newton;
energy      u2 = joule;

/// define some quantities
quantity<force>      q1(1.0*u1);
quantity<energy>     q2(2.0*u2);

the various algebraic operations between scalars, units, and quantities give

S1 :    2
X1 :    2
X2 :    (4/3)
U1 :    N
U2 :    J
Q1 :    1 N
Q2 :    2 J

Scalar/unit operations :

U1*S1 : 2 N
S1*U1 : 2 N
U1/S1 : 0.5 N
S1/U1 : 2 m^-1 kg^-1 s^2

Unit/unit operations and integral/rational powers of units :

U1+U1 : N
U1-U1 : N
U1*U1 : m^2 kg^2 s^-4
U1/U1 : dimensionless
U1*U2 : m^3 kg^2 s^-4
U1/U2 : m^-1
U1^X  : m^2 kg^2 s^-4
X1vU1 : m^(1/2) kg^(1/2) s^-1
U1^X2 : m^(4/3) kg^(4/3) s^(-8/3)
X2vU1 : m^(3/4) kg^(3/4) s^(-3/2)

Scalar/quantity operations :

Q1*S1 : 2 N
S1*Q1 : 2 N
Q1/S1 : 0.5 N
S1/Q1 : 2 m^-1 kg^-1 s^2

Unit/quantity operations :

U1*Q1 : 1 m^2 kg^2 s^-4
Q1*U1 : 1 m^2 kg^2 s^-4
U1/Q1 : 1 dimensionless
Q1/U1 : 1 dimensionless

Quantity/quantity operations and integral/rational powers of quantities :

+Q1   : 1 N
-Q1   : -1 N
Q1+Q1 : 2 N
Q1-Q1 : 0 N
Q1*Q1 : 1 m^2 kg^2 s^-4
Q1/Q1 : 1 dimensionless
Q1*Q2 : 2 m^3 kg^2 s^-4
Q1/Q2 : 0.5 m^-1
Q1^X1 : 1 m^2 kg^2 s^-4
X1vQ1 : 1 m^(1/2) kg^(1/2) s^-1
Q1^X2 : 1 m^(4/3) kg^(4/3) s^(-8/3)
X2vQ1 : 1 m^(3/4) kg^(3/4) s^(-3/2)

Logical comparison operators are also defined between quantities :

/// check comparison tests
quantity<length>    l1(1.0*meter),
                    l2(2.0*meters);

giving

l1 == l2    false
l1 != l2    true
l1 <= l2    true
l1 < l2     true
l1 >= l2    false
l1 > l2     false

Implicit conversion is allowed between dimensionless quantities and their corresponding value types :

/// check implicit unit conversion from dimensionless to value_type  
const double    dimless = (q1/q1);

A generic function for computing mechanical work can be defined that takes force and distance arguments in an arbitrary unit system and returns energy in the same system:

/// the physical definition of work - computed for an arbitrary unit system 
template<class System,class Y>
constexpr
quantity<unit<energy_dimension,System>,Y>
work(quantity<unit<force_dimension,System>,Y> F,
     quantity<unit<length_dimension,System>,Y> dx)
{
    return F*dx;
}

/// test calcuation of work
quantity<force>       F(1.0*newton);
quantity<length>      dx(1.0*meter);
quantity<energy>      E(work(F,dx));

which functions as expected for SI quantities :

F  = 1 N
dx = 1 m
E  = 1 J

The ideal gas law can also be implemented in SI units :

/// the ideal gas law in si units
template<class Y>
constexpr
quantity<si::amount,Y>
idealGasLaw(const quantity<si::pressure,Y>& P,
            const quantity<si::volume,Y>& V,
            const quantity<si::temperature,Y>& T)
{
    using namespace boost::units::si;

    using namespace constants::codata;
    return (P*V/(R*T));
}

/// test ideal gas law
quantity<temperature>   T = (273.+37.)*kelvin;
quantity<pressure>      P = 1.01325e5*pascals;
quantity<length>        r = 0.5e-6*meters;
quantity<volume>        V = (4.0/3.0)*3.141592*pow<3>(r);
quantity<amount>        n(idealGasLaw(P,V,T));

with the resulting output :

r = 5e-07 m
P = 101325 Pa
V = 5.23599e-19 m^3
T = 310 K
n = 2.05835e-17 mol
R = 8.314472 m^2 kg s^-2 K^-1 mol^-1 (rel. unc. = 1.8e-06)

Trigonometric and inverse trigonometric functions can be implemented for any unit system that provides an angular base dimension. For radians, these functions are found in boost/units/cmath.hpp These behave as one expects, with trigonometric functions taking an angular quantity and returning a dimensionless quantity, while the inverse trigonometric functions take a dimensionless quantity and return an angular quantity :

Defining a few angular quantities,

/// test trig stuff
quantity<plane_angle>           theta = 0.375*radians;
quantity<dimensionless>         sin_theta = sin(theta);
quantity<plane_angle>           thetap = asin(sin_theta);

yields

theta            = 0.375 rd
sin(theta)       = 0.366273 dimensionless
asin(sin(theta)) = 0.375 rd

Dealing with complex quantities is trivial. Here is the calculation of complex impedance :

quantity<electric_potential,complex_type> v = complex_type(12.5,0.0)*volts;
quantity<current,complex_type>            i = complex_type(3.0,4.0)*amperes;
quantity<resistance,complex_type>         z = complex_type(1.5,-2.0)*ohms;

giving

V   = (12.5,0) V
I   = (3,4) A
Z   = (1.5,-2) Ohm
I*Z = (12.5,0) V

User-defined value types that support the appropriate arithmetic operations are automatically supported as quantity value types. The operators that are supported by default for quantity value types are unary plus, unary minus, addition, subtraction, multiplication, division, equal-to, not-equal-to, less-than, less-or-equal-to, greater-than, and greater-or-equal-to. Support for rational powers and roots can be added by overloading the power_typeof_helper and root_typeof_helper classes. Here we implement a user-defined measurement class that models a numerical measurement with an associated measurement error and the appropriate algebra and demonstrates its use as a quantity value type; the full code is found in measurement.hpp.

Then, defining some measurement quantity variables

quantity<length,measurement<double> >
    u(measurement<double>(1.0,0.0)*meters),
    w(measurement<double>(4.52,0.02)*meters),
    x(measurement<double>(2.0,0.2)*meters),
    y(measurement<double>(3.0,0.6)*meters);

gives

x+y-w         = 0.48(+/-0.632772) m
w*x           = 9.04(+/-0.904885) m^2
x/y           = 0.666667(+/-0.149071) dimensionless

If we implement the overloaded helper classes for rational powers and roots then we can also compute rational powers of measurement quantities :

w*y^2/(u*x)^2 = 10.17(+/-3.52328) m^-1
w/(u*x)^(1/2) = 3.19612(+/-0.160431) dimensionless

(conversion.cpp)

This example demonstrates the various allowed conversions between SI and CGS units. Defining some quantities

quantity<si::length>     L1 = quantity<si::length,int>(int(2.5)*si::meters);
quantity<si::length,int> L2(quantity<si::length,double>(2.5*si::meters));

illustrates implicit conversion of quantities of different value types where implicit conversion of the value types themselves is allowed. N.B. The conversion from double to int is treated as an explicit conversion because there is no way to emulate the exact behavior of the built-in conversion. Explicit constructors allow conversions for two cases:

  • explicit casting of a quantity to a different value_type :

quantity<si::length,int> L3 = static_cast<quantity<si::length,int> >(L1);

  • and explicit casting of a quantity to a different unit :

quantity<cgs::length>    L4 = static_cast<quantity<cgs::length> >(L1);

giving the following output :

L1 = 2 m
L2 = 2 m
L3 = 2 m
L4 = 200 cm
L5 = 5 m
L6 = 4 m
L7 = 200 cm

A few more explicit unit system conversions :

quantity<si::volume>    vs(1.0*pow<3>(si::meter));
quantity<cgs::volume>   vc(vs);
quantity<si::volume>    vs2(vc);

quantity<si::energy>    es(1.0*si::joule);
quantity<cgs::energy>   ec(es);
quantity<si::energy>    es2(ec);

quantity<si::velocity>  v1 = 2.0*si::meters/si::second,
                        v2(2.0*cgs::centimeters/cgs::second);

which produces the following output:

volume (m^3)  = 1 m^3
volume (cm^3) = 1e+06 cm^3
volume (m^3)  = 1 m^3

energy (joules) = 1 J
energy (ergs)   = 1e+07 erg
energy (joules) = 1 J

velocity (2 m/s)  = 2 m s^-1
velocity (2 cm/s) = 0.02 m s^-1

(quaternion.cpp)

This example demonstrates the use of boost::math::quaternion as a value type for quantity and the converse. For the first case, we first define specializations of power_typeof_helper and root_typeof_helper for powers and roots, respectively:

/// specialize power typeof helper
template<class Y,long N,long D>
struct power_typeof_helper<boost::math::quaternion<Y>,static_rational<N,D> >
{
    // boost::math::quaternion only supports integer powers
    BOOST_STATIC_ASSERT(D==1);

    typedef boost::math::quaternion<
        typename power_typeof_helper<Y,static_rational<N,D> >::type
    > type;

    static type value(const boost::math::quaternion<Y>& x)
    {
        return boost::math::pow(x,static_cast<int>(N));
    }
};

/// specialize root typeof helper
template<class Y,long N,long D>
struct root_typeof_helper<boost::math::quaternion<Y>,static_rational<N,D> >
{
    // boost::math::quaternion only supports integer powers
    BOOST_STATIC_ASSERT(N==1);

    typedef boost::math::quaternion<
        typename root_typeof_helper<Y,static_rational<N,D> >::type
    > type;

    static type value(const boost::math::quaternion<Y>& x)
    {
        return boost::math::pow(x,static_cast<int>(D));
    }
};

We can now declare a quantity of a quaternion :

typedef quantity<length,quaternion<double> >     length_dimension;

length_dimension    L(quaternion<double>(4.0,3.0,2.0,1.0)*meters);

so that all operations that are defined in the quaternion class behave correctly. If rational powers were defined for this class, it would be possible to compute rational powers and roots with no additional changes.

+L      = (4,3,2,1) m
-L      = (-4,-3,-2,-1) m
L+L     = (8,6,4,2) m
L-L     = (0,0,0,0) m
L*L     = (2,24,16,8) m^2
L/L     = (1,0,0,0) dimensionless
L^3     = (-104,102,68,34) m^3

Now, if for some reason we preferred the quantity to be the value type of the quaternion class we would have :

typedef quaternion<quantity<length> >     length_dimension;

length_dimension    L(4.0*meters,3.0*meters,2.0*meters,1.0*meters);

Here, the unary plus and minus and addition and subtraction operators function correctly. Unfortunately, the multiplication and division operations fail because quaternion implements them in terms of the *= and /= operators, respectively, which are incapable of representing the heterogeneous unit algebra needed for quantities (an identical problem occurs with std::complex<T>, for the same reason). In order to compute rational powers and roots, we need to specialize power_typeof_helper and root_typeof_helper as follows:

/// specialize power typeof helper for quaternion<quantity<Unit,Y> >
template<class Unit,long N,long D,class Y>
struct power_typeof_helper<
    boost::math::quaternion<quantity<Unit,Y> >,
    static_rational<N,D> >
{
    typedef typename power_typeof_helper<
        Y,
        static_rational<N,D>
    >::type     value_type;

    typedef typename power_typeof_helper<
        Unit,
        static_rational<N,D>
    >::type  unit_type;

    typedef quantity<unit_type,value_type>         quantity_type;
    typedef boost::math::quaternion<quantity_type> type;

    static type value(const boost::math::quaternion<quantity<Unit,Y> >& x)
    {
        const boost::math::quaternion<value_type>   tmp =
            pow<static_rational<N,D> >(boost::math::quaternion<Y>(
                x.R_component_1().value(),
                x.R_component_2().value(),
                x.R_component_3().value(),
                x.R_component_4().value()));

        return type(quantity_type::from_value(tmp.R_component_1()),
                    quantity_type::from_value(tmp.R_component_2()),
                    quantity_type::from_value(tmp.R_component_3()),
                    quantity_type::from_value(tmp.R_component_4()));
    }
};

/// specialize root typeof helper for quaternion<quantity<Unit,Y> >
template<class Unit,long N,long D,class Y>
struct root_typeof_helper<
    boost::math::quaternion<quantity<Unit,Y> >,
    static_rational<N,D> >
{
    typedef typename root_typeof_helper<
        Y,
        static_rational<N,D>
    >::type      value_type;

    typedef typename root_typeof_helper<
        Unit,
        static_rational<N,D>
    >::type   unit_type;

    typedef quantity<unit_type,value_type>         quantity_type;
    typedef boost::math::quaternion<quantity_type> type;

    static type value(const boost::math::quaternion<quantity<Unit,Y> >& x)
    {
        const boost::math::quaternion<value_type>   tmp =
            root<static_rational<N,D> >(boost::math::quaternion<Y>(
                x.R_component_1().value(),
                x.R_component_2().value(),
                x.R_component_3().value(),
                x.R_component_4().value()));

        return type(quantity_type::from_value(tmp.R_component_1()),
                    quantity_type::from_value(tmp.R_component_2()),
                    quantity_type::from_value(tmp.R_component_3()),
                    quantity_type::from_value(tmp.R_component_4()));
    }
};

giving:

+L      = (4 m,3 m,2 m,1 m)
-L      = (-4 m,-3 m,-2 m,-1 m)
L+L     = (8 m,6 m,4 m,2 m)
L-L     = (0 m,0 m,0 m,0 m)
L^3     = (-104 m^3,102 m^3,68 m^3,34 m^3)

(complex.cpp)

This example demonstrates how to implement a replacement complex class that functions correctly both as a quantity value type and as a quantity container class, including heterogeneous multiplication and division operations and rational powers and roots. Naturally, heterogeneous operations are only supported on compilers that implement typeof. The primary differences are that binary operations are not implemented using the op= operators and use the utility classes add_typeof_helper, subtract_typeof_helper, multiply_typeof_helper, and divide_typeof_helper. In addition, power_typeof_helper and root_typeof_helper are defined for both cases :

namespace boost {

namespace units {

/// replacement complex class 
template<class T>
class complex
{
    public:
        typedef complex<T>  this_type;

        constexpr complex(const T& r = 0,const T& i = 0) : r_(r),i_(i) { }
        constexpr complex(const this_type& source) : r_(source.r_),i_(source.i_) { }

        constexpr this_type& operator=(const this_type& source)
        {
            if (this == &source) return *this;

            r_ = source.r_;
            i_ = source.i_;

            return *this;
        }

        constexpr T& real()             { return r_; }
        constexpr T& imag()             { return i_; }

        constexpr const T& real() const       { return r_; }
        constexpr const T& imag() const       { return i_; }

        constexpr this_type& operator+=(const T& val)
        {
            r_ += val;
            return *this;
        }

        constexpr this_type& operator-=(const T& val)
        {
            r_ -= val;
            return *this;
        }

        constexpr this_type& operator*=(const T& val)
        {
            r_ *= val;
            i_ *= val;
            return *this;
        }

        constexpr this_type& operator/=(const T& val)
        {
            r_ /= val;
            i_ /= val;
            return *this;
        }

        constexpr this_type& operator+=(const this_type& source)
        {
            r_ += source.r_;
            i_ += source.i_;
            return *this;
        }

        constexpr this_type& operator-=(const this_type& source)
        {
            r_ -= source.r_;
            i_ -= source.i_;
            return *this;
        }

        constexpr this_type& operator*=(const this_type& source)
        {
            *this = *this * source;
            return *this;
        }

        constexpr this_type& operator/=(const this_type& source)
        {
            *this = *this / source;
            return *this;
        }

    private:
        T   r_,i_;
};

}

}

#if BOOST_UNITS_HAS_BOOST_TYPEOF

#include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP()

BOOST_TYPEOF_REGISTER_TEMPLATE(boost::units::complex, 1)

#endif

namespace boost {

namespace units {

template<class X>
constexpr
complex<typename unary_plus_typeof_helper<X>::type>
operator+(const complex<X>& x)
{
    typedef typename unary_plus_typeof_helper<X>::type  type;

    return complex<type>(x.real(),x.imag());
}

template<class X>
constexpr
complex<typename unary_minus_typeof_helper<X>::type>
operator-(const complex<X>& x)
{
    typedef typename unary_minus_typeof_helper<X>::type type;

    return complex<type>(-x.real(),-x.imag());
}

template<class X,class Y>
constexpr
complex<typename add_typeof_helper<X,Y>::type>
operator+(const complex<X>& x,const complex<Y>& y)
{
    typedef typename boost::units::add_typeof_helper<X,Y>::type type;

    return complex<type>(x.real()+y.real(),x.imag()+y.imag());
}

template<class X,class Y>
constexpr
complex<typename boost::units::subtract_typeof_helper<X,Y>::type>
operator-(const complex<X>& x,const complex<Y>& y)
{
    typedef typename boost::units::subtract_typeof_helper<X,Y>::type    type;

    return complex<type>(x.real()-y.real(),x.imag()-y.imag());
}

template<class X,class Y>
constexpr
complex<typename boost::units::multiply_typeof_helper<X,Y>::type>
operator*(const complex<X>& x,const complex<Y>& y)
{
    typedef typename boost::units::multiply_typeof_helper<X,Y>::type    type;

    return complex<type>(x.real()*y.real() - x.imag()*y.imag(),
                         x.real()*y.imag() + x.imag()*y.real());

//  fully correct implementation has more complex return type
//
//    typedef typename boost::units::multiply_typeof_helper<X,Y>::type xy_type;
//    
//    typedef typename boost::units::add_typeof_helper<
//      xy_type,xy_type>::type         xy_plus_xy_type;
//    typedef typename
//        boost::units::subtract_typeof_helper<xy_type,xy_type>::type
//        xy_minus_xy_type;
//    
//    BOOST_STATIC_ASSERT((boost::is_same<xy_plus_xy_type,
//                                       xy_minus_xy_type>::value == true));
//    
//    return complex<xy_plus_xy_type>(x.real()*y.real()-x.imag()*y.imag(),
//                                    x.real()*y.imag()+x.imag()*y.real());
}

template<class X,class Y>
constexpr
complex<typename boost::units::divide_typeof_helper<X,Y>::type>
operator/(const complex<X>& x,const complex<Y>& y)
{
    // naive implementation of complex division
    typedef typename boost::units::divide_typeof_helper<X,Y>::type type;

    return complex<type>((x.real()*y.real()+x.imag()*y.imag())/
                            (y.real()*y.real()+y.imag()*y.imag()),
                         (x.imag()*y.real()-x.real()*y.imag())/
                            (y.real()*y.real()+y.imag()*y.imag()));

//  fully correct implementation has more complex return type
//
//  typedef typename boost::units::multiply_typeof_helper<X,Y>::type xy_type;
//  typedef typename boost::units::multiply_typeof_helper<Y,Y>::type yy_type;
//
//  typedef typename boost::units::add_typeof_helper<xy_type, xy_type>::type
//      xy_plus_xy_type;
//  typedef typename boost::units::subtract_typeof_helper<
//      xy_type,xy_type>::type xy_minus_xy_type;
//
//  typedef typename boost::units::divide_typeof_helper<
//      xy_plus_xy_type,yy_type>::type      xy_plus_xy_over_yy_type;
//  typedef typename boost::units::divide_typeof_helper<
//      xy_minus_xy_type,yy_type>::type     xy_minus_xy_over_yy_type;
//
//  BOOST_STATIC_ASSERT((boost::is_same<xy_plus_xy_over_yy_type,
//                                  xy_minus_xy_over_yy_type>::value == true));
//
//  return complex<xy_plus_xy_over_yy_type>(
//      (x.real()*y.real()+x.imag()*y.imag())/
//          (y.real()*y.real()+y.imag()*y.imag()),
//      (x.imag()*y.real()-x.real()*y.imag())/
//          (y.real()*y.real()+y.imag()*y.imag()));
}

template<class Y>
complex<Y>
pow(const complex<Y>& x,const Y& y)
{
    std::complex<Y> tmp(x.real(),x.imag());

    tmp = std::pow(tmp,y);

    return complex<Y>(tmp.real(),tmp.imag());
}

template<class Y>
std::ostream& operator<<(std::ostream& os,const complex<Y>& val)
{
    os << val.real() << " + " << val.imag() << " i";

    return os;
}

/// specialize power typeof helper for complex<Y>
template<class Y,long N,long D>
struct power_typeof_helper<complex<Y>,static_rational<N,D> >
{
    typedef complex<
        typename power_typeof_helper<Y,static_rational<N,D> >::type
    > type;

    static type value(const complex<Y>& x)
    {
        const static_rational<N,D>  rat;

        const Y    m = Y(rat.numerator())/Y(rat.denominator());

        return boost::units::pow(x,m);
    }
};

/// specialize root typeof helper for complex<Y>
template<class Y,long N,long D>
struct root_typeof_helper<complex<Y>,static_rational<N,D> >
{
    typedef complex<
        typename root_typeof_helper<Y,static_rational<N,D> >::type
    > type;

    static type value(const complex<Y>& x)
    {
        const static_rational<N,D>  rat;

        const Y    m = Y(rat.denominator())/Y(rat.numerator());

        return boost::units::pow(x,m);
    }
};

/// specialize power typeof helper for complex<quantity<Unit,Y> >
template<class Y,class Unit,long N,long D>
struct power_typeof_helper<complex<quantity<Unit,Y> >,static_rational<N,D> >
{
    typedef typename
        power_typeof_helper<Y,static_rational<N,D> >::type       value_type;
    typedef typename
        power_typeof_helper<Unit,static_rational<N,D> >::type    unit_type;
    typedef quantity<unit_type,value_type>                      quantity_type;
    typedef complex<quantity_type>                              type;

    static type value(const complex<quantity<Unit,Y> >& x)
    {
        const complex<value_type>   tmp =
            pow<static_rational<N,D> >(complex<Y>(x.real().value(),
                                                  x.imag().value()));

        return type(quantity_type::from_value(tmp.real()),
                    quantity_type::from_value(tmp.imag()));
    }
};

/// specialize root typeof helper for complex<quantity<Unit,Y> >
template<class Y,class Unit,long N,long D>
struct root_typeof_helper<complex<quantity<Unit,Y> >,static_rational<N,D> >
{
    typedef typename
        root_typeof_helper<Y,static_rational<N,D> >::type       value_type;
    typedef typename
        root_typeof_helper<Unit,static_rational<N,D> >::type    unit_type;
    typedef quantity<unit_type,value_type>                      quantity_type;
    typedef complex<quantity_type>                              type;

    static type value(const complex<quantity<Unit,Y> >& x)
    {
        const complex<value_type>   tmp =
            root<static_rational<N,D> >(complex<Y>(x.real().value(),
                                                   x.imag().value()));

        return type(quantity_type::from_value(tmp.real()),
                   quantity_type::from_value(tmp.imag()));
    }
};

} // namespace units

} // namespace boost

With this replacement complex class, we can declare a complex variable :

typedef quantity<length,complex<double> >     length_dimension;

const length_dimension    L(complex<double>(2.0,1.0)*meters);

to get the correct behavior for all cases supported by quantity with a complex value type :

+L      = 2 + 1 i m
-L      = -2 + -1 i m
L+L     = 4 + 2 i m
L-L     = 0 + 0 i m
L*L     = 3 + 4 i m^2
L/L     = 1 + 0 i dimensionless
L^3     = 2 + 11 i m^3
L^(3/2) = 2.56713 + 2.14247 i m^(3/2)
3vL     = 1.29207 + 0.201294 i m^(1/3)
(3/2)vL = 1.62894 + 0.520175 i m^(2/3)

and, similarly, complex with a quantity value type

typedef complex<quantity<length> >     length_dimension;

const length_dimension    L(2.0*meters,1.0*meters);

gives

+L      = 2 m + 1 m i
-L      = -2 m + -1 m i
L+L     = 4 m + 2 m i
L-L     = 0 m + 0 m i
L*L     = 3 m^2 + 4 m^2 i
L/L     = 1 dimensionless + 0 dimensionless i
L^3     = 2 m^3 + 11 m^3 i
L^(3/2) = 2.56713 m^(3/2) + 2.14247 m^(3/2) i
3vL     = 1.29207 m^(1/3) + 0.201294 m^(1/3) i
(3/2)vL = 1.62894 m^(2/3) + 0.520175 m^(2/3) i

(performance.cpp)

This example provides an ad hoc performance test to verify that zero runtime overhead is incurred when using quantity in place of double. Note that performance optimization and testing is not trivial, so some care must be taken in profiling. It is also critical to have a compiler capable of optimizing the many template instantiations and inline calls effectively to achieve maximal performance. Zero overhead for this test has been verified using gcc 4.0.1, and icc 9.0, 10.0, and 10.1 on Mac OS 10.4 and 10.5, and using msvc 8.0 on Windows XP.

(radar_beam_height.cpp)

This example demonstrates the implementation of two non-SI units of length, the nautical mile :

namespace nautical {

struct length_base_unit :
    boost::units::base_unit<length_base_unit, length_dimension, 1>
{
    static std::string name()       { return "nautical mile"; }
    static std::string symbol()     { return "nmi"; }
};

typedef boost::units::make_system<length_base_unit>::type system;

/// unit typedefs
typedef unit<length_dimension,system>    length;

static const length mile,miles;

} // namespace nautical

// helper for conversions between nautical length and si length
BOOST_UNITS_DEFINE_CONVERSION_FACTOR(nautical::length_base_unit,
                                     boost::units::si::meter_base_unit,
                                     double, 1.852e3);

and the imperial foot :

namespace imperial {

struct length_base_unit :
    boost::units::base_unit<length_base_unit, length_dimension, 2>
{
    static std::string name()       { return "foot"; }
    static std::string symbol()     { return "ft"; }
};

typedef boost::units::make_system<length_base_unit>::type system;

/// unit typedefs
typedef unit<length_dimension,system>    length;

static const length foot,feet;

} // imperial

// helper for conversions between imperial length and si length
BOOST_UNITS_DEFINE_CONVERSION_FACTOR(imperial::length_base_unit,
                                     boost::units::si::meter_base_unit,
                                     double, 1.0/3.28083989501312);

These units include conversions between themselves and the meter. Three functions for computing radar beam height from radar range and the local earth radius are defined. The first takes arguments in one system and returns a value in the same system :

template<class System,typename T>
constexpr
quantity<unit<boost::units::length_dimension,System>,T>
radar_beam_height(const quantity<unit<length_dimension,System>,T>& radar_range,
                  const quantity<unit<length_dimension,System>,T>& earth_radius,
                  T k = 4.0/3.0)
{
    return quantity<unit<length_dimension,System>,T>
        (pow<2>(radar_range)/(2.0*k*earth_radius));
}

The second is similar, but is templated on return type, so that the arguments are converted to the return unit system internally :

template<class return_type,class System1,class System2,typename T>
constexpr
return_type
radar_beam_height(const quantity<unit<length_dimension,System1>,T>& radar_range,
                  const quantity<unit<length_dimension,System2>,T>& earth_radius,
                  T k = 4.0/3.0)
{
    // need to decide which system to use for calculation
    return pow<2>(static_cast<return_type>(radar_range))
            / (2.0*k*static_cast<return_type>(earth_radius));
}

Finally, the third function is an empirical approximation that is only valid for radar ranges specified in nautical miles, returning beam height in feet. This function uses the heterogeneous unit of nautical miles per square root of feet to ensure dimensional correctness :

constexpr
quantity<imperial::length>
radar_beam_height(const quantity<nautical::length>& range)
{
    return quantity<imperial::length>
        (pow<2>(range/(1.23*nautical::miles/root<2>(imperial::feet))));
}

With these, we can compute radar beam height in various unit systems :

const quantity<nautical::length> radar_range(300.0*miles);
const quantity<si::length>       earth_radius(6371.0087714*kilo*meters);

const quantity<si::length>       beam_height_1(radar_beam_height(quantity<si::length>(radar_range),earth_radius));
const quantity<nautical::length> beam_height_2(radar_beam_height(radar_range,quantity<nautical::length>(earth_radius)));
const quantity<si::length>       beam_height_3(radar_beam_height< quantity<si::length> >(radar_range,earth_radius));
const quantity<nautical::length> beam_height_4(radar_beam_height< quantity<nautical::length> >(radar_range,earth_radius));

giving

radar range        : 300 nmi
earth radius       : 6.37101e+06 m
beam height 1      : 18169.7 m
beam height 2      : 9.81085 nmi
beam height 3      : 18169.7 m
beam height 4      : 9.81085 nmi
beam height approx : 59488.4 ft
beam height approx : 18132.1 m

(heterogeneous_unit.cpp)

Mixed units and mixed unit conversions.

This code:

quantity<si::length>        L(1.5*si::meter);
quantity<cgs::mass>         M(1.0*cgs::gram);

std::cout << L << std::endl
          << M << std::endl
          << L*M << std::endl
          << L/M << std::endl
          << std::endl;

std::cout << 1.0*si::meter*si::kilogram/pow<2>(si::second) << std::endl
          << 1.0*si::meter*si::kilogram/pow<2>(si::second)/si::meter
          << std::endl << std::endl;

std::cout << 1.0*cgs::centimeter*si::kilogram/pow<2>(si::second) << std::endl
          << 1.0*cgs::centimeter*si::kilogram/pow<2>(si::second)/si::meter
          << std::endl << std::endl;

gives

1.5 m
1 g
1.5 m g
1.5 m g^-1

1 N
1 kg s^-2

1 cm kg s^-2
1 cm m^-1 kg s^-2

Arbitrary conversions also work:

quantity<si::area>      A(1.5*si::meter*cgs::centimeter);

std::cout << 1.5*si::meter*cgs::centimeter << std::endl
          << A << std::endl
          << std::endl;

yielding

1.5 cm m
0.015 m^2

(temperature.cpp)

This example demonstrates using of absolute temperatures and relative temperature differences in Fahrenheit and converting between these and the Kelvin temperature scale. This issue touches on some surprisingly deep mathematical concepts (see Wikipedia for a basic review), but for our purposes here, we will simply observe that it is important to be able to differentiate between an absolute temperature measurement and a measurement of temperature difference. This is accomplished by using the absolute wrapper class.

First we define a system using the predefined fahrenheit base unit:

typedef temperature::fahrenheit_base_unit::unit_type    temperature;
typedef get_system<temperature>::type                   system;

BOOST_UNITS_STATIC_CONSTANT(degree,temperature);
BOOST_UNITS_STATIC_CONSTANT(degrees,temperature);

Now we can create some quantities:

quantity<absolute<fahrenheit::temperature> >    T1p(
    32.0*absolute<fahrenheit::temperature>());
quantity<fahrenheit::temperature>               T1v(
    32.0*fahrenheit::degrees);

quantity<absolute<si::temperature> >            T2p(T1p);
quantity<si::temperature>                       T2v(T1v);

Note the use of absolute to wrap a unit. The resulting output is:

{ 32 } F
{ 273.15 } K
{ 273.15 } K
[ 32 ] F
[ 17.7778 ] K
[ 17.7778 ] K

(runtime_conversion_factor.cpp)

The Boost.Units library does not require that the conversion factors be compile time constants, as is demonstrated in this example:

using boost::units::base_dimension;
using boost::units::base_unit;

static const long currency_base = 1;

struct currency_base_dimension : base_dimension<currency_base_dimension, 1> {};

typedef currency_base_dimension::dimension_type currency_type;

template<long N>
struct currency_base_unit :
    base_unit<currency_base_unit<N>, currency_type, currency_base + N> {};

typedef currency_base_unit<0> us_dollar_base_unit;
typedef currency_base_unit<1> euro_base_unit;

typedef us_dollar_base_unit::unit_type us_dollar;
typedef euro_base_unit::unit_type euro;

// an array of all possible conversions
double conversion_factors[2][2] = {
    {1.0, 1.0},
    {1.0, 1.0}
};

double get_conversion_factor(long from, long to) {
    return(conversion_factors[from][to]);
}

void set_conversion_factor(long from, long to, double value) {
    conversion_factors[from][to] = value;
    conversion_factors[to][from] = 1.0 / value;
}

BOOST_UNITS_DEFINE_CONVERSION_FACTOR_TEMPLATE((long N1)(long N2),
    currency_base_unit<N1>,
    currency_base_unit<N2>,
    double, get_conversion_factor(N1, N2));

(non_base_dimension.cpp)

It is also possible to define base units that have derived rather than base dimensions:

struct imperial_gallon_tag :
    base_unit<imperial_gallon_tag, volume_dimension, 1> { };

typedef make_system<imperial_gallon_tag>::type imperial;

typedef unit<volume_dimension,imperial> imperial_gallon;

struct us_gallon_tag : base_unit<us_gallon_tag, volume_dimension, 2> { };

typedef make_system<us_gallon_tag>::type us;

typedef unit<volume_dimension,us> us_gallon;

(composite_output.cpp)

If a unit has a special name and/or symbol, the free functions name_string and symbol_string can be overloaded directly.

std::string name_string(const cgs::force&)
{
    return "dyne";
}

std::string symbol_string(const cgs::force&)
{
    return "dyn";
}

In this case, any unit that reduces to the overloaded unit will be output with the replacement symbol.

Special names and symbols for the SI and CGS unit systems are found in boost/units/systems/si/io.hpp and boost/units/systems/cgs/io.hpp, respectively. If these headers are not included, the output will simply follow default rules using the appropriate fundamental dimensions. Note that neither of these functions is defined for quantities because doing so would require making assumptions on how the corresponding value type should be formatted.

Three ostream formatters, symbol_format, name_format, and typename_format are provided for convenience. These select the textual representation of units provided by symbol_string or name_string in the first two cases, while the latter returns a demangled typename for debugging purposes. Formatting of scaled unit is also done correctly.

It is often desirable to scale a unit automatically, depending on its value, to keep the integral part in a limited range, usually between 1 and 999.

For example, using engineering notation prefixes,

"1234.5 m" is more helpfully displayed as "1.234 km"
"0.000000001234 m" is more clearly displayed as "1.2345 nanometer".

The iostream manipulators engineering_prefixes or binary_prefixes make this easy.

using boost::units::binary_prefix;
using boost::units::engineering_prefix;
using boost::units::no_prefix;

quantity<length> l = 2.345 * meters;   // A quantity of length, in units of meters.
cout << engineering_prefix << l << endl; // Outputs "2.345 m".
l =  1000.0 * l; // Increase it by 1000, so expect a k prefix.
// Note that a double 1000.0 is required - an integer will fail to compile.
cout << engineering_prefix << l << endl; // Output autoprefixed with k to "2.345 km".

quantity<energy> e = kilograms * pow<2>(l / seconds); // A quantity of energy.
cout << engineering_prefix << e << endl; // 5.49902 MJ
cout << name_format << engineering_prefix << e << endl; // 5.49902 megaJoule

(The complete set of engineering and scientific multiples is not used (not centi or deci for example), but only powers of ten that are multiples of three, 10^3).

Similarly, the equivalent binary prefixes used for displaying computing kilobytes, megabytes, gigabytes...

These are the 2^10 = 1024, 2^20 = 1 048 576, 2^30 ... multiples.

(See also Prefixes for binary multiples

This scale is specified in IEC 60027-2, Second edition, 2000-11, Letter symbols to be used in electrical technology - Part 2: Telecommunications and electronics).

// Don't forget that the units name or symbol format specification is persistent.
cout << symbol_format << endl; // Resets the format to the default symbol format.

quantity<byte_base_unit::unit_type> b = 2048. * byte_base_unit::unit_type();
cout << engineering_prefix << b << endl;  // 2.048 kb
cout << symbol_format << binary_prefix << b << endl; //  "2 Kib"

But note that scalar dimensionless values, like int, float and double, are not prefixed automatically by the engineering_prefix or binary_prefix iostream manipulators.

const double s1 = 2345.6;
const long x1 = 23456;
cout << engineering_prefix << s1 << endl; // 2345.6
cout << engineering_prefix << x1 << endl; // 23456

cout << binary_prefix << s1 << endl; // 2345.6
cout << binary_prefix << x1 << endl; // 23456

You can output the name or symbol of a unit (rather than the most common quantity of a unit).

const length L; // A unit of length (but not a quantity of length).
cout << L << endl; // Default length unit is meter,
// but default is symbol format so output is just "m".
cout << name_format << L << endl; // default length name is "meter".

Note too that all the formatting flags are persistent, so that if you set engineering_prefix, then it applies to all future outputs, until you select binary_prefix, or explicitly switch autoprefix off. You can specify no prefix (the default of course) in two ways:

no_prefix(cout); // Clear any prefix flag.
cout << no_prefix << endl; // Clear any prefix flag using `no_prefix` manipulator.

And you can get the format flags for diagnosing problems.

cout << boost::units::get_autoprefix(cout) << endl; // 8 is `autoprefix_binary` from `enum autoprefix_mode`.
cout << boost::units::get_format(cout) << endl; // 1 is `name_fmt` from `enum format_mode`.

This code demonstrates the use of the conversion_factor free function to determine the scale factor between two units.

(conversion_factor.cpp)

double dyne_to_newton =
    conversion_factor(cgs::dyne,si::newton);
std::cout << dyne_to_newton << std::endl;

double force_over_mass_conversion =
    conversion_factor(si::newton/si::kilogram,cgs::dyne/cgs::gram);
std::cout << force_over_mass_conversion << std::endl;

double momentum_conversion =
    conversion_factor(cgs::momentum(),si::momentum());
std::cout << momentum_conversion << std::endl;

double momentum_over_mass_conversion =
    conversion_factor(si::momentum()/si::mass(),cgs::momentum()/cgs::gram);
std::cout << momentum_over_mass_conversion << std::endl;

double acceleration_conversion =
    conversion_factor(cgs::gal,si::meter_per_second_squared);
std::cout << acceleration_conversion << std::endl;

Produces

1e-005
100
1e-005
100
0.01

(runtime_unit.cpp)

This example shows how to implement an interface that allow different units at runtime while still maintaining type safety for internal calculations.

namespace {

using namespace boost::units;
using imperial::foot_base_unit;

std::map<std::string, quantity<si::length> > known_units;

}

quantity<si::length> calculate(const quantity<si::length>& t)
{
    return(boost::units::hypot(t, 2.0 * si::meters));
}

int main()
{
    known_units["meter"] = 1.0 * si::meters;
    known_units["centimeter"] = .01 * si::meters;
    known_units["foot"] =
        conversion_factor(foot_base_unit::unit_type(), si::meter) * si::meter;

    std::string output_type("meter");
    std::string input;

    while((std::cout << "> ") && (std::cin >> input))
    {
        if(!input.empty() && input[0] == '#')
        {
            std::getline(std::cin, input);
        }
        else if(input == "exit")
        {
            break;
        }
        else if(input == "help")
        {
            std::cout << "type \"exit\" to exit\n"
                "type \"return 'unit'\" to set the return units\n"
                "type \"'number' 'unit'\" to do a simple calculation"
                << std::endl;
        }
        else if(input == "return")
        {
            if(std::cin >> input)
            {
                if(known_units.find(input) != known_units.end())
                {
                    output_type = input;
                    std::cout << "Done." << std::endl;
                }
                else
                {
                    std::cout << "Unknown unit \"" << input << "\""
                         << std::endl;
                }
            }
            else
            {
                break;
            }
        }
        else
        {
            try
            {
                double value = boost::lexical_cast<double>(input);

                if(std::cin >> input)
                {
                    if(known_units.find(input) != known_units.end())
                    {
                        std::cout << static_cast<double>(
                            calculate(value * known_units[input]) /
                            known_units[output_type])
                            << ' ' << output_type << std::endl;
                    }
                    else
                    {
                        std::cout << "Unknown unit \"" << input << "\""
                            << std::endl;
                    }
                }
                else
                {
                    break;
                }
            }
            catch(...)
            {
                std::cout << "Input error" << std::endl;
            }
        }
    }
}

(lambda.cpp)

The header boost/units/lambda.hpp provides overloads and specializations needed to make Boost.Units usable with the Boost.Lambda library.

int main(int argc, char **argv) {

   using namespace std;
   namespace bl = boost::lambda;
   namespace bu = boost::units;
   namespace si = boost::units::si;


   ////////////////////////////////////////////////////////////////////////
   // Mechanical example: linear accelerated movement
   ////////////////////////////////////////////////////////////////////////

   // Initial condition variables for acceleration, speed, and displacement
   bu::quantity<si::acceleration> a = 2.0 * si::meters_per_second_squared;
   bu::quantity<si::velocity> v = 1.0 * si::meters_per_second;
   bu::quantity<si::length> s0 = 0.5 * si::meter;

   // Displacement over time
   boost::function<bu::quantity<si::length> (bu::quantity<si::time>) >
       s = 0.5 * bl::var(a) * bl::_1 * bl::_1
           + bl::var(v) * bl::_1
           + bl::var(s0);

   cout << "Linear accelerated movement:" << endl
        << "a = " << a << ", v = " << v << ", s0 = " << s0 << endl
        << "s(1.0 * si::second) = " << s(1.0 * si::second) << endl
        << endl;

   // Change initial conditions
   a = 1.0 * si::meters_per_second_squared;
   v = 2.0 * si::meters_per_second;
   s0 = -1.5 * si::meter;

   cout << "a = " << a << ", v = " << v << ", s0 = " << s0 << endl
        << "s(1.0 * si::second) = " << s(1.0 * si::second) << endl
        << endl;


   ////////////////////////////////////////////////////////////////////////
   // Electrical example: oscillating current
   ////////////////////////////////////////////////////////////////////////

   // Constants for the current amplitude, frequency, and offset current
   const bu::quantity<si::current> iamp = 1.5 * si::ampere;
   const bu::quantity<si::frequency> f = 1.0e3 * si::hertz;
   const bu::quantity<si::current> i0 = 0.5 * si::ampere;

   // The invocation of the sin function needs to be postponed using
   // bind to specify the oscillation function. A lengthy static_cast
   // to the function pointer referencing boost::units::sin() is needed
   // to avoid an "unresolved overloaded function type" error.
   boost::function<bu::quantity<si::current> (bu::quantity<si::time>) >
       i = iamp
           * bl::bind(static_cast<bu::dimensionless_quantity<si::system, double>::type (*)(const bu::quantity<si::plane_angle>&)>(bu::sin),
                      2.0 * pi * si::radian * f * bl::_1)
           + i0;

   cout << "Oscillating current:" << endl
        << "iamp = " << iamp << ", f = " << f << ", i0 = " << i0 << endl
        << "i(1.25e-3 * si::second) = " << i(1.25e-3 * si::second) << endl
        << endl;


   ////////////////////////////////////////////////////////////////////////
   // Geometric example: area calculation for a square
   ////////////////////////////////////////////////////////////////////////

   // Length constant
   const bu::quantity<si::length> l = 1.5 * si::meter;

   // Again an ugly static_cast is needed to bind pow<2> to the first
   // function argument.
   boost::function<bu::quantity<si::area> (bu::quantity<si::length>) >
       A = bl::bind(static_cast<bu::quantity<si::area> (*)(const bu::quantity<si::length>&)>(bu::pow<2>),
                    bl::_1);

   cout << "Area of a square:" << endl
        << "A(" << l <<") = " << A(l) << endl << endl;


   ////////////////////////////////////////////////////////////////////////
   // Thermal example: temperature difference of two absolute temperatures
   ////////////////////////////////////////////////////////////////////////

   // Absolute temperature constants
   const bu::quantity<bu::absolute<si::temperature> >
       Tref = 273.15 * bu::absolute<si::temperature>();
   const bu::quantity<bu::absolute<si::temperature> >
       Tamb = 300.00 * bu::absolute<si::temperature>();

   boost::function<bu::quantity<si::temperature> (bu::quantity<bu::absolute<si::temperature> >,
                                                  bu::quantity<bu::absolute<si::temperature> >)>
       dT = bl::_2 - bl::_1;

   cout << "Temperature difference of two absolute temperatures:" << endl
        << "dT(" << Tref << ", " << Tamb << ") = " << dT(Tref, Tamb) << endl
        << endl;


   return 0;
}


PrevUpHomeNext