boost/math/distributions/non_central_chi_squared.hpp
// boost\math\distributions\non_central_chi_squared.hpp
// Copyright John Maddock 2008.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
#define BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP
#include <boost/math/distributions/fwd.hpp>
#include <boost/math/special_functions/gamma.hpp> // for incomplete gamma. gamma_q
#include <boost/math/special_functions/bessel.hpp> // for cyl_bessel_i
#include <boost/math/special_functions/round.hpp> // for llround
#include <boost/math/distributions/complement.hpp> // complements
#include <boost/math/distributions/chi_squared.hpp> // central distribution
#include <boost/math/distributions/detail/common_error_handling.hpp> // error checks
#include <boost/math/special_functions/fpclassify.hpp> // isnan.
#include <boost/math/tools/roots.hpp> // for root finding.
#include <boost/math/distributions/detail/generic_mode.hpp>
#include <boost/math/distributions/detail/generic_quantile.hpp>
namespace boost
{
namespace math
{
template <class RealType, class Policy>
class non_central_chi_squared_distribution;
namespace detail{
template <class T, class Policy>
T non_central_chi_square_q(T x, T f, T theta, const Policy& pol, T init_sum = 0)
{
//
// Computes the complement of the Non-Central Chi-Square
// Distribution CDF by summing a weighted sum of complements
// of the central-distributions. The weighting factor is
// a Poisson Distribution.
//
// This is an application of the technique described in:
//
// Computing discrete mixtures of continuous
// distributions: noncentral chisquare, noncentral t
// and the distribution of the square of the sample
// multiple correlation coefficient.
// D. Benton, K. Krishnamoorthy.
// Computational Statistics & Data Analysis 43 (2003) 249 - 267
//
BOOST_MATH_STD_USING
// Special case:
if(x == 0)
return 1;
//
// Initialize the variables we'll be using:
//
T lambda = theta / 2;
T del = f / 2;
T y = x / 2;
std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
T errtol = boost::math::policies::get_epsilon<T, Policy>();
T sum = init_sum;
//
// k is the starting location for iteration, we'll
// move both forwards and backwards from this point.
// k is chosen as the peek of the Poisson weights, which
// will occur *before* the largest term.
//
long long k = llround(lambda, pol);
// Forwards and backwards Poisson weights:
T poisf = boost::math::gamma_p_derivative(static_cast<T>(1 + k), lambda, pol);
T poisb = poisf * k / lambda;
// Initial forwards central chi squared term:
T gamf = boost::math::gamma_q(del + k, y, pol);
// Forwards and backwards recursion terms on the central chi squared:
T xtermf = boost::math::gamma_p_derivative(del + 1 + k, y, pol);
T xtermb = xtermf * (del + k) / y;
// Initial backwards central chi squared term:
T gamb = gamf - xtermb;
//
// Forwards iteration first, this is the
// stable direction for the gamma function
// recurrences:
//
long long i;
for(i = k; static_cast<std::uintmax_t>(i-k) < max_iter; ++i)
{
T term = poisf * gamf;
sum += term;
poisf *= lambda / (i + 1);
gamf += xtermf;
xtermf *= y / (del + i + 1);
if(((sum == 0) || (fabs(term / sum) < errtol)) && (term >= poisf * gamf))
break;
}
//Error check:
if(static_cast<std::uintmax_t>(i-k) >= max_iter)
return policies::raise_evaluation_error(
"cdf(non_central_chi_squared_distribution<%1%>, %1%)",
"Series did not converge, closest value was %1%", sum, pol);
//
// Now backwards iteration: the gamma
// function recurrences are unstable in this
// direction, we rely on the terms diminishing in size
// faster than we introduce cancellation errors.
// For this reason it's very important that we start
// *before* the largest term so that backwards iteration
// is strictly converging.
//
for(i = k - 1; i >= 0; --i)
{
T term = poisb * gamb;
sum += term;
poisb *= i / lambda;
xtermb *= (del + i) / y;
gamb -= xtermb;
if((sum == 0) || (fabs(term / sum) < errtol))
break;
}
return sum;
}
template <class T, class Policy>
T non_central_chi_square_p_ding(T x, T f, T theta, const Policy& pol, T init_sum = 0)
{
//
// This is an implementation of:
//
// Algorithm AS 275:
// Computing the Non-Central #2 Distribution Function
// Cherng G. Ding
// Applied Statistics, Vol. 41, No. 2. (1992), pp. 478-482.
//
// This uses a stable forward iteration to sum the
// CDF, unfortunately this can not be used for large
// values of the non-centrality parameter because:
// * The first term may underflow to zero.
// * We may need an extra-ordinary number of terms
// before we reach the first *significant* term.
//
BOOST_MATH_STD_USING
// Special case:
if(x == 0)
return 0;
T tk = boost::math::gamma_p_derivative(f/2 + 1, x/2, pol);
T lambda = theta / 2;
T vk = exp(-lambda);
T uk = vk;
T sum = init_sum + tk * vk;
if(sum == 0)
return sum;
std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
T errtol = boost::math::policies::get_epsilon<T, Policy>();
int i;
T lterm(0), term(0);
for(i = 1; static_cast<std::uintmax_t>(i) < max_iter; ++i)
{
tk = tk * x / (f + 2 * i);
uk = uk * lambda / i;
vk = vk + uk;
lterm = term;
term = vk * tk;
sum += term;
if((fabs(term / sum) < errtol) && (term <= lterm))
break;
}
//Error check:
if(static_cast<std::uintmax_t>(i) >= max_iter)
return policies::raise_evaluation_error(
"cdf(non_central_chi_squared_distribution<%1%>, %1%)",
"Series did not converge, closest value was %1%", sum, pol);
return sum;
}
template <class T, class Policy>
T non_central_chi_square_p(T y, T n, T lambda, const Policy& pol, T init_sum)
{
//
// This is taken more or less directly from:
//
// Computing discrete mixtures of continuous
// distributions: noncentral chisquare, noncentral t
// and the distribution of the square of the sample
// multiple correlation coefficient.
// D. Benton, K. Krishnamoorthy.
// Computational Statistics & Data Analysis 43 (2003) 249 - 267
//
// We're summing a Poisson weighting term multiplied by
// a central chi squared distribution.
//
BOOST_MATH_STD_USING
// Special case:
if(y == 0)
return 0;
std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
T errtol = boost::math::policies::get_epsilon<T, Policy>();
T errorf(0), errorb(0);
T x = y / 2;
T del = lambda / 2;
//
// Starting location for the iteration, we'll iterate
// both forwards and backwards from this point. The
// location chosen is the maximum of the Poisson weight
// function, which ocurrs *after* the largest term in the
// sum.
//
long long k = llround(del, pol);
T a = n / 2 + k;
// Central chi squared term for forward iteration:
T gamkf = boost::math::gamma_p(a, x, pol);
if(lambda == 0)
return gamkf;
// Central chi squared term for backward iteration:
T gamkb = gamkf;
// Forwards Poisson weight:
T poiskf = gamma_p_derivative(static_cast<T>(k+1), del, pol);
// Backwards Poisson weight:
T poiskb = poiskf;
// Forwards gamma function recursion term:
T xtermf = boost::math::gamma_p_derivative(a, x, pol);
// Backwards gamma function recursion term:
T xtermb = xtermf * x / a;
T sum = init_sum + poiskf * gamkf;
if(sum == 0)
return sum;
int i = 1;
//
// Backwards recursion first, this is the stable
// direction for gamma function recurrences:
//
while(i <= k)
{
xtermb *= (a - i + 1) / x;
gamkb += xtermb;
poiskb = poiskb * (k - i + 1) / del;
errorf = errorb;
errorb = gamkb * poiskb;
sum += errorb;
if((fabs(errorb / sum) < errtol) && (errorb <= errorf))
break;
++i;
}
i = 1;
//
// Now forwards recursion, the gamma function
// recurrence relation is unstable in this direction,
// so we rely on the magnitude of successive terms
// decreasing faster than we introduce cancellation error.
// For this reason it's vital that k is chosen to be *after*
// the largest term, so that successive forward iterations
// are strictly (and rapidly) converging.
//
do
{
xtermf = xtermf * x / (a + i - 1);
gamkf = gamkf - xtermf;
poiskf = poiskf * del / (k + i);
errorf = poiskf * gamkf;
sum += errorf;
++i;
}while((fabs(errorf / sum) > errtol) && (static_cast<std::uintmax_t>(i) < max_iter));
//Error check:
if(static_cast<std::uintmax_t>(i) >= max_iter)
return policies::raise_evaluation_error(
"cdf(non_central_chi_squared_distribution<%1%>, %1%)",
"Series did not converge, closest value was %1%", sum, pol);
return sum;
}
template <class T, class Policy>
T non_central_chi_square_pdf(T x, T n, T lambda, const Policy& pol)
{
//
// As above but for the PDF:
//
BOOST_MATH_STD_USING
std::uintmax_t max_iter = policies::get_max_series_iterations<Policy>();
T errtol = boost::math::policies::get_epsilon<T, Policy>();
T x2 = x / 2;
T n2 = n / 2;
T l2 = lambda / 2;
T sum = 0;
long long k = lltrunc(l2);
T pois = gamma_p_derivative(static_cast<T>(k + 1), l2, pol) * gamma_p_derivative(static_cast<T>(n2 + k), x2);
if(pois == 0)
return 0;
T poisb = pois;
for(long long i = k; ; ++i)
{
sum += pois;
if(pois / sum < errtol)
break;
if(static_cast<std::uintmax_t>(i - k) >= max_iter)
return policies::raise_evaluation_error(
"pdf(non_central_chi_squared_distribution<%1%>, %1%)",
"Series did not converge, closest value was %1%", sum, pol);
pois *= l2 * x2 / ((i + 1) * (n2 + i));
}
for(long long i = k - 1; i >= 0; --i)
{
poisb *= (i + 1) * (n2 + i) / (l2 * x2);
sum += poisb;
if(poisb / sum < errtol)
break;
}
return sum / 2;
}
template <class RealType, class Policy>
inline RealType non_central_chi_squared_cdf(RealType x, RealType k, RealType l, bool invert, const Policy&)
{
typedef typename policies::evaluation<RealType, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
BOOST_MATH_STD_USING
value_type result;
if(l == 0)
return invert == false ? cdf(boost::math::chi_squared_distribution<RealType, Policy>(k), x) : cdf(complement(boost::math::chi_squared_distribution<RealType, Policy>(k), x));
else if(x > k + l)
{
// Complement is the smaller of the two:
result = detail::non_central_chi_square_q(
static_cast<value_type>(x),
static_cast<value_type>(k),
static_cast<value_type>(l),
forwarding_policy(),
static_cast<value_type>(invert ? 0 : -1));
invert = !invert;
}
else if(l < 200)
{
// For small values of the non-centrality parameter
// we can use Ding's method:
result = detail::non_central_chi_square_p_ding(
static_cast<value_type>(x),
static_cast<value_type>(k),
static_cast<value_type>(l),
forwarding_policy(),
static_cast<value_type>(invert ? -1 : 0));
}
else
{
// For largers values of the non-centrality
// parameter Ding's method will consume an
// extra-ordinary number of terms, and worse
// may return zero when the result is in fact
// finite, use Krishnamoorthy's method instead:
result = detail::non_central_chi_square_p(
static_cast<value_type>(x),
static_cast<value_type>(k),
static_cast<value_type>(l),
forwarding_policy(),
static_cast<value_type>(invert ? -1 : 0));
}
if(invert)
result = -result;
return policies::checked_narrowing_cast<RealType, forwarding_policy>(
result,
"boost::math::non_central_chi_squared_cdf<%1%>(%1%, %1%, %1%)");
}
template <class T, class Policy>
struct nccs_quantile_functor
{
nccs_quantile_functor(const non_central_chi_squared_distribution<T,Policy>& d, T t, bool c)
: dist(d), target(t), comp(c) {}
T operator()(const T& x)
{
return comp ?
target - cdf(complement(dist, x))
: cdf(dist, x) - target;
}
private:
non_central_chi_squared_distribution<T,Policy> dist;
T target;
bool comp;
};
template <class RealType, class Policy>
RealType nccs_quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p, bool comp)
{
BOOST_MATH_STD_USING
static const char* function = "quantile(non_central_chi_squared_distribution<%1%>, %1%)";
typedef typename policies::evaluation<RealType, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
value_type k = dist.degrees_of_freedom();
value_type l = dist.non_centrality();
value_type r;
if(!detail::check_df(
function,
k, &r, Policy())
||
!detail::check_non_centrality(
function,
l,
&r,
Policy())
||
!detail::check_probability(
function,
static_cast<value_type>(p),
&r,
Policy()))
return static_cast<RealType>(r);
//
// Special cases get short-circuited first:
//
if(p == 0)
return comp ? policies::raise_overflow_error<RealType>(function, 0, Policy()) : 0;
if(p == 1)
return comp ? 0 : policies::raise_overflow_error<RealType>(function, 0, Policy());
//
// This is Pearson's approximation to the quantile, see
// Pearson, E. S. (1959) "Note on an approximation to the distribution of
// noncentral chi squared", Biometrika 46: 364.
// See also:
// "A comparison of approximations to percentiles of the noncentral chi2-distribution",
// Hardeo Sahai and Mario Miguel Ojeda, Revista de Matematica: Teoria y Aplicaciones 2003 10(1-2) : 57-76.
// Note that the latter reference refers to an approximation of the CDF, when they really mean the quantile.
//
value_type b = -(l * l) / (k + 3 * l);
value_type c = (k + 3 * l) / (k + 2 * l);
value_type ff = (k + 2 * l) / (c * c);
value_type guess;
if(comp)
{
guess = b + c * quantile(complement(chi_squared_distribution<value_type, forwarding_policy>(ff), p));
}
else
{
guess = b + c * quantile(chi_squared_distribution<value_type, forwarding_policy>(ff), p);
}
//
// Sometimes guess goes very small or negative, in that case we have
// to do something else for the initial guess, this approximation
// was provided in a private communication from Thomas Luu, PhD candidate,
// University College London. It's an asymptotic expansion for the
// quantile which usually gets us within an order of magnitude of the
// correct answer.
// Fast and accurate parallel computation of quantile functions for random number generation,
// Thomas LuuDoctorial Thesis 2016
// http://discovery.ucl.ac.uk/1482128/
//
if(guess < 0.005)
{
value_type pp = comp ? 1 - p : p;
//guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k, 2 / k);
guess = pow(pow(value_type(2), (k / 2 - 1)) * exp(l / 2) * pp * k * boost::math::tgamma(k / 2, forwarding_policy()), (2 / k));
if(guess == 0)
guess = tools::min_value<value_type>();
}
value_type result = detail::generic_quantile(
non_central_chi_squared_distribution<value_type, forwarding_policy>(k, l),
p,
guess,
comp,
function);
return policies::checked_narrowing_cast<RealType, forwarding_policy>(
result,
function);
}
template <class RealType, class Policy>
RealType nccs_pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING
static const char* function = "pdf(non_central_chi_squared_distribution<%1%>, %1%)";
typedef typename policies::evaluation<RealType, Policy>::type value_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
value_type k = dist.degrees_of_freedom();
value_type l = dist.non_centrality();
value_type r;
if(!detail::check_df(
function,
k, &r, Policy())
||
!detail::check_non_centrality(
function,
l,
&r,
Policy())
||
!detail::check_positive_x(
function,
(value_type)x,
&r,
Policy()))
return static_cast<RealType>(r);
if(l == 0)
return pdf(boost::math::chi_squared_distribution<RealType, forwarding_policy>(dist.degrees_of_freedom()), x);
// Special case:
if(x == 0)
return 0;
if(l > 50)
{
r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy());
}
else
{
r = log(x / l) * (k / 4 - 0.5f) - (x + l) / 2;
if(fabs(r) >= tools::log_max_value<RealType>() / 4)
{
r = non_central_chi_square_pdf(static_cast<value_type>(x), k, l, forwarding_policy());
}
else
{
r = exp(r);
r = 0.5f * r
* boost::math::cyl_bessel_i(k/2 - 1, sqrt(l * x), forwarding_policy());
}
}
return policies::checked_narrowing_cast<RealType, forwarding_policy>(
r,
function);
}
template <class RealType, class Policy>
struct degrees_of_freedom_finder
{
degrees_of_freedom_finder(
RealType lam_, RealType x_, RealType p_, bool c)
: lam(lam_), x(x_), p(p_), comp(c) {}
RealType operator()(const RealType& v)
{
non_central_chi_squared_distribution<RealType, Policy> d(v, lam);
return comp ?
RealType(p - cdf(complement(d, x)))
: RealType(cdf(d, x) - p);
}
private:
RealType lam;
RealType x;
RealType p;
bool comp;
};
template <class RealType, class Policy>
inline RealType find_degrees_of_freedom(
RealType lam, RealType x, RealType p, RealType q, const Policy& pol)
{
const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
if((p == 0) || (q == 0))
{
//
// Can't a thing if one of p and q is zero:
//
return policies::raise_evaluation_error<RealType>(function,
"Can't find degrees of freedom when the probability is 0 or 1, only possible answer is %1%",
RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
}
degrees_of_freedom_finder<RealType, Policy> f(lam, x, p < q ? p : q, p < q ? false : true);
tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
std::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
//
// Pick an initial guess that we know will give us a probability
// right around 0.5.
//
RealType guess = x - lam;
if(guess < 1)
guess = 1;
std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
f, guess, RealType(2), false, tol, max_iter, pol);
RealType result = ir.first + (ir.second - ir.first) / 2;
if(max_iter >= policies::get_max_root_iterations<Policy>())
{
return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
" or there is no answer to problem. Current best guess is %1%", result, Policy());
}
return result;
}
template <class RealType, class Policy>
struct non_centrality_finder
{
non_centrality_finder(
RealType v_, RealType x_, RealType p_, bool c)
: v(v_), x(x_), p(p_), comp(c) {}
RealType operator()(const RealType& lam)
{
non_central_chi_squared_distribution<RealType, Policy> d(v, lam);
return comp ?
RealType(p - cdf(complement(d, x)))
: RealType(cdf(d, x) - p);
}
private:
RealType v;
RealType x;
RealType p;
bool comp;
};
template <class RealType, class Policy>
inline RealType find_non_centrality(
RealType v, RealType x, RealType p, RealType q, const Policy& pol)
{
const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
if((p == 0) || (q == 0))
{
//
// Can't do a thing if one of p and q is zero:
//
return policies::raise_evaluation_error<RealType>(function,
"Can't find non centrality parameter when the probability is 0 or 1, only possible answer is %1%",
RealType(std::numeric_limits<RealType>::quiet_NaN()), Policy());
}
non_centrality_finder<RealType, Policy> f(v, x, p < q ? p : q, p < q ? false : true);
tools::eps_tolerance<RealType> tol(policies::digits<RealType, Policy>());
std::uintmax_t max_iter = policies::get_max_root_iterations<Policy>();
//
// Pick an initial guess that we know will give us a probability
// right around 0.5.
//
RealType guess = x - v;
if(guess < 1)
guess = 1;
std::pair<RealType, RealType> ir = tools::bracket_and_solve_root(
f, guess, RealType(2), false, tol, max_iter, pol);
RealType result = ir.first + (ir.second - ir.first) / 2;
if(max_iter >= policies::get_max_root_iterations<Policy>())
{
return policies::raise_evaluation_error<RealType>(function, "Unable to locate solution in a reasonable time:"
" or there is no answer to problem. Current best guess is %1%", result, Policy());
}
return result;
}
}
template <class RealType = double, class Policy = policies::policy<> >
class non_central_chi_squared_distribution
{
public:
typedef RealType value_type;
typedef Policy policy_type;
non_central_chi_squared_distribution(RealType df_, RealType lambda) : df(df_), ncp(lambda)
{
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::non_central_chi_squared_distribution(%1%,%1%)";
RealType r;
detail::check_df(
function,
df, &r, Policy());
detail::check_non_centrality(
function,
ncp,
&r,
Policy());
} // non_central_chi_squared_distribution constructor.
RealType degrees_of_freedom() const
{ // Private data getter function.
return df;
}
RealType non_centrality() const
{ // Private data getter function.
return ncp;
}
static RealType find_degrees_of_freedom(RealType lam, RealType x, RealType p)
{
const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
typedef typename policies::evaluation<RealType, Policy>::type eval_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
eval_type result = detail::find_degrees_of_freedom(
static_cast<eval_type>(lam),
static_cast<eval_type>(x),
static_cast<eval_type>(p),
static_cast<eval_type>(1-p),
forwarding_policy());
return policies::checked_narrowing_cast<RealType, forwarding_policy>(
result,
function);
}
template <class A, class B, class C>
static RealType find_degrees_of_freedom(const complemented3_type<A,B,C>& c)
{
const char* function = "non_central_chi_squared<%1%>::find_degrees_of_freedom";
typedef typename policies::evaluation<RealType, Policy>::type eval_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
eval_type result = detail::find_degrees_of_freedom(
static_cast<eval_type>(c.dist),
static_cast<eval_type>(c.param1),
static_cast<eval_type>(1-c.param2),
static_cast<eval_type>(c.param2),
forwarding_policy());
return policies::checked_narrowing_cast<RealType, forwarding_policy>(
result,
function);
}
static RealType find_non_centrality(RealType v, RealType x, RealType p)
{
const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
typedef typename policies::evaluation<RealType, Policy>::type eval_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
eval_type result = detail::find_non_centrality(
static_cast<eval_type>(v),
static_cast<eval_type>(x),
static_cast<eval_type>(p),
static_cast<eval_type>(1-p),
forwarding_policy());
return policies::checked_narrowing_cast<RealType, forwarding_policy>(
result,
function);
}
template <class A, class B, class C>
static RealType find_non_centrality(const complemented3_type<A,B,C>& c)
{
const char* function = "non_central_chi_squared<%1%>::find_non_centrality";
typedef typename policies::evaluation<RealType, Policy>::type eval_type;
typedef typename policies::normalise<
Policy,
policies::promote_float<false>,
policies::promote_double<false>,
policies::discrete_quantile<>,
policies::assert_undefined<> >::type forwarding_policy;
eval_type result = detail::find_non_centrality(
static_cast<eval_type>(c.dist),
static_cast<eval_type>(c.param1),
static_cast<eval_type>(1-c.param2),
static_cast<eval_type>(c.param2),
forwarding_policy());
return policies::checked_narrowing_cast<RealType, forwarding_policy>(
result,
function);
}
private:
// Data member, initialized by constructor.
RealType df; // degrees of freedom.
RealType ncp; // non-centrality parameter
}; // template <class RealType, class Policy> class non_central_chi_squared_distribution
typedef non_central_chi_squared_distribution<double> non_central_chi_squared; // Reserved name of type double.
#ifdef __cpp_deduction_guides
template <class RealType>
non_central_chi_squared_distribution(RealType,RealType)->non_central_chi_squared_distribution<typename boost::math::tools::promote_args<RealType>::type>;
#endif
// Non-member functions to give properties of the distribution.
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> range(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */)
{ // Range of permissible values for random variable k.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>()); // Max integer?
}
template <class RealType, class Policy>
inline const std::pair<RealType, RealType> support(const non_central_chi_squared_distribution<RealType, Policy>& /* dist */)
{ // Range of supported values for random variable k.
// This is range where cdf rises from 0 to 1, and outside it, the pdf is zero.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(static_cast<RealType>(0), max_value<RealType>());
}
template <class RealType, class Policy>
inline RealType mean(const non_central_chi_squared_distribution<RealType, Policy>& dist)
{ // Mean of poisson distribution = lambda.
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::mean()";
RealType k = dist.degrees_of_freedom();
RealType l = dist.non_centrality();
RealType r;
if(!detail::check_df(
function,
k, &r, Policy())
||
!detail::check_non_centrality(
function,
l,
&r,
Policy()))
return static_cast<RealType>(r);
return k + l;
} // mean
template <class RealType, class Policy>
inline RealType mode(const non_central_chi_squared_distribution<RealType, Policy>& dist)
{ // mode.
static const char* function = "mode(non_central_chi_squared_distribution<%1%> const&)";
RealType k = dist.degrees_of_freedom();
RealType l = dist.non_centrality();
RealType r;
if(!detail::check_df(
function,
k, &r, Policy())
||
!detail::check_non_centrality(
function,
l,
&r,
Policy()))
return static_cast<RealType>(r);
bool asymptotic_mode = k < l/4;
RealType starting_point = asymptotic_mode ? k + l - RealType(3) : RealType(1) + k;
return detail::generic_find_mode(dist, starting_point, function);
}
template <class RealType, class Policy>
inline RealType variance(const non_central_chi_squared_distribution<RealType, Policy>& dist)
{ // variance.
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::variance()";
RealType k = dist.degrees_of_freedom();
RealType l = dist.non_centrality();
RealType r;
if(!detail::check_df(
function,
k, &r, Policy())
||
!detail::check_non_centrality(
function,
l,
&r,
Policy()))
return static_cast<RealType>(r);
return 2 * (2 * l + k);
}
// RealType standard_deviation(const non_central_chi_squared_distribution<RealType, Policy>& dist)
// standard_deviation provided by derived accessors.
template <class RealType, class Policy>
inline RealType skewness(const non_central_chi_squared_distribution<RealType, Policy>& dist)
{ // skewness = sqrt(l).
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::skewness()";
RealType k = dist.degrees_of_freedom();
RealType l = dist.non_centrality();
RealType r;
if(!detail::check_df(
function,
k, &r, Policy())
||
!detail::check_non_centrality(
function,
l,
&r,
Policy()))
return static_cast<RealType>(r);
BOOST_MATH_STD_USING
return pow(2 / (k + 2 * l), RealType(3)/2) * (k + 3 * l);
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const non_central_chi_squared_distribution<RealType, Policy>& dist)
{
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::kurtosis_excess()";
RealType k = dist.degrees_of_freedom();
RealType l = dist.non_centrality();
RealType r;
if(!detail::check_df(
function,
k, &r, Policy())
||
!detail::check_non_centrality(
function,
l,
&r,
Policy()))
return static_cast<RealType>(r);
return 12 * (k + 4 * l) / ((k + 2 * l) * (k + 2 * l));
} // kurtosis_excess
template <class RealType, class Policy>
inline RealType kurtosis(const non_central_chi_squared_distribution<RealType, Policy>& dist)
{
return kurtosis_excess(dist) + 3;
}
template <class RealType, class Policy>
inline RealType pdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
{ // Probability Density/Mass Function.
return detail::nccs_pdf(dist, x);
} // pdf
template <class RealType, class Policy>
RealType cdf(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& x)
{
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)";
RealType k = dist.degrees_of_freedom();
RealType l = dist.non_centrality();
RealType r;
if(!detail::check_df(
function,
k, &r, Policy())
||
!detail::check_non_centrality(
function,
l,
&r,
Policy())
||
!detail::check_positive_x(
function,
x,
&r,
Policy()))
return static_cast<RealType>(r);
return detail::non_central_chi_squared_cdf(x, k, l, false, Policy());
} // cdf
template <class RealType, class Policy>
RealType cdf(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c)
{ // Complemented Cumulative Distribution Function
const char* function = "boost::math::non_central_chi_squared_distribution<%1%>::cdf(%1%)";
non_central_chi_squared_distribution<RealType, Policy> const& dist = c.dist;
RealType x = c.param;
RealType k = dist.degrees_of_freedom();
RealType l = dist.non_centrality();
RealType r;
if(!detail::check_df(
function,
k, &r, Policy())
||
!detail::check_non_centrality(
function,
l,
&r,
Policy())
||
!detail::check_positive_x(
function,
x,
&r,
Policy()))
return static_cast<RealType>(r);
return detail::non_central_chi_squared_cdf(x, k, l, true, Policy());
} // ccdf
template <class RealType, class Policy>
inline RealType quantile(const non_central_chi_squared_distribution<RealType, Policy>& dist, const RealType& p)
{ // Quantile (or Percent Point) function.
return detail::nccs_quantile(dist, p, false);
} // quantile
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<non_central_chi_squared_distribution<RealType, Policy>, RealType>& c)
{ // Quantile (or Percent Point) function.
return detail::nccs_quantile(c.dist, c.param, true);
} // quantile complement.
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_MATH_SPECIAL_NON_CENTRAL_CHI_SQUARE_HPP