boost/math/distributions/detail/generic_mode.hpp
// Copyright John Maddock 2008.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt
// or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_MODE_HPP
#define BOOST_MATH_DISTRIBUTIONS_DETAIL_MODE_HPP
#include <boost/math/tools/minima.hpp> // function minimization for mode
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/distributions/fwd.hpp>
namespace boost{ namespace math{ namespace detail{
template <class Dist>
struct pdf_minimizer
{
pdf_minimizer(const Dist& d)
: dist(d) {}
typename Dist::value_type operator()(const typename Dist::value_type& x)
{
return -pdf(dist, x);
}
private:
Dist dist;
};
template <class Dist>
typename Dist::value_type generic_find_mode(const Dist& dist, typename Dist::value_type guess, const char* function, typename Dist::value_type step = 0)
{
BOOST_MATH_STD_USING
typedef typename Dist::value_type value_type;
typedef typename Dist::policy_type policy_type;
//
// Need to begin by bracketing the maxima of the PDF:
//
value_type maxval;
value_type upper_bound = guess;
value_type lower_bound;
value_type v = pdf(dist, guess);
if(v == 0)
{
//
// Oops we don't know how to handle this, or even in which
// direction we should move in, treat as an evaluation error:
//
return policies::raise_evaluation_error(
function,
"Could not locate a starting location for the search for the mode, original guess was %1%", guess, policy_type());
}
do
{
maxval = v;
if(step != 0)
upper_bound += step;
else
upper_bound *= 2;
v = pdf(dist, upper_bound);
}while(maxval < v);
lower_bound = upper_bound;
do
{
maxval = v;
if(step != 0)
lower_bound -= step;
else
lower_bound /= 2;
v = pdf(dist, lower_bound);
}while(maxval < v);
std::uintmax_t max_iter = policies::get_max_root_iterations<policy_type>();
value_type result = tools::brent_find_minima(
pdf_minimizer<Dist>(dist),
lower_bound,
upper_bound,
policies::digits<value_type, policy_type>(),
max_iter).first;
if(max_iter >= policies::get_max_root_iterations<policy_type>())
{
return policies::raise_evaluation_error<value_type>(
function,
"Unable to locate solution in a reasonable time:"
" either there is no answer to the mode of the distribution"
" or the answer is infinite. Current best guess is %1%", result, policy_type());
}
return result;
}
//
// As above,but confined to the interval [0,1]:
//
template <class Dist>
typename Dist::value_type generic_find_mode_01(const Dist& dist, typename Dist::value_type guess, const char* function)
{
BOOST_MATH_STD_USING
typedef typename Dist::value_type value_type;
typedef typename Dist::policy_type policy_type;
//
// Need to begin by bracketing the maxima of the PDF:
//
value_type maxval;
value_type upper_bound = guess;
value_type lower_bound;
value_type v = pdf(dist, guess);
do
{
maxval = v;
upper_bound = 1 - (1 - upper_bound) / 2;
if(upper_bound == 1)
return 1;
v = pdf(dist, upper_bound);
}while(maxval < v);
lower_bound = upper_bound;
do
{
maxval = v;
lower_bound /= 2;
if(lower_bound < tools::min_value<value_type>())
return 0;
v = pdf(dist, lower_bound);
}while(maxval < v);
std::uintmax_t max_iter = policies::get_max_root_iterations<policy_type>();
value_type result = tools::brent_find_minima(
pdf_minimizer<Dist>(dist),
lower_bound,
upper_bound,
policies::digits<value_type, policy_type>(),
max_iter).first;
if(max_iter >= policies::get_max_root_iterations<policy_type>())
{
return policies::raise_evaluation_error<value_type>(
function,
"Unable to locate solution in a reasonable time:"
" either there is no answer to the mode of the distribution"
" or the answer is infinite. Current best guess is %1%", result, policy_type());
}
return result;
}
}}} // namespaces
#endif // BOOST_MATH_DISTRIBUTIONS_DETAIL_MODE_HPP