Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

boost/multi_index/detail/hash_index_node.hpp

/* Copyright 2003-2020 Joaquin M Lopez Munoz.
 * Distributed under the Boost Software License, Version 1.0.
 * (See accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 * See http://www.boost.org/libs/multi_index for library home page.
 */

#ifndef BOOST_MULTI_INDEX_DETAIL_HASH_INDEX_NODE_HPP
#define BOOST_MULTI_INDEX_DETAIL_HASH_INDEX_NODE_HPP

#if defined(_MSC_VER)
#pragma once
#endif

#include <boost/config.hpp> /* keep it first to prevent nasty warns in MSVC */
#include <boost/multi_index/detail/allocator_traits.hpp>
#include <boost/multi_index/detail/raw_ptr.hpp>
#include <utility>

namespace boost{

namespace multi_index{

namespace detail{

/* Certain C++ requirements on unordered associative containers (see LWG issue
 * #579) imply a data structure where nodes are linked in a single list, which
 * in its turn forces implementors to add additional overhed per node to
 * associate each with its corresponding bucket. Others resort to storing hash
 * values, we use an alternative structure providing unconditional O(1)
 * manipulation, even in situations of unfair hash distribution, plus some
 * lookup speedups. For unique indices we maintain a doubly linked list of
 * nodes except that if N is the first node of a bucket its associated
 * bucket node is embedded between N and the preceding node in the following
 * manner:
 *
 *        +---+   +---+       +---+   +---+
 *     <--+   |<--+   |    <--+   |<--+   |
 *   ...  | B0|   | B1|  ...  | B1|   | B2|  ...
 *        |   |-+ |   +-->    |   |-+ |   +-->
 *        +-+-+ | +---+       +-+-+ | +---+
 *              |   ^               |   ^
 *              |   |               |   |
 *              | +-+               | +-+
 *              | |                 | |
 *              v |                 v |  
 *       --+---+---+---+--   --+---+---+---+--
 *     ... |   | B1|   |  ...  |   | B2|   | ...
 *       --+---+---+---+--   --+---+---+---+--
 *
 *
 * The fist and last nodes of buckets can be checked with
 *
 *   first node of a bucket: Npn != N
 *   last node of a bucket:  Nnp != N
 *
 * (n and p short for ->next(), ->prior(), bucket nodes have prior pointers
 * only). Pure insert and erase (without lookup) can be unconditionally done
 * in O(1).
 * For non-unique indices we add the following additional complexity: when
 * there is a group of 3 or more equivalent elements, they are linked as
 * follows:
 *
 *         +-----------------------+
 *         |                       v
 *   +---+ | +---+       +---+   +---+
 *   |   | +-+   |       |   |<--+   |
 *   | F |   | S |  ...  | P |   | L |
 *   |   +-->|   |       |   +-+ |   |
 *   +---+   +---+       +---+ | +---+
 *     ^                       |
 *     +-----------------------+
 * 
 * F, S, P and L are the first, second, penultimate and last node in the
 * group, respectively (S and P can coincide if the group has size 3.) This
 * arrangement is used to skip equivalent elements in O(1) when doing lookup,
 * while preserving O(1) insert/erase. The following invariants identify
 * special positions (some of the operations have to be carefully implemented
 * as Xnn is not valid if Xn points to a bucket):
 *
 *   first node of a bucket: Npnp  == N
 *   last node of a bucket:  Nnpp  == N
 *   first node of a group:  Nnp != N && Nnppn == N
 *   second node of a group: Npn != N && Nppnn == N
 *   n-1 node of a group:    Nnp != N && Nnnpp == N
 *   last node of a group:   Npn != N && Npnnp == N
 * 
 * The memory overhead is one pointer per bucket plus two pointers per node,
 * probably unbeatable. The resulting structure is bidirectonally traversable,
 * though currently we are just providing forward iteration.
 */

template<typename Allocator>
struct hashed_index_node_impl;

/* half-header (only prior() pointer) to use for the bucket array */

template<typename Allocator>
struct hashed_index_base_node_impl
{
  typedef typename rebind_alloc_for<
    Allocator,hashed_index_base_node_impl
  >::type                                             base_allocator;
  typedef typename rebind_alloc_for<
    Allocator,hashed_index_node_impl<Allocator>
  >::type                                             node_allocator;
  typedef allocator_traits<base_allocator>            base_alloc_traits;
  typedef allocator_traits<node_allocator>            node_alloc_traits;
  typedef typename base_alloc_traits::pointer         base_pointer;
  typedef typename base_alloc_traits::const_pointer   const_base_pointer;
  typedef typename node_alloc_traits::pointer         pointer;
  typedef typename node_alloc_traits::const_pointer   const_pointer;
  typedef typename node_alloc_traits::difference_type difference_type;

  pointer& prior(){return prior_;}
  pointer  prior()const{return prior_;}

private:
  pointer prior_;
};

/* full header (prior() and next()) for the nodes */

template<typename Allocator>
struct hashed_index_node_impl:hashed_index_base_node_impl<Allocator>
{
private:
  typedef hashed_index_base_node_impl<Allocator> super;

public:  
  typedef typename super::base_pointer           base_pointer;
  typedef typename super::const_base_pointer     const_base_pointer;
  typedef typename super::pointer                pointer;
  typedef typename super::const_pointer          const_pointer;

  base_pointer& next(){return next_;}
  base_pointer  next()const{return next_;}

  static pointer pointer_from(base_pointer x)
  {
    return static_cast<pointer>(
      static_cast<hashed_index_node_impl*>(
        raw_ptr<super*>(x)));
  }

  static base_pointer base_pointer_from(pointer x)
  {
    return static_cast<base_pointer>(
      raw_ptr<hashed_index_node_impl*>(x));
  }

private:
  base_pointer next_;
};

/* Boost.MultiIndex requires machinery to reverse unlink operations. A simple
 * way to make a pointer-manipulation function undoable is to templatize
 * its internal pointer assignments with a functor that, besides doing the
 * assignment, keeps track of the original pointer values and can later undo
 * the operations in reverse order.
 */

struct default_assigner
{
  template<typename T> void operator()(T& x,const T& val){x=val;}
};

template<typename Node>
struct unlink_undo_assigner
{
  typedef typename Node::base_pointer base_pointer;
  typedef typename Node::pointer      pointer;

  unlink_undo_assigner():pointer_track_count(0),base_pointer_track_count(0){}

  void operator()(pointer& x,pointer val)
  {
    pointer_tracks[pointer_track_count].x=&x;
    pointer_tracks[pointer_track_count++].val=x;
    x=val;
  }

  void operator()(base_pointer& x,base_pointer val)
  {
    base_pointer_tracks[base_pointer_track_count].x=&x;
    base_pointer_tracks[base_pointer_track_count++].val=x;
    x=val;
  }

  void operator()() /* undo op */
  {
    /* in the absence of aliasing, restitution order is immaterial */

    while(pointer_track_count--){
      *(pointer_tracks[pointer_track_count].x)=
        pointer_tracks[pointer_track_count].val;
    }
    while(base_pointer_track_count--){
      *(base_pointer_tracks[base_pointer_track_count].x)=
        base_pointer_tracks[base_pointer_track_count].val;
    }
  }

  struct pointer_track     {pointer*      x; pointer      val;};
  struct base_pointer_track{base_pointer* x; base_pointer val;};

  /* We know the maximum number of pointer and base pointer assignments that
   * the two unlink versions do, so we can statically reserve the needed
   * storage.
   */

  pointer_track      pointer_tracks[3];
  int                pointer_track_count;
  base_pointer_track base_pointer_tracks[2];
  int                base_pointer_track_count;
};

/* algorithmic stuff for unique and non-unique variants */

struct hashed_unique_tag{};
struct hashed_non_unique_tag{};

template<typename Node,typename Category>
struct hashed_index_node_alg;

template<typename Node>
struct hashed_index_node_alg<Node,hashed_unique_tag>
{
  typedef typename Node::base_pointer       base_pointer;
  typedef typename Node::const_base_pointer const_base_pointer;
  typedef typename Node::pointer            pointer;
  typedef typename Node::const_pointer      const_pointer;

  static bool is_first_of_bucket(pointer x)
  {
    return x->prior()->next()!=base_pointer_from(x);
  }

  static pointer after(pointer x)
  {
    return is_last_of_bucket(x)?x->next()->prior():pointer_from(x->next());
  }

  static pointer after_local(pointer x)
  {
    return is_last_of_bucket(x)?pointer(0):pointer_from(x->next());
  }

  static pointer next_to_inspect(pointer x)
  {
    return is_last_of_bucket(x)?pointer(0):pointer_from(x->next());
  }

  static void link(pointer x,base_pointer buc,pointer end)
  {
    if(buc->prior()==pointer(0)){ /* empty bucket */
      x->prior()=end->prior();
      x->next()=end->prior()->next();
      x->prior()->next()=buc;
      buc->prior()=x;
      end->prior()=x;
    }
    else{
      x->prior()=buc->prior()->prior();
      x->next()=base_pointer_from(buc->prior());
      buc->prior()=x;
      x->next()->prior()=x;
    }
  }

  static void unlink(pointer x)
  {
    default_assigner assign;
    unlink(x,assign);
  }

  typedef unlink_undo_assigner<Node> unlink_undo;

  template<typename Assigner>
  static void unlink(pointer x,Assigner& assign)
  {
    if(is_first_of_bucket(x)){
      if(is_last_of_bucket(x)){
        assign(x->prior()->next()->prior(),pointer(0));
        assign(x->prior()->next(),x->next());
        assign(x->next()->prior()->prior(),x->prior());
      }
      else{
        assign(x->prior()->next()->prior(),pointer_from(x->next()));
        assign(x->next()->prior(),x->prior());
      }
    }
    else if(is_last_of_bucket(x)){
      assign(x->prior()->next(),x->next());
      assign(x->next()->prior()->prior(),x->prior());
    }
    else{
      assign(x->prior()->next(),x->next());
      assign(x->next()->prior(),x->prior());
    }
  }

  /* used only at rehashing */

  static void append(pointer x,pointer end)
  {
    x->prior()=end->prior();
    x->next()=end->prior()->next();
    x->prior()->next()=base_pointer_from(x);
    end->prior()=x;
  }

  static bool unlink_last(pointer end)
  {
    /* returns true iff bucket is emptied */

    pointer x=end->prior();
    if(x->prior()->next()==base_pointer_from(x)){
      x->prior()->next()=x->next();
      end->prior()=x->prior();
      return false;
    }
    else{
      x->prior()->next()->prior()=pointer(0);
      x->prior()->next()=x->next();
      end->prior()=x->prior();
      return true;
    }
  }

private:
  static pointer pointer_from(base_pointer x)
  {
    return Node::pointer_from(x);
  }

  static base_pointer base_pointer_from(pointer x)
  {
    return Node::base_pointer_from(x);
  }

  static bool is_last_of_bucket(pointer x)
  {
    return x->next()->prior()!=x;
  }
};

template<typename Node>
struct hashed_index_node_alg<Node,hashed_non_unique_tag>
{
  typedef typename Node::base_pointer       base_pointer;
  typedef typename Node::const_base_pointer const_base_pointer;
  typedef typename Node::pointer            pointer;
  typedef typename Node::const_pointer      const_pointer;

  static bool is_first_of_bucket(pointer x)
  {
    return x->prior()->next()->prior()==x;
  }

  static bool is_first_of_group(pointer x)
  {
    return
      x->next()->prior()!=x&&
      x->next()->prior()->prior()->next()==base_pointer_from(x);
  }

  static pointer after(pointer x)
  {
    if(x->next()->prior()==x)return pointer_from(x->next());
    if(x->next()->prior()->prior()==x)return x->next()->prior();
    if(x->next()->prior()->prior()->next()==base_pointer_from(x))
      return pointer_from(x->next());
    return pointer_from(x->next())->next()->prior();
  }

  static pointer after_local(pointer x)
  {
    if(x->next()->prior()==x)return pointer_from(x->next());
    if(x->next()->prior()->prior()==x)return pointer(0);
    if(x->next()->prior()->prior()->next()==base_pointer_from(x))
      return pointer_from(x->next());
    return pointer_from(x->next())->next()->prior();
  }

  static pointer next_to_inspect(pointer x)
  {
    if(x->next()->prior()==x)return pointer_from(x->next());
    if(x->next()->prior()->prior()==x)return pointer(0);
    if(x->next()->prior()->next()->prior()!=x->next()->prior())
      return pointer(0);
    return pointer_from(x->next()->prior()->next());
  }

  static void link(pointer x,base_pointer buc,pointer end)
  {
    if(buc->prior()==pointer(0)){ /* empty bucket */
      x->prior()=end->prior();
      x->next()=end->prior()->next();
      x->prior()->next()=buc;
      buc->prior()=x;
      end->prior()=x;
    }
    else{
      x->prior()=buc->prior()->prior();
      x->next()=base_pointer_from(buc->prior());
      buc->prior()=x;
      x->next()->prior()=x;
    }
  }

  static void link(pointer x,pointer first,pointer last)
  {
    x->prior()=first->prior();
    x->next()=base_pointer_from(first);
    if(is_first_of_bucket(first)){
      x->prior()->next()->prior()=x;
    }
    else{
      x->prior()->next()=base_pointer_from(x);
    }

    if(first==last){
      last->prior()=x;
    }
    else if(first->next()==base_pointer_from(last)){
      first->prior()=last;
      first->next()=base_pointer_from(x);
    }
    else{
      pointer second=pointer_from(first->next()),
              lastbutone=last->prior();
      second->prior()=first;
      first->prior()=last;
      lastbutone->next()=base_pointer_from(x);
    }
  }

  static void unlink(pointer x)
  {
    default_assigner assign;
    unlink(x,assign);
  }

  typedef unlink_undo_assigner<Node> unlink_undo;

  template<typename Assigner>
  static void unlink(pointer x,Assigner& assign)
  {
    if(x->prior()->next()==base_pointer_from(x)){
      if(x->next()->prior()==x){
        left_unlink(x,assign);
        right_unlink(x,assign);
      }
      else if(x->next()->prior()->prior()==x){           /* last of bucket */
        left_unlink(x,assign);
        right_unlink_last_of_bucket(x,assign);
      }
      else if(x->next()->prior()->prior()->next()==
              base_pointer_from(x)){                /* first of group size */
        left_unlink(x,assign);
        right_unlink_first_of_group(x,assign);
      }
      else{                                                /* n-1 of group */
        unlink_last_but_one_of_group(x,assign);
      }
    }
    else if(x->prior()->next()->prior()==x){            /* first of bucket */
      if(x->next()->prior()==x){
        left_unlink_first_of_bucket(x,assign);
        right_unlink(x,assign);
      }
      else if(x->next()->prior()->prior()==x){           /* last of bucket */
        assign(x->prior()->next()->prior(),pointer(0));
        assign(x->prior()->next(),x->next());
        assign(x->next()->prior()->prior(),x->prior());
      }
      else{                                              /* first of group */
        left_unlink_first_of_bucket(x,assign);
        right_unlink_first_of_group(x,assign);
      }
    }
    else if(x->next()->prior()->prior()==x){   /* last of group and bucket */
      left_unlink_last_of_group(x,assign);
      right_unlink_last_of_bucket(x,assign);
    }
    else if(pointer_from(x->prior()->prior()->next())
            ->next()==base_pointer_from(x)){            /* second of group */
      unlink_second_of_group(x,assign);
    }
    else{                              /* last of group, ~(last of bucket) */
      left_unlink_last_of_group(x,assign);
      right_unlink(x,assign);
    }
  }

  /* used only at rehashing */

  static void link_range(
    pointer first,pointer last,base_pointer buc,pointer cend)
  {
    if(buc->prior()==pointer(0)){ /* empty bucket */
      first->prior()=cend->prior();
      last->next()=cend->prior()->next();
      first->prior()->next()=buc;
      buc->prior()=first;
      cend->prior()=last;
    }
    else{
      first->prior()=buc->prior()->prior();
      last->next()=base_pointer_from(buc->prior());
      buc->prior()=first;
      last->next()->prior()=last;
    }
  }

  static void append_range(pointer first,pointer last,pointer cend)
  {
    first->prior()=cend->prior();
    last->next()=cend->prior()->next();
    first->prior()->next()=base_pointer_from(first);
    cend->prior()=last;
  }

  static std::pair<pointer,bool> unlink_last_group(pointer end)
  {
    /* returns first of group true iff bucket is emptied */

    pointer x=end->prior();
    if(x->prior()->next()==base_pointer_from(x)){
      x->prior()->next()=x->next();
      end->prior()=x->prior();
      return std::make_pair(x,false);
    }
    else if(x->prior()->next()->prior()==x){
      x->prior()->next()->prior()=pointer(0);
      x->prior()->next()=x->next();
      end->prior()=x->prior();
      return std::make_pair(x,true);
    }
    else{
      pointer y=pointer_from(x->prior()->next());

      if(y->prior()->next()==base_pointer_from(y)){
        y->prior()->next()=x->next();
        end->prior()=y->prior();
        return std::make_pair(y,false);
      }
      else{
        y->prior()->next()->prior()=pointer(0);
        y->prior()->next()=x->next();
        end->prior()=y->prior();
        return std::make_pair(y,true);
      }
    }
  }

  static void unlink_range(pointer first,pointer last)
  {
    if(is_first_of_bucket(first)){
      if(is_last_of_bucket(last)){
        first->prior()->next()->prior()=pointer(0);
        first->prior()->next()=last->next();
        last->next()->prior()->prior()=first->prior();
      }
      else{
        first->prior()->next()->prior()=pointer_from(last->next());
        last->next()->prior()=first->prior();
      }
    }
    else if(is_last_of_bucket(last)){
      first->prior()->next()=last->next();
      last->next()->prior()->prior()=first->prior();
    }
    else{
      first->prior()->next()=last->next();
      last->next()->prior()=first->prior();
    }
  }

private:
  static pointer pointer_from(base_pointer x)
  {
    return Node::pointer_from(x);
  }

  static base_pointer base_pointer_from(pointer x)
  {
    return Node::base_pointer_from(x);
  }

  static bool is_last_of_bucket(pointer x)
  {
    return x->next()->prior()->prior()==x;
  }

  template<typename Assigner>
  static void left_unlink(pointer x,Assigner& assign)
  {
    assign(x->prior()->next(),x->next());
  }
  
  template<typename Assigner>
  static void right_unlink(pointer x,Assigner& assign)
  {
    assign(x->next()->prior(),x->prior());
  }

  template<typename Assigner>
  static void left_unlink_first_of_bucket(pointer x,Assigner& assign)
  {
    assign(x->prior()->next()->prior(),pointer_from(x->next()));
  }

  template<typename Assigner>
  static void right_unlink_last_of_bucket(pointer x,Assigner& assign)
  {
    assign(x->next()->prior()->prior(),x->prior());
  }

  template<typename Assigner>
  static void right_unlink_first_of_group(pointer x,Assigner& assign)
  {
    pointer second=pointer_from(x->next()),
            last=second->prior(),
            lastbutone=last->prior();
    if(second==lastbutone){
      assign(second->next(),base_pointer_from(last));
      assign(second->prior(),x->prior());
    }
    else{
      assign(lastbutone->next(),base_pointer_from(second));
      assign(second->next()->prior(),last);
      assign(second->prior(),x->prior());
    }
  }

  template<typename Assigner>
  static void left_unlink_last_of_group(pointer x,Assigner& assign)
  {
    pointer lastbutone=x->prior(),
            first=pointer_from(lastbutone->next()),
            second=pointer_from(first->next());
    if(lastbutone==second){
      assign(lastbutone->prior(),first);
      assign(lastbutone->next(),x->next());
    }
    else{
      assign(second->prior(),lastbutone);
      assign(lastbutone->prior()->next(),base_pointer_from(first));
      assign(lastbutone->next(),x->next());
    }
  }

  template<typename Assigner>
  static void unlink_last_but_one_of_group(pointer x,Assigner& assign)
  {
    pointer first=pointer_from(x->next()),
            second=pointer_from(first->next()),
            last=second->prior();
    if(second==x){
      assign(last->prior(),first);
      assign(first->next(),base_pointer_from(last));
    }
    else{
      assign(last->prior(),x->prior());
      assign(x->prior()->next(),base_pointer_from(first));
    }
  }

  template<typename Assigner>
  static void unlink_second_of_group(pointer x,Assigner& assign)
  {
    pointer last=x->prior(),
            lastbutone=last->prior(),
            first=pointer_from(lastbutone->next());
    if(lastbutone==x){
      assign(first->next(),base_pointer_from(last));
      assign(last->prior(),first);
    }
    else{
      assign(first->next(),x->next());
      assign(x->next()->prior(),last);
    }
  }
};

template<typename Super>
struct hashed_index_node_trampoline:
  hashed_index_node_impl<
    typename rebind_alloc_for<
      typename Super::allocator_type,char
    >::type
  >
{
  typedef typename rebind_alloc_for<
    typename Super::allocator_type,char
  >::type                                             impl_allocator_type;
  typedef hashed_index_node_impl<impl_allocator_type> impl_type;
};

template<typename Super>
struct hashed_index_node:
  Super,hashed_index_node_trampoline<Super>
{
private:
  typedef hashed_index_node_trampoline<Super> trampoline;

public:
  typedef typename trampoline::impl_type          impl_type;
  typedef typename trampoline::base_pointer       impl_base_pointer;
  typedef typename trampoline::const_base_pointer const_impl_base_pointer;
  typedef typename trampoline::pointer            impl_pointer;
  typedef typename trampoline::const_pointer      const_impl_pointer;
  typedef typename trampoline::difference_type    difference_type;

  template<typename Category>
  struct node_alg{
    typedef hashed_index_node_alg<impl_type,Category> type;
  };

  impl_pointer&      prior(){return trampoline::prior();}
  impl_pointer       prior()const{return trampoline::prior();}
  impl_base_pointer& next(){return trampoline::next();}
  impl_base_pointer  next()const{return trampoline::next();}

  impl_pointer impl()
  {
    return static_cast<impl_pointer>(
      static_cast<impl_type*>(static_cast<trampoline*>(this)));
  }

  const_impl_pointer impl()const
  {
    return static_cast<const_impl_pointer>(
      static_cast<const impl_type*>(static_cast<const trampoline*>(this)));
  }

  static hashed_index_node* from_impl(impl_pointer x)
  {
    return
      static_cast<hashed_index_node*>(
        static_cast<trampoline*>(
          raw_ptr<impl_type*>(x)));
  }

  static const hashed_index_node* from_impl(const_impl_pointer x)
  {
    return 
      static_cast<const hashed_index_node*>(
        static_cast<const trampoline*>(
          raw_ptr<const impl_type*>(x)));
  }

  /* interoperability with hashed_index_iterator */

  template<typename Category>
  static void increment(hashed_index_node*& x)
  {
    x=from_impl(node_alg<Category>::type::after(x->impl()));
  }

  template<typename Category>
  static void increment_local(hashed_index_node*& x)
  {
    x=from_impl(node_alg<Category>::type::after_local(x->impl()));
  }
};

} /* namespace multi_index::detail */

} /* namespace multi_index */

} /* namespace boost */

#endif