boost/multi_index/detail/hash_index_node.hpp
/* Copyright 2003-2020 Joaquin M Lopez Munoz.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org/libs/multi_index for library home page.
*/
#ifndef BOOST_MULTI_INDEX_DETAIL_HASH_INDEX_NODE_HPP
#define BOOST_MULTI_INDEX_DETAIL_HASH_INDEX_NODE_HPP
#if defined(_MSC_VER)
#pragma once
#endif
#include <boost/config.hpp> /* keep it first to prevent nasty warns in MSVC */
#include <boost/multi_index/detail/allocator_traits.hpp>
#include <boost/multi_index/detail/raw_ptr.hpp>
#include <utility>
namespace boost{
namespace multi_index{
namespace detail{
/* Certain C++ requirements on unordered associative containers (see LWG issue
* #579) imply a data structure where nodes are linked in a single list, which
* in its turn forces implementors to add additional overhed per node to
* associate each with its corresponding bucket. Others resort to storing hash
* values, we use an alternative structure providing unconditional O(1)
* manipulation, even in situations of unfair hash distribution, plus some
* lookup speedups. For unique indices we maintain a doubly linked list of
* nodes except that if N is the first node of a bucket its associated
* bucket node is embedded between N and the preceding node in the following
* manner:
*
* +---+ +---+ +---+ +---+
* <--+ |<--+ | <--+ |<--+ |
* ... | B0| | B1| ... | B1| | B2| ...
* | |-+ | +--> | |-+ | +-->
* +-+-+ | +---+ +-+-+ | +---+
* | ^ | ^
* | | | |
* | +-+ | +-+
* | | | |
* v | v |
* --+---+---+---+-- --+---+---+---+--
* ... | | B1| | ... | | B2| | ...
* --+---+---+---+-- --+---+---+---+--
*
*
* The fist and last nodes of buckets can be checked with
*
* first node of a bucket: Npn != N
* last node of a bucket: Nnp != N
*
* (n and p short for ->next(), ->prior(), bucket nodes have prior pointers
* only). Pure insert and erase (without lookup) can be unconditionally done
* in O(1).
* For non-unique indices we add the following additional complexity: when
* there is a group of 3 or more equivalent elements, they are linked as
* follows:
*
* +-----------------------+
* | v
* +---+ | +---+ +---+ +---+
* | | +-+ | | |<--+ |
* | F | | S | ... | P | | L |
* | +-->| | | +-+ | |
* +---+ +---+ +---+ | +---+
* ^ |
* +-----------------------+
*
* F, S, P and L are the first, second, penultimate and last node in the
* group, respectively (S and P can coincide if the group has size 3.) This
* arrangement is used to skip equivalent elements in O(1) when doing lookup,
* while preserving O(1) insert/erase. The following invariants identify
* special positions (some of the operations have to be carefully implemented
* as Xnn is not valid if Xn points to a bucket):
*
* first node of a bucket: Npnp == N
* last node of a bucket: Nnpp == N
* first node of a group: Nnp != N && Nnppn == N
* second node of a group: Npn != N && Nppnn == N
* n-1 node of a group: Nnp != N && Nnnpp == N
* last node of a group: Npn != N && Npnnp == N
*
* The memory overhead is one pointer per bucket plus two pointers per node,
* probably unbeatable. The resulting structure is bidirectonally traversable,
* though currently we are just providing forward iteration.
*/
template<typename Allocator>
struct hashed_index_node_impl;
/* half-header (only prior() pointer) to use for the bucket array */
template<typename Allocator>
struct hashed_index_base_node_impl
{
typedef typename rebind_alloc_for<
Allocator,hashed_index_base_node_impl
>::type base_allocator;
typedef typename rebind_alloc_for<
Allocator,hashed_index_node_impl<Allocator>
>::type node_allocator;
typedef allocator_traits<base_allocator> base_alloc_traits;
typedef allocator_traits<node_allocator> node_alloc_traits;
typedef typename base_alloc_traits::pointer base_pointer;
typedef typename base_alloc_traits::const_pointer const_base_pointer;
typedef typename node_alloc_traits::pointer pointer;
typedef typename node_alloc_traits::const_pointer const_pointer;
typedef typename node_alloc_traits::difference_type difference_type;
pointer& prior(){return prior_;}
pointer prior()const{return prior_;}
private:
pointer prior_;
};
/* full header (prior() and next()) for the nodes */
template<typename Allocator>
struct hashed_index_node_impl:hashed_index_base_node_impl<Allocator>
{
private:
typedef hashed_index_base_node_impl<Allocator> super;
public:
typedef typename super::base_pointer base_pointer;
typedef typename super::const_base_pointer const_base_pointer;
typedef typename super::pointer pointer;
typedef typename super::const_pointer const_pointer;
base_pointer& next(){return next_;}
base_pointer next()const{return next_;}
static pointer pointer_from(base_pointer x)
{
return static_cast<pointer>(
static_cast<hashed_index_node_impl*>(
raw_ptr<super*>(x)));
}
static base_pointer base_pointer_from(pointer x)
{
return static_cast<base_pointer>(
raw_ptr<hashed_index_node_impl*>(x));
}
private:
base_pointer next_;
};
/* Boost.MultiIndex requires machinery to reverse unlink operations. A simple
* way to make a pointer-manipulation function undoable is to templatize
* its internal pointer assignments with a functor that, besides doing the
* assignment, keeps track of the original pointer values and can later undo
* the operations in reverse order.
*/
struct default_assigner
{
template<typename T> void operator()(T& x,const T& val){x=val;}
};
template<typename Node>
struct unlink_undo_assigner
{
typedef typename Node::base_pointer base_pointer;
typedef typename Node::pointer pointer;
unlink_undo_assigner():pointer_track_count(0),base_pointer_track_count(0){}
void operator()(pointer& x,pointer val)
{
pointer_tracks[pointer_track_count].x=&x;
pointer_tracks[pointer_track_count++].val=x;
x=val;
}
void operator()(base_pointer& x,base_pointer val)
{
base_pointer_tracks[base_pointer_track_count].x=&x;
base_pointer_tracks[base_pointer_track_count++].val=x;
x=val;
}
void operator()() /* undo op */
{
/* in the absence of aliasing, restitution order is immaterial */
while(pointer_track_count--){
*(pointer_tracks[pointer_track_count].x)=
pointer_tracks[pointer_track_count].val;
}
while(base_pointer_track_count--){
*(base_pointer_tracks[base_pointer_track_count].x)=
base_pointer_tracks[base_pointer_track_count].val;
}
}
struct pointer_track {pointer* x; pointer val;};
struct base_pointer_track{base_pointer* x; base_pointer val;};
/* We know the maximum number of pointer and base pointer assignments that
* the two unlink versions do, so we can statically reserve the needed
* storage.
*/
pointer_track pointer_tracks[3];
int pointer_track_count;
base_pointer_track base_pointer_tracks[2];
int base_pointer_track_count;
};
/* algorithmic stuff for unique and non-unique variants */
struct hashed_unique_tag{};
struct hashed_non_unique_tag{};
template<typename Node,typename Category>
struct hashed_index_node_alg;
template<typename Node>
struct hashed_index_node_alg<Node,hashed_unique_tag>
{
typedef typename Node::base_pointer base_pointer;
typedef typename Node::const_base_pointer const_base_pointer;
typedef typename Node::pointer pointer;
typedef typename Node::const_pointer const_pointer;
static bool is_first_of_bucket(pointer x)
{
return x->prior()->next()!=base_pointer_from(x);
}
static pointer after(pointer x)
{
return is_last_of_bucket(x)?x->next()->prior():pointer_from(x->next());
}
static pointer after_local(pointer x)
{
return is_last_of_bucket(x)?pointer(0):pointer_from(x->next());
}
static pointer next_to_inspect(pointer x)
{
return is_last_of_bucket(x)?pointer(0):pointer_from(x->next());
}
static void link(pointer x,base_pointer buc,pointer end)
{
if(buc->prior()==pointer(0)){ /* empty bucket */
x->prior()=end->prior();
x->next()=end->prior()->next();
x->prior()->next()=buc;
buc->prior()=x;
end->prior()=x;
}
else{
x->prior()=buc->prior()->prior();
x->next()=base_pointer_from(buc->prior());
buc->prior()=x;
x->next()->prior()=x;
}
}
static void unlink(pointer x)
{
default_assigner assign;
unlink(x,assign);
}
typedef unlink_undo_assigner<Node> unlink_undo;
template<typename Assigner>
static void unlink(pointer x,Assigner& assign)
{
if(is_first_of_bucket(x)){
if(is_last_of_bucket(x)){
assign(x->prior()->next()->prior(),pointer(0));
assign(x->prior()->next(),x->next());
assign(x->next()->prior()->prior(),x->prior());
}
else{
assign(x->prior()->next()->prior(),pointer_from(x->next()));
assign(x->next()->prior(),x->prior());
}
}
else if(is_last_of_bucket(x)){
assign(x->prior()->next(),x->next());
assign(x->next()->prior()->prior(),x->prior());
}
else{
assign(x->prior()->next(),x->next());
assign(x->next()->prior(),x->prior());
}
}
/* used only at rehashing */
static void append(pointer x,pointer end)
{
x->prior()=end->prior();
x->next()=end->prior()->next();
x->prior()->next()=base_pointer_from(x);
end->prior()=x;
}
static bool unlink_last(pointer end)
{
/* returns true iff bucket is emptied */
pointer x=end->prior();
if(x->prior()->next()==base_pointer_from(x)){
x->prior()->next()=x->next();
end->prior()=x->prior();
return false;
}
else{
x->prior()->next()->prior()=pointer(0);
x->prior()->next()=x->next();
end->prior()=x->prior();
return true;
}
}
private:
static pointer pointer_from(base_pointer x)
{
return Node::pointer_from(x);
}
static base_pointer base_pointer_from(pointer x)
{
return Node::base_pointer_from(x);
}
static bool is_last_of_bucket(pointer x)
{
return x->next()->prior()!=x;
}
};
template<typename Node>
struct hashed_index_node_alg<Node,hashed_non_unique_tag>
{
typedef typename Node::base_pointer base_pointer;
typedef typename Node::const_base_pointer const_base_pointer;
typedef typename Node::pointer pointer;
typedef typename Node::const_pointer const_pointer;
static bool is_first_of_bucket(pointer x)
{
return x->prior()->next()->prior()==x;
}
static bool is_first_of_group(pointer x)
{
return
x->next()->prior()!=x&&
x->next()->prior()->prior()->next()==base_pointer_from(x);
}
static pointer after(pointer x)
{
if(x->next()->prior()==x)return pointer_from(x->next());
if(x->next()->prior()->prior()==x)return x->next()->prior();
if(x->next()->prior()->prior()->next()==base_pointer_from(x))
return pointer_from(x->next());
return pointer_from(x->next())->next()->prior();
}
static pointer after_local(pointer x)
{
if(x->next()->prior()==x)return pointer_from(x->next());
if(x->next()->prior()->prior()==x)return pointer(0);
if(x->next()->prior()->prior()->next()==base_pointer_from(x))
return pointer_from(x->next());
return pointer_from(x->next())->next()->prior();
}
static pointer next_to_inspect(pointer x)
{
if(x->next()->prior()==x)return pointer_from(x->next());
if(x->next()->prior()->prior()==x)return pointer(0);
if(x->next()->prior()->next()->prior()!=x->next()->prior())
return pointer(0);
return pointer_from(x->next()->prior()->next());
}
static void link(pointer x,base_pointer buc,pointer end)
{
if(buc->prior()==pointer(0)){ /* empty bucket */
x->prior()=end->prior();
x->next()=end->prior()->next();
x->prior()->next()=buc;
buc->prior()=x;
end->prior()=x;
}
else{
x->prior()=buc->prior()->prior();
x->next()=base_pointer_from(buc->prior());
buc->prior()=x;
x->next()->prior()=x;
}
}
static void link(pointer x,pointer first,pointer last)
{
x->prior()=first->prior();
x->next()=base_pointer_from(first);
if(is_first_of_bucket(first)){
x->prior()->next()->prior()=x;
}
else{
x->prior()->next()=base_pointer_from(x);
}
if(first==last){
last->prior()=x;
}
else if(first->next()==base_pointer_from(last)){
first->prior()=last;
first->next()=base_pointer_from(x);
}
else{
pointer second=pointer_from(first->next()),
lastbutone=last->prior();
second->prior()=first;
first->prior()=last;
lastbutone->next()=base_pointer_from(x);
}
}
static void unlink(pointer x)
{
default_assigner assign;
unlink(x,assign);
}
typedef unlink_undo_assigner<Node> unlink_undo;
template<typename Assigner>
static void unlink(pointer x,Assigner& assign)
{
if(x->prior()->next()==base_pointer_from(x)){
if(x->next()->prior()==x){
left_unlink(x,assign);
right_unlink(x,assign);
}
else if(x->next()->prior()->prior()==x){ /* last of bucket */
left_unlink(x,assign);
right_unlink_last_of_bucket(x,assign);
}
else if(x->next()->prior()->prior()->next()==
base_pointer_from(x)){ /* first of group size */
left_unlink(x,assign);
right_unlink_first_of_group(x,assign);
}
else{ /* n-1 of group */
unlink_last_but_one_of_group(x,assign);
}
}
else if(x->prior()->next()->prior()==x){ /* first of bucket */
if(x->next()->prior()==x){
left_unlink_first_of_bucket(x,assign);
right_unlink(x,assign);
}
else if(x->next()->prior()->prior()==x){ /* last of bucket */
assign(x->prior()->next()->prior(),pointer(0));
assign(x->prior()->next(),x->next());
assign(x->next()->prior()->prior(),x->prior());
}
else{ /* first of group */
left_unlink_first_of_bucket(x,assign);
right_unlink_first_of_group(x,assign);
}
}
else if(x->next()->prior()->prior()==x){ /* last of group and bucket */
left_unlink_last_of_group(x,assign);
right_unlink_last_of_bucket(x,assign);
}
else if(pointer_from(x->prior()->prior()->next())
->next()==base_pointer_from(x)){ /* second of group */
unlink_second_of_group(x,assign);
}
else{ /* last of group, ~(last of bucket) */
left_unlink_last_of_group(x,assign);
right_unlink(x,assign);
}
}
/* used only at rehashing */
static void link_range(
pointer first,pointer last,base_pointer buc,pointer cend)
{
if(buc->prior()==pointer(0)){ /* empty bucket */
first->prior()=cend->prior();
last->next()=cend->prior()->next();
first->prior()->next()=buc;
buc->prior()=first;
cend->prior()=last;
}
else{
first->prior()=buc->prior()->prior();
last->next()=base_pointer_from(buc->prior());
buc->prior()=first;
last->next()->prior()=last;
}
}
static void append_range(pointer first,pointer last,pointer cend)
{
first->prior()=cend->prior();
last->next()=cend->prior()->next();
first->prior()->next()=base_pointer_from(first);
cend->prior()=last;
}
static std::pair<pointer,bool> unlink_last_group(pointer end)
{
/* returns first of group true iff bucket is emptied */
pointer x=end->prior();
if(x->prior()->next()==base_pointer_from(x)){
x->prior()->next()=x->next();
end->prior()=x->prior();
return std::make_pair(x,false);
}
else if(x->prior()->next()->prior()==x){
x->prior()->next()->prior()=pointer(0);
x->prior()->next()=x->next();
end->prior()=x->prior();
return std::make_pair(x,true);
}
else{
pointer y=pointer_from(x->prior()->next());
if(y->prior()->next()==base_pointer_from(y)){
y->prior()->next()=x->next();
end->prior()=y->prior();
return std::make_pair(y,false);
}
else{
y->prior()->next()->prior()=pointer(0);
y->prior()->next()=x->next();
end->prior()=y->prior();
return std::make_pair(y,true);
}
}
}
static void unlink_range(pointer first,pointer last)
{
if(is_first_of_bucket(first)){
if(is_last_of_bucket(last)){
first->prior()->next()->prior()=pointer(0);
first->prior()->next()=last->next();
last->next()->prior()->prior()=first->prior();
}
else{
first->prior()->next()->prior()=pointer_from(last->next());
last->next()->prior()=first->prior();
}
}
else if(is_last_of_bucket(last)){
first->prior()->next()=last->next();
last->next()->prior()->prior()=first->prior();
}
else{
first->prior()->next()=last->next();
last->next()->prior()=first->prior();
}
}
private:
static pointer pointer_from(base_pointer x)
{
return Node::pointer_from(x);
}
static base_pointer base_pointer_from(pointer x)
{
return Node::base_pointer_from(x);
}
static bool is_last_of_bucket(pointer x)
{
return x->next()->prior()->prior()==x;
}
template<typename Assigner>
static void left_unlink(pointer x,Assigner& assign)
{
assign(x->prior()->next(),x->next());
}
template<typename Assigner>
static void right_unlink(pointer x,Assigner& assign)
{
assign(x->next()->prior(),x->prior());
}
template<typename Assigner>
static void left_unlink_first_of_bucket(pointer x,Assigner& assign)
{
assign(x->prior()->next()->prior(),pointer_from(x->next()));
}
template<typename Assigner>
static void right_unlink_last_of_bucket(pointer x,Assigner& assign)
{
assign(x->next()->prior()->prior(),x->prior());
}
template<typename Assigner>
static void right_unlink_first_of_group(pointer x,Assigner& assign)
{
pointer second=pointer_from(x->next()),
last=second->prior(),
lastbutone=last->prior();
if(second==lastbutone){
assign(second->next(),base_pointer_from(last));
assign(second->prior(),x->prior());
}
else{
assign(lastbutone->next(),base_pointer_from(second));
assign(second->next()->prior(),last);
assign(second->prior(),x->prior());
}
}
template<typename Assigner>
static void left_unlink_last_of_group(pointer x,Assigner& assign)
{
pointer lastbutone=x->prior(),
first=pointer_from(lastbutone->next()),
second=pointer_from(first->next());
if(lastbutone==second){
assign(lastbutone->prior(),first);
assign(lastbutone->next(),x->next());
}
else{
assign(second->prior(),lastbutone);
assign(lastbutone->prior()->next(),base_pointer_from(first));
assign(lastbutone->next(),x->next());
}
}
template<typename Assigner>
static void unlink_last_but_one_of_group(pointer x,Assigner& assign)
{
pointer first=pointer_from(x->next()),
second=pointer_from(first->next()),
last=second->prior();
if(second==x){
assign(last->prior(),first);
assign(first->next(),base_pointer_from(last));
}
else{
assign(last->prior(),x->prior());
assign(x->prior()->next(),base_pointer_from(first));
}
}
template<typename Assigner>
static void unlink_second_of_group(pointer x,Assigner& assign)
{
pointer last=x->prior(),
lastbutone=last->prior(),
first=pointer_from(lastbutone->next());
if(lastbutone==x){
assign(first->next(),base_pointer_from(last));
assign(last->prior(),first);
}
else{
assign(first->next(),x->next());
assign(x->next()->prior(),last);
}
}
};
template<typename Super>
struct hashed_index_node_trampoline:
hashed_index_node_impl<
typename rebind_alloc_for<
typename Super::allocator_type,char
>::type
>
{
typedef typename rebind_alloc_for<
typename Super::allocator_type,char
>::type impl_allocator_type;
typedef hashed_index_node_impl<impl_allocator_type> impl_type;
};
template<typename Super>
struct hashed_index_node:
Super,hashed_index_node_trampoline<Super>
{
private:
typedef hashed_index_node_trampoline<Super> trampoline;
public:
typedef typename trampoline::impl_type impl_type;
typedef typename trampoline::base_pointer impl_base_pointer;
typedef typename trampoline::const_base_pointer const_impl_base_pointer;
typedef typename trampoline::pointer impl_pointer;
typedef typename trampoline::const_pointer const_impl_pointer;
typedef typename trampoline::difference_type difference_type;
template<typename Category>
struct node_alg{
typedef hashed_index_node_alg<impl_type,Category> type;
};
impl_pointer& prior(){return trampoline::prior();}
impl_pointer prior()const{return trampoline::prior();}
impl_base_pointer& next(){return trampoline::next();}
impl_base_pointer next()const{return trampoline::next();}
impl_pointer impl()
{
return static_cast<impl_pointer>(
static_cast<impl_type*>(static_cast<trampoline*>(this)));
}
const_impl_pointer impl()const
{
return static_cast<const_impl_pointer>(
static_cast<const impl_type*>(static_cast<const trampoline*>(this)));
}
static hashed_index_node* from_impl(impl_pointer x)
{
return
static_cast<hashed_index_node*>(
static_cast<trampoline*>(
raw_ptr<impl_type*>(x)));
}
static const hashed_index_node* from_impl(const_impl_pointer x)
{
return
static_cast<const hashed_index_node*>(
static_cast<const trampoline*>(
raw_ptr<const impl_type*>(x)));
}
/* interoperability with hashed_index_iterator */
template<typename Category>
static void increment(hashed_index_node*& x)
{
x=from_impl(node_alg<Category>::type::after(x->impl()));
}
template<typename Category>
static void increment_local(hashed_index_node*& x)
{
x=from_impl(node_alg<Category>::type::after_local(x->impl()));
}
};
} /* namespace multi_index::detail */
} /* namespace multi_index */
} /* namespace boost */
#endif