Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

boost/unordered/unordered_map.hpp


// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

//  See http://www.boost.org/libs/unordered for documentation

#ifndef BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED
#define BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED

#include <boost/config.hpp>
#if defined(BOOST_HAS_PRAGMA_ONCE)
#pragma once
#endif

#include <boost/core/explicit_operator_bool.hpp>
#include <boost/functional/hash.hpp>
#include <boost/move/move.hpp>
#include <boost/type_traits/is_constructible.hpp>
#include <boost/unordered/detail/map.hpp>

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
#include <initializer_list>
#endif

#if defined(BOOST_MSVC)
#pragma warning(push)
#if BOOST_MSVC >= 1400
#pragma warning(disable : 4396) // the inline specifier cannot be used when a
// friend declaration refers to a specialization
// of a function template
#endif
#endif

namespace boost {
namespace unordered {
template <class K, class T, class H, class P, class A> class unordered_map
{
#if defined(BOOST_UNORDERED_USE_MOVE)
    BOOST_COPYABLE_AND_MOVABLE(unordered_map)
#endif
    template <typename, typename, typename, typename, typename>
    friend class unordered_multimap;

  public:
    typedef K key_type;
    typedef T mapped_type;
    typedef std::pair<const K, T> value_type;
    typedef H hasher;
    typedef P key_equal;
    typedef A allocator_type;

  private:
    typedef boost::unordered::detail::map<A, K, T, H, P> types;
    typedef typename types::value_allocator_traits value_allocator_traits;
    typedef typename types::table table;
    typedef typename table::node_pointer node_pointer;
    typedef typename table::link_pointer link_pointer;

  public:
    typedef typename value_allocator_traits::pointer pointer;
    typedef typename value_allocator_traits::const_pointer const_pointer;

    typedef value_type& reference;
    typedef value_type const& const_reference;

    typedef std::size_t size_type;
    typedef std::ptrdiff_t difference_type;

    typedef typename table::iterator iterator;
    typedef typename table::c_iterator const_iterator;
    typedef typename table::l_iterator local_iterator;
    typedef typename table::cl_iterator const_local_iterator;
    typedef typename types::node_type node_type;
    typedef typename types::insert_return_type insert_return_type;

  private:
    table table_;

  public:
    // constructors

    unordered_map();

    explicit unordered_map(size_type, const hasher& = hasher(),
        const key_equal& = key_equal(),
        const allocator_type& = allocator_type());

    template <class InputIt>
    unordered_map(InputIt, InputIt,
        size_type = boost::unordered::detail::default_bucket_count,
        const hasher& = hasher(), const key_equal& = key_equal(),
        const allocator_type& = allocator_type());

    unordered_map(unordered_map const&);

#if defined(BOOST_UNORDERED_USE_MOVE) ||                                       \
    !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
    unordered_map(BOOST_RV_REF(unordered_map) other)
        BOOST_NOEXCEPT_IF(table::nothrow_move_constructible)
        : table_(other.table_, boost::unordered::detail::move_tag())
    {
        // The move is done in table_
    }
#endif

    explicit unordered_map(allocator_type const&);

    unordered_map(unordered_map const&, allocator_type const&);

    unordered_map(BOOST_RV_REF(unordered_map), allocator_type const&);

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
    unordered_map(std::initializer_list<value_type>,
        size_type = boost::unordered::detail::default_bucket_count,
        const hasher& = hasher(), const key_equal& l = key_equal(),
        const allocator_type& = allocator_type());
#endif

    explicit unordered_map(size_type, const allocator_type&);

    explicit unordered_map(size_type, const hasher&, const allocator_type&);

    template <class InputIt>
    unordered_map(InputIt, InputIt, size_type, const allocator_type&);

    template <class InputIt>
    unordered_map(
        InputIt, InputIt, size_type, const hasher&, const allocator_type&);

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
    unordered_map(
        std::initializer_list<value_type>, size_type, const allocator_type&);

    unordered_map(std::initializer_list<value_type>, size_type, const hasher&,
        const allocator_type&);
#endif

    // Destructor

    ~unordered_map() BOOST_NOEXCEPT;

// Assign

#if defined(BOOST_UNORDERED_USE_MOVE)
    unordered_map& operator=(BOOST_COPY_ASSIGN_REF(unordered_map) x)
    {
        table_.assign(x.table_, boost::unordered::detail::true_type());
        return *this;
    }

    unordered_map& operator=(BOOST_RV_REF(unordered_map) x)
    // C++17 support: BOOST_NOEXCEPT_IF(
    //    value_allocator_traits::is_always_equal::value &&
    //    is_nothrow_move_assignable_v<H> &&
    //    is_nothrow_move_assignable_v<P>)
    {
        table_.move_assign(x.table_, boost::unordered::detail::true_type());
        return *this;
    }
#else
    unordered_map& operator=(unordered_map const& x)
    {
        table_.assign(x.table_, boost::unordered::detail::true_type());
        return *this;
    }

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
    unordered_map& operator=(unordered_map&& x)
    // C++17 support: BOOST_NOEXCEPT_IF(
    //    value_allocator_traits::is_always_equal::value &&
    //    is_nothrow_move_assignable_v<H> &&
    //    is_nothrow_move_assignable_v<P>)
    {
        table_.move_assign(x.table_, boost::unordered::detail::true_type());
        return *this;
    }
#endif
#endif

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
    unordered_map& operator=(std::initializer_list<value_type>);
#endif

    allocator_type get_allocator() const BOOST_NOEXCEPT
    {
        return table_.node_alloc();
    }

    // iterators

    iterator begin() BOOST_NOEXCEPT { return iterator(table_.begin()); }

    const_iterator begin() const BOOST_NOEXCEPT
    {
        return const_iterator(table_.begin());
    }

    iterator end() BOOST_NOEXCEPT { return iterator(); }

    const_iterator end() const BOOST_NOEXCEPT { return const_iterator(); }

    const_iterator cbegin() const BOOST_NOEXCEPT
    {
        return const_iterator(table_.begin());
    }

    const_iterator cend() const BOOST_NOEXCEPT { return const_iterator(); }

    // size and capacity

    bool empty() const BOOST_NOEXCEPT { return table_.size_ == 0; }

    size_type size() const BOOST_NOEXCEPT { return table_.size_; }

    size_type max_size() const BOOST_NOEXCEPT;

// emplace

#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)

    template <class... Args>
    std::pair<iterator, bool> emplace(BOOST_FWD_REF(Args)... args)
    {
        return table_.emplace_unique(
            table::extractor::extract(boost::forward<Args>(args)...),
            boost::forward<Args>(args)...);
    }

#else

#if !BOOST_UNORDERED_SUN_WORKAROUNDS1

    // 0 argument emplace requires special treatment in case
    // the container is instantiated with a value type that
    // doesn't have a default constructor.

    std::pair<iterator, bool> emplace(
        boost::unordered::detail::empty_emplace =
            boost::unordered::detail::empty_emplace(),
        value_type v = value_type())
    {
        return this->emplace(boost::move(v));
    }

#endif

    template <typename A0>
    std::pair<iterator, bool> emplace(BOOST_FWD_REF(A0) a0)
    {
        return table_.emplace_unique(
            table::extractor::extract(boost::forward<A0>(a0)),
            boost::unordered::detail::create_emplace_args(
                boost::forward<A0>(a0)));
    }

    template <typename A0, typename A1>
    std::pair<iterator, bool> emplace(
        BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
    {
        return table_.emplace_unique(
            table::extractor::extract(
                boost::forward<A0>(a0), boost::forward<A1>(a1)),
            boost::unordered::detail::create_emplace_args(
                boost::forward<A0>(a0), boost::forward<A1>(a1)));
    }

    template <typename A0, typename A1, typename A2>
    std::pair<iterator, bool> emplace(
        BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
    {
        return table_.emplace_unique(
            table::extractor::extract(
                boost::forward<A0>(a0), boost::forward<A1>(a1)),
            boost::unordered::detail::create_emplace_args(
                boost::forward<A0>(a0), boost::forward<A1>(a1),
                boost::forward<A2>(a2)));
    }

#endif

#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)

    template <class... Args>
    iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(Args)... args)
    {
        return table_.emplace_hint_unique(hint,
            table::extractor::extract(boost::forward<Args>(args)...),
            boost::forward<Args>(args)...);
    }

#else

#if !BOOST_UNORDERED_SUN_WORKAROUNDS1

    iterator emplace_hint(const_iterator hint,
        boost::unordered::detail::empty_emplace =
            boost::unordered::detail::empty_emplace(),
        value_type v = value_type())
    {
        return this->emplace_hint(hint, boost::move(v));
    }

#endif

    template <typename A0>
    iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0)
    {
        return table_.emplace_hint_unique(hint,
            table::extractor::extract(boost::forward<A0>(a0)),
            boost::unordered::detail::create_emplace_args(
                                              boost::forward<A0>(a0)));
    }

    template <typename A0, typename A1>
    iterator emplace_hint(
        const_iterator hint, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
    {
        return table_.emplace_hint_unique(
            hint, table::extractor::extract(
                      boost::forward<A0>(a0), boost::forward<A1>(a1)),
            boost::unordered::detail::create_emplace_args(
                boost::forward<A0>(a0), boost::forward<A1>(a1)));
    }

    template <typename A0, typename A1, typename A2>
    iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0,
        BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
    {
        return table_.emplace_hint_unique(
            hint, table::extractor::extract(
                      boost::forward<A0>(a0), boost::forward<A1>(a1)),
            boost::unordered::detail::create_emplace_args(
                boost::forward<A0>(a0), boost::forward<A1>(a1),
                boost::forward<A2>(a2)));
    }

#endif

#if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)

#define BOOST_UNORDERED_EMPLACE(z, n, _)                                       \
    template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)>                        \
    std::pair<iterator, bool> emplace(                                         \
        BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a))                    \
    {                                                                          \
        return table_.emplace_unique(                                          \
            table::extractor::extract(                                         \
                boost::forward<A0>(a0), boost::forward<A1>(a1)),               \
            boost::unordered::detail::create_emplace_args(                     \
                BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a)));       \
    }                                                                          \
                                                                               \
    template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)>                        \
    iterator emplace_hint(const_iterator hint,                                 \
        BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a))                    \
    {                                                                          \
        return table_.emplace_hint_unique(                                     \
            hint, table::extractor::extract(                                   \
                      boost::forward<A0>(a0), boost::forward<A1>(a1)),         \
            boost::unordered::detail::create_emplace_args(                     \
                BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a)));       \
    }

    BOOST_UNORDERED_EMPLACE(1, 4, _)
    BOOST_UNORDERED_EMPLACE(1, 5, _)
    BOOST_UNORDERED_EMPLACE(1, 6, _)
    BOOST_UNORDERED_EMPLACE(1, 7, _)
    BOOST_UNORDERED_EMPLACE(1, 8, _)
    BOOST_UNORDERED_EMPLACE(1, 9, _)
    BOOST_PP_REPEAT_FROM_TO(10, BOOST_PP_INC(BOOST_UNORDERED_EMPLACE_LIMIT),
        BOOST_UNORDERED_EMPLACE, _)

#undef BOOST_UNORDERED_EMPLACE

#endif

    std::pair<iterator, bool> insert(value_type const& x)
    {
        return this->emplace(x);
    }

    std::pair<iterator, bool> insert(BOOST_RV_REF(value_type) x)
    {
        return this->emplace(boost::move(x));
    }

    template <class P2>
    std::pair<iterator, bool> insert(BOOST_RV_REF(P2) obj,
        typename boost::enable_if_c<
            boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value,
            void*>::type = 0)
    {
        return this->emplace(boost::forward<P2>(obj));
    }

    iterator insert(const_iterator hint, value_type const& x)
    {
        return this->emplace_hint(hint, x);
    }

    iterator insert(const_iterator hint, BOOST_RV_REF(value_type) x)
    {
        return this->emplace_hint(hint, boost::move(x));
    }

    template <class P2>
    iterator insert(const_iterator hint, BOOST_RV_REF(P2) obj,
        typename boost::enable_if_c<
            boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value,
            void*>::type = 0)
    {
        return this->emplace_hint(hint, boost::forward<P2>(obj));
    }

    template <class InputIt> void insert(InputIt, InputIt);

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
    void insert(std::initializer_list<value_type>);
#endif

    // extract

    node_type extract(const_iterator position)
    {
        return node_type(
            table_.extract_by_iterator_unique(position), table_.node_alloc());
    }

    node_type extract(const key_type& k)
    {
        return node_type(table_.extract_by_key(k), table_.node_alloc());
    }

    insert_return_type insert(BOOST_RV_REF(node_type) np)
    {
        insert_return_type result;
        table_.move_insert_node_type_unique(np, result);
        return boost::move(result);
    }

    iterator insert(const_iterator hint, BOOST_RV_REF(node_type) np)
    {
        return table_.move_insert_node_type_with_hint_unique(hint, np);
    }

#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES) ||                               \
    (BOOST_COMP_GNUC && BOOST_COMP_GNUC < BOOST_VERSION_NUMBER(4, 6, 0))
  private:
    // Note: Use r-value node_type to insert.
    insert_return_type insert(node_type&);
    iterator insert(const_iterator, node_type& np);

  public:
#endif

#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)

    template <class... Args>
    std::pair<iterator, bool> try_emplace(
        key_type const& k, BOOST_FWD_REF(Args)... args)
    {
        return table_.try_emplace_unique(k, boost::forward<Args>(args)...);
    }

    template <class... Args>
    std::pair<iterator, bool> try_emplace(
        BOOST_RV_REF(key_type) k, BOOST_FWD_REF(Args)... args)
    {
        return table_.try_emplace_unique(
            boost::move(k), boost::forward<Args>(args)...);
    }

    template <class... Args>
    iterator try_emplace(
        const_iterator hint, key_type const& k, BOOST_FWD_REF(Args)... args)
    {
        return table_.try_emplace_hint_unique(
            hint, k, boost::forward<Args>(args)...);
    }

    template <class... Args>
    iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k,
        BOOST_FWD_REF(Args)... args)
    {
        return table_.try_emplace_hint_unique(
            hint, boost::move(k), boost::forward<Args>(args)...);
    }

#else

    // In order to make this a template, this handles both:
    // try_emplace(key const&)
    // try_emplace(key&&)

    template <typename Key>
    std::pair<iterator, bool> try_emplace(BOOST_FWD_REF(Key) k)
    {
        return table_.try_emplace_unique(boost::forward<Key>(k));
    }

    // In order to make this a template, this handles both:
    // try_emplace(const_iterator hint, key const&)
    // try_emplace(const_iterator hint, key&&)

    template <typename Key>
    iterator try_emplace(const_iterator hint, BOOST_FWD_REF(Key) k)
    {
        return table_.try_emplace_hint_unique(hint, boost::forward<Key>(k));
    }

    // try_emplace(key const&, Args&&...)

    template <typename A0>
    std::pair<iterator, bool> try_emplace(
        key_type const& k, BOOST_FWD_REF(A0) a0)
    {
        return table_.try_emplace_unique(
            k, boost::unordered::detail::create_emplace_args(
                   boost::forward<A0>(a0)));
    }

    template <typename A0, typename A1>
    std::pair<iterator, bool> try_emplace(
        key_type const& k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
    {
        return table_.try_emplace_unique(
            k, boost::unordered::detail::create_emplace_args(
                   boost::forward<A0>(a0), boost::forward<A1>(a1)));
    }

    template <typename A0, typename A1, typename A2>
    std::pair<iterator, bool> try_emplace(key_type const& k,
        BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
    {
        return table_.try_emplace_unique(
            k, boost::unordered::detail::create_emplace_args(
                   boost::forward<A0>(a0), boost::forward<A1>(a1),
                   boost::forward<A2>(a2)));
    }

    // try_emplace(key&&, Args&&...)

    template <typename A0>
    std::pair<iterator, bool> try_emplace(
        BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0)
    {
        return table_.try_emplace_unique(
            boost::move(k), boost::unordered::detail::create_emplace_args(
                                boost::forward<A0>(a0)));
    }

    template <typename A0, typename A1>
    std::pair<iterator, bool> try_emplace(
        BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
    {
        return table_.try_emplace_unique(
            boost::move(k),
            boost::unordered::detail::create_emplace_args(
                boost::forward<A0>(a0), boost::forward<A1>(a1)));
    }

    template <typename A0, typename A1, typename A2>
    std::pair<iterator, bool> try_emplace(BOOST_RV_REF(key_type) k,
        BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
    {
        return table_.try_emplace_unique(
            boost::move(k), boost::unordered::detail::create_emplace_args(
                                boost::forward<A0>(a0), boost::forward<A1>(a1),
                                boost::forward<A2>(a2)));
    }

    // try_emplace(const_iterator hint, key const&, Args&&...)

    template <typename A0>
    iterator try_emplace(
        const_iterator hint, key_type const& k, BOOST_FWD_REF(A0) a0)
    {
        return table_.try_emplace_hint_unique(
            hint, k, boost::unordered::detail::create_emplace_args(
                         boost::forward<A0>(a0)));
    }

    template <typename A0, typename A1>
    iterator try_emplace(const_iterator hint, key_type const& k,
        BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
    {
        return table_.try_emplace_hint_unique(
            hint, k, boost::unordered::detail::create_emplace_args(
                         boost::forward<A0>(a0), boost::forward<A1>(a1)));
    }

    template <typename A0, typename A1, typename A2>
    iterator try_emplace(const_iterator hint, key_type const& k,
        BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
    {
        return table_.try_emplace_hint_unique(
            hint, k, boost::unordered::detail::create_emplace_args(
                         boost::forward<A0>(a0), boost::forward<A1>(a1),
                         boost::forward<A2>(a2)));
    }

    // try_emplace(const_iterator hint, key&&, Args&&...)

    template <typename A0>
    iterator try_emplace(
        const_iterator hint, BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0)
    {
        return table_.try_emplace_hint_unique(
            hint, boost::move(k), boost::unordered::detail::create_emplace_args(
                                      boost::forward<A0>(a0)));
    }

    template <typename A0, typename A1>
    iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k,
        BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
    {
        return table_.try_emplace_hint_unique(
            hint, boost::move(k),
            boost::unordered::detail::create_emplace_args(
                boost::forward<A0>(a0), boost::forward<A1>(a1)));
    }

    template <typename A0, typename A1, typename A2>
    iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k,
        BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
    {
        return table_.try_emplace_hint_unique(
            hint, boost::move(k),
            boost::unordered::detail::create_emplace_args(
                boost::forward<A0>(a0), boost::forward<A1>(a1),
                boost::forward<A2>(a2)));
    }

#define BOOST_UNORDERED_TRY_EMPLACE(z, n, _)                                   \
                                                                               \
    template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)>                        \
    std::pair<iterator, bool> try_emplace(                                     \
        key_type const& k, BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \
    {                                                                          \
        return table_.try_emplace_unique(                                      \
            k, boost::unordered::detail::create_emplace_args(                  \
                   BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a)));    \
    }                                                                          \
                                                                               \
    template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)>                        \
    std::pair<iterator, bool> try_emplace(BOOST_RV_REF(key_type) k,            \
        BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a))                    \
    {                                                                          \
        return table_.try_emplace_unique(boost::move(k),                       \
            boost::unordered::detail::create_emplace_args(BOOST_PP_ENUM_##z(   \
                n, BOOST_UNORDERED_CALL_FORWARD, a)));                         \
    }                                                                          \
                                                                               \
    template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)>                        \
    iterator try_emplace(const_iterator hint, key_type const& k,               \
        BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a))                    \
    {                                                                          \
        return table_.try_emplace_hint_unique(hint, k,                         \
            boost::unordered::detail::create_emplace_args(BOOST_PP_ENUM_##z(   \
                n, BOOST_UNORDERED_CALL_FORWARD, a)));                         \
    }                                                                          \
                                                                               \
    template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)>                        \
    iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k,        \
        BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a))                    \
    {                                                                          \
        return table_.try_emplace_hint_unique(hint, boost::move(k),            \
            boost::unordered::detail::create_emplace_args(BOOST_PP_ENUM_##z(   \
                n, BOOST_UNORDERED_CALL_FORWARD, a)));                         \
    }

    BOOST_UNORDERED_TRY_EMPLACE(1, 4, _)
    BOOST_UNORDERED_TRY_EMPLACE(1, 5, _)
    BOOST_UNORDERED_TRY_EMPLACE(1, 6, _)
    BOOST_UNORDERED_TRY_EMPLACE(1, 7, _)
    BOOST_UNORDERED_TRY_EMPLACE(1, 8, _)
    BOOST_UNORDERED_TRY_EMPLACE(1, 9, _)
    BOOST_PP_REPEAT_FROM_TO(10, BOOST_PP_INC(BOOST_UNORDERED_EMPLACE_LIMIT),
        BOOST_UNORDERED_TRY_EMPLACE, _)

#undef BOOST_UNORDERED_TRY_EMPLACE

#endif

    template <class M>
    std::pair<iterator, bool> insert_or_assign(
        key_type const& k, BOOST_FWD_REF(M) obj)
    {
        return table_.insert_or_assign_unique(k, boost::forward<M>(obj));
    }

    template <class M>
    std::pair<iterator, bool> insert_or_assign(
        BOOST_RV_REF(key_type) k, BOOST_FWD_REF(M) obj)
    {
        return table_.insert_or_assign_unique(
            boost::move(k), boost::forward<M>(obj));
    }

    template <class M>
    iterator insert_or_assign(
        const_iterator, key_type const& k, BOOST_FWD_REF(M) obj)
    {
        return table_.insert_or_assign_unique(k, boost::forward<M>(obj)).first;
    }

    template <class M>
    iterator insert_or_assign(
        const_iterator, BOOST_RV_REF(key_type) k, BOOST_FWD_REF(M) obj)
    {
        return table_
            .insert_or_assign_unique(boost::move(k), boost::forward<M>(obj))
            .first;
    }

    iterator erase(iterator);
    iterator erase(const_iterator);
    size_type erase(const key_type&);
    iterator erase(const_iterator, const_iterator);
    BOOST_UNORDERED_DEPRECATED("Use erase instead")
    void quick_erase(const_iterator it) { erase(it); }
    BOOST_UNORDERED_DEPRECATED("Use erase instead")
    void erase_return_void(const_iterator it) { erase(it); }

    void swap(unordered_map&);
    // C++17 support: BOOST_NOEXCEPT_IF(
    //    value_allocator_traits::is_always_equal::value &&
    //    is_nothrow_move_assignable_v<H> &&
    //    is_nothrow_move_assignable_v<P>)
    void clear() BOOST_NOEXCEPT { table_.clear_impl(); }

    template <typename H2, typename P2>
    void merge(boost::unordered_map<K, T, H2, P2, A>& source);

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
    template <typename H2, typename P2>
    void merge(boost::unordered_map<K, T, H2, P2, A>&& source);
#endif

    template <typename H2, typename P2>
    void merge(boost::unordered_multimap<K, T, H2, P2, A>& source);

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
    template <typename H2, typename P2>
    void merge(boost::unordered_multimap<K, T, H2, P2, A>&& source);
#endif

    // observers

    hasher hash_function() const;
    key_equal key_eq() const;

    // lookup

    iterator find(const key_type&);
    const_iterator find(const key_type&) const;

    template <class CompatibleKey, class CompatibleHash,
        class CompatiblePredicate>
    iterator find(CompatibleKey const&, CompatibleHash const&,
        CompatiblePredicate const&);

    template <class CompatibleKey, class CompatibleHash,
        class CompatiblePredicate>
    const_iterator find(CompatibleKey const&, CompatibleHash const&,
        CompatiblePredicate const&) const;

    size_type count(const key_type&) const;

    std::pair<iterator, iterator> equal_range(const key_type&);
    std::pair<const_iterator, const_iterator> equal_range(
        const key_type&) const;

    mapped_type& operator[](const key_type&);
    mapped_type& operator[](BOOST_RV_REF(key_type));
    mapped_type& at(const key_type&);
    mapped_type const& at(const key_type&) const;

    // bucket interface

    size_type bucket_count() const BOOST_NOEXCEPT
    {
        return table_.bucket_count_;
    }

    size_type max_bucket_count() const BOOST_NOEXCEPT
    {
        return table_.max_bucket_count();
    }

    size_type bucket_size(size_type) const;

    size_type bucket(const key_type& k) const
    {
        return table_.hash_to_bucket(table_.hash(k));
    }

    local_iterator begin(size_type n)
    {
        return local_iterator(table_.begin(n), n, table_.bucket_count_);
    }

    const_local_iterator begin(size_type n) const
    {
        return const_local_iterator(table_.begin(n), n, table_.bucket_count_);
    }

    local_iterator end(size_type) { return local_iterator(); }

    const_local_iterator end(size_type) const { return const_local_iterator(); }

    const_local_iterator cbegin(size_type n) const
    {
        return const_local_iterator(table_.begin(n), n, table_.bucket_count_);
    }

    const_local_iterator cend(size_type) const
    {
        return const_local_iterator();
    }

    // hash policy

    float load_factor() const BOOST_NOEXCEPT;
    float max_load_factor() const BOOST_NOEXCEPT { return table_.mlf_; }
    void max_load_factor(float) BOOST_NOEXCEPT;
    void rehash(size_type);
    void reserve(size_type);

#if !BOOST_WORKAROUND(__BORLANDC__, < 0x0582)
    friend bool operator==
        <K, T, H, P, A>(unordered_map const&, unordered_map const&);
    friend bool operator!=
        <K, T, H, P, A>(unordered_map const&, unordered_map const&);
#endif
}; // class template unordered_map

template <class K, class T, class H, class P, class A> class unordered_multimap
{
#if defined(BOOST_UNORDERED_USE_MOVE)
    BOOST_COPYABLE_AND_MOVABLE(unordered_multimap)
#endif
    template <typename, typename, typename, typename, typename>
    friend class unordered_map;

  public:
    typedef K key_type;
    typedef T mapped_type;
    typedef std::pair<const K, T> value_type;
    typedef H hasher;
    typedef P key_equal;
    typedef A allocator_type;

  private:
    typedef boost::unordered::detail::map<A, K, T, H, P> types;
    typedef typename types::value_allocator_traits value_allocator_traits;
    typedef typename types::table table;
    typedef typename table::node_pointer node_pointer;
    typedef typename table::link_pointer link_pointer;

  public:
    typedef typename value_allocator_traits::pointer pointer;
    typedef typename value_allocator_traits::const_pointer const_pointer;

    typedef value_type& reference;
    typedef value_type const& const_reference;

    typedef std::size_t size_type;
    typedef std::ptrdiff_t difference_type;

    typedef typename table::iterator iterator;
    typedef typename table::c_iterator const_iterator;
    typedef typename table::l_iterator local_iterator;
    typedef typename table::cl_iterator const_local_iterator;
    typedef typename types::node_type node_type;

  private:
    table table_;

  public:
    // constructors

    unordered_multimap();

    explicit unordered_multimap(size_type, const hasher& = hasher(),
        const key_equal& = key_equal(),
        const allocator_type& = allocator_type());

    template <class InputIt>
    unordered_multimap(InputIt, InputIt,
        size_type = boost::unordered::detail::default_bucket_count,
        const hasher& = hasher(), const key_equal& = key_equal(),
        const allocator_type& = allocator_type());

    unordered_multimap(unordered_multimap const&);

#if defined(BOOST_UNORDERED_USE_MOVE) ||                                       \
    !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
    unordered_multimap(BOOST_RV_REF(unordered_multimap) other)
        BOOST_NOEXCEPT_IF(table::nothrow_move_constructible)
        : table_(other.table_, boost::unordered::detail::move_tag())
    {
        // The move is done in table_
    }
#endif

    explicit unordered_multimap(allocator_type const&);

    unordered_multimap(unordered_multimap const&, allocator_type const&);

    unordered_multimap(BOOST_RV_REF(unordered_multimap), allocator_type const&);

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
    unordered_multimap(std::initializer_list<value_type>,
        size_type = boost::unordered::detail::default_bucket_count,
        const hasher& = hasher(), const key_equal& l = key_equal(),
        const allocator_type& = allocator_type());
#endif

    explicit unordered_multimap(size_type, const allocator_type&);

    explicit unordered_multimap(
        size_type, const hasher&, const allocator_type&);

    template <class InputIt>
    unordered_multimap(InputIt, InputIt, size_type, const allocator_type&);

    template <class InputIt>
    unordered_multimap(
        InputIt, InputIt, size_type, const hasher&, const allocator_type&);

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
    unordered_multimap(
        std::initializer_list<value_type>, size_type, const allocator_type&);

    unordered_multimap(std::initializer_list<value_type>, size_type,
        const hasher&, const allocator_type&);
#endif

    // Destructor

    ~unordered_multimap() BOOST_NOEXCEPT;

// Assign

#if defined(BOOST_UNORDERED_USE_MOVE)
    unordered_multimap& operator=(BOOST_COPY_ASSIGN_REF(unordered_multimap) x)
    {
        table_.assign(x.table_, boost::unordered::detail::false_type());
        return *this;
    }

    unordered_multimap& operator=(BOOST_RV_REF(unordered_multimap) x)
    // C++17 support: BOOST_NOEXCEPT_IF(
    //    value_allocator_traits::is_always_equal::value &&
    //    is_nothrow_move_assignable_v<H> &&
    //    is_nothrow_move_assignable_v<P>)
    {
        table_.move_assign(x.table_, boost::unordered::detail::false_type());
        return *this;
    }
#else
    unordered_multimap& operator=(unordered_multimap const& x)
    {
        table_.assign(x.table_, boost::unordered::detail::false_type());
        return *this;
    }

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
    unordered_multimap& operator=(unordered_multimap&& x)
    // C++17 support: BOOST_NOEXCEPT_IF(
    //    value_allocator_traits::is_always_equal::value &&
    //    is_nothrow_move_assignable_v<H> &&
    //    is_nothrow_move_assignable_v<P>)
    {
        table_.move_assign(x.table_, boost::unordered::detail::false_type());
        return *this;
    }
#endif
#endif

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
    unordered_multimap& operator=(std::initializer_list<value_type>);
#endif

    allocator_type get_allocator() const BOOST_NOEXCEPT
    {
        return table_.node_alloc();
    }

    // iterators

    iterator begin() BOOST_NOEXCEPT { return iterator(table_.begin()); }

    const_iterator begin() const BOOST_NOEXCEPT
    {
        return const_iterator(table_.begin());
    }

    iterator end() BOOST_NOEXCEPT { return iterator(); }

    const_iterator end() const BOOST_NOEXCEPT { return const_iterator(); }

    const_iterator cbegin() const BOOST_NOEXCEPT
    {
        return const_iterator(table_.begin());
    }

    const_iterator cend() const BOOST_NOEXCEPT { return const_iterator(); }

    // size and capacity

    bool empty() const BOOST_NOEXCEPT { return table_.size_ == 0; }

    size_type size() const BOOST_NOEXCEPT { return table_.size_; }

    size_type max_size() const BOOST_NOEXCEPT;

// emplace

#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)

    template <class... Args> iterator emplace(BOOST_FWD_REF(Args)... args)
    {
        return iterator(table_.emplace_equiv(
            boost::unordered::detail::func::construct_node_from_args(
                table_.node_alloc(), boost::forward<Args>(args)...)));
    }

#else

#if !BOOST_UNORDERED_SUN_WORKAROUNDS1

    // 0 argument emplace requires special treatment in case
    // the container is instantiated with a value type that
    // doesn't have a default constructor.

    iterator emplace(boost::unordered::detail::empty_emplace =
                         boost::unordered::detail::empty_emplace(),
        value_type v = value_type())
    {
        return this->emplace(boost::move(v));
    }

#endif

    template <typename A0> iterator emplace(BOOST_FWD_REF(A0) a0)
    {
        return iterator(table_.emplace_equiv(
            boost::unordered::detail::func::construct_node_from_args(
                table_.node_alloc(),
                boost::unordered::detail::create_emplace_args(
                    boost::forward<A0>(a0)))));
    }

    template <typename A0, typename A1>
    iterator emplace(BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
    {
        return iterator(table_.emplace_equiv(
            boost::unordered::detail::func::construct_node_from_args(
                table_.node_alloc(),
                boost::unordered::detail::create_emplace_args(
                    boost::forward<A0>(a0), boost::forward<A1>(a1)))));
    }

    template <typename A0, typename A1, typename A2>
    iterator emplace(
        BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
    {
        return iterator(table_.emplace_equiv(
            boost::unordered::detail::func::construct_node_from_args(
                table_.node_alloc(),
                boost::unordered::detail::create_emplace_args(
                    boost::forward<A0>(a0), boost::forward<A1>(a1),
                    boost::forward<A2>(a2)))));
    }

#endif

#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)

    template <class... Args>
    iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(Args)... args)
    {
        return iterator(table_.emplace_hint_equiv(
            hint, boost::unordered::detail::func::construct_node_from_args(
                      table_.node_alloc(), boost::forward<Args>(args)...)));
    }

#else

#if !BOOST_UNORDERED_SUN_WORKAROUNDS1

    iterator emplace_hint(const_iterator hint,
        boost::unordered::detail::empty_emplace =
            boost::unordered::detail::empty_emplace(),
        value_type v = value_type())
    {
        return this->emplace_hint(hint, boost::move(v));
    }

#endif

    template <typename A0>
    iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0)
    {
        return iterator(table_.emplace_hint_equiv(
            hint, boost::unordered::detail::func::construct_node_from_args(
                      table_.node_alloc(),
                      boost::unordered::detail::create_emplace_args(
                          boost::forward<A0>(a0)))));
    }

    template <typename A0, typename A1>
    iterator emplace_hint(
        const_iterator hint, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
    {
        return iterator(table_.emplace_hint_equiv(
            hint, boost::unordered::detail::func::construct_node_from_args(
                      table_.node_alloc(),
                      boost::unordered::detail::create_emplace_args(
                          boost::forward<A0>(a0), boost::forward<A1>(a1)))));
    }

    template <typename A0, typename A1, typename A2>
    iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0,
        BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
    {
        return iterator(table_.emplace_hint_equiv(
            hint, boost::unordered::detail::func::construct_node_from_args(
                      table_.node_alloc(),
                      boost::unordered::detail::create_emplace_args(
                          boost::forward<A0>(a0), boost::forward<A1>(a1),
                          boost::forward<A2>(a2)))));
    }

#endif

#if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)

#define BOOST_UNORDERED_EMPLACE(z, n, _)                                       \
    template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)>                        \
    iterator emplace(BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a))       \
    {                                                                          \
        return iterator(table_.emplace_equiv(                                  \
            boost::unordered::detail::func::construct_node_from_args(          \
                table_.node_alloc(),                                           \
                boost::unordered::detail::create_emplace_args(                 \
                    BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))))); \
    }                                                                          \
                                                                               \
    template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)>                        \
    iterator emplace_hint(const_iterator hint,                                 \
        BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a))                    \
    {                                                                          \
        return iterator(table_.emplace_hint_equiv(                             \
            hint,                                                              \
            boost::unordered::detail::func::construct_node_from_args(          \
                table_.node_alloc(),                                           \
                boost::unordered::detail::create_emplace_args(                 \
                    BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))))); \
    }

    BOOST_UNORDERED_EMPLACE(1, 4, _)
    BOOST_UNORDERED_EMPLACE(1, 5, _)
    BOOST_UNORDERED_EMPLACE(1, 6, _)
    BOOST_UNORDERED_EMPLACE(1, 7, _)
    BOOST_UNORDERED_EMPLACE(1, 8, _)
    BOOST_UNORDERED_EMPLACE(1, 9, _)
    BOOST_PP_REPEAT_FROM_TO(10, BOOST_PP_INC(BOOST_UNORDERED_EMPLACE_LIMIT),
        BOOST_UNORDERED_EMPLACE, _)

#undef BOOST_UNORDERED_EMPLACE

#endif

    iterator insert(value_type const& x) { return this->emplace(x); }

    iterator insert(BOOST_RV_REF(value_type) x)
    {
        return this->emplace(boost::move(x));
    }

    template <class P2>
    iterator insert(BOOST_RV_REF(P2) obj,
        typename boost::enable_if_c<
            boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value,
            void*>::type = 0)
    {
        return this->emplace(boost::forward<P2>(obj));
    }

    iterator insert(const_iterator hint, value_type const& x)
    {
        return this->emplace_hint(hint, x);
    }

    iterator insert(const_iterator hint, BOOST_RV_REF(value_type) x)
    {
        return this->emplace_hint(hint, boost::move(x));
    }

    template <class P2>
    iterator insert(const_iterator hint, BOOST_RV_REF(P2) obj,
        typename boost::enable_if_c<
            boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value,
            void*>::type = 0)
    {
        return this->emplace_hint(hint, boost::forward<P2>(obj));
    }

    template <class InputIt> void insert(InputIt, InputIt);

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
    void insert(std::initializer_list<value_type>);
#endif

    // extract

    node_type extract(const_iterator position)
    {
        return node_type(
            table_.extract_by_iterator_equiv(position), table_.node_alloc());
    }

    node_type extract(const key_type& k)
    {
        return node_type(table_.extract_by_key(k), table_.node_alloc());
    }

    iterator insert(BOOST_RV_REF(node_type) np)
    {
        return table_.move_insert_node_type_equiv(np);
    }

    iterator insert(const_iterator hint, BOOST_RV_REF(node_type) np)
    {
        return table_.move_insert_node_type_with_hint_equiv(hint, np);
    }

#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES) ||                               \
    (BOOST_COMP_GNUC && BOOST_COMP_GNUC < BOOST_VERSION_NUMBER(4, 6, 0))
  private:
    // Note: Use r-value node_type to insert.
    iterator insert(node_type&);
    iterator insert(const_iterator, node_type& np);

  public:
#endif

    iterator erase(iterator);
    iterator erase(const_iterator);
    size_type erase(const key_type&);
    iterator erase(const_iterator, const_iterator);
    BOOST_UNORDERED_DEPRECATED("Use erase instead")
    void quick_erase(const_iterator it) { erase(it); }
    BOOST_UNORDERED_DEPRECATED("Use erase instead")
    void erase_return_void(const_iterator it) { erase(it); }

    void swap(unordered_multimap&);
    // C++17 support: BOOST_NOEXCEPT_IF(
    //    value_allocator_traits::is_always_equal::value &&
    //    is_nothrow_move_assignable_v<H> &&
    //    is_nothrow_move_assignable_v<P>)
    void clear() BOOST_NOEXCEPT { table_.clear_impl(); }

    template <typename H2, typename P2>
    void merge(boost::unordered_multimap<K, T, H2, P2, A>& source);

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
    template <typename H2, typename P2>
    void merge(boost::unordered_multimap<K, T, H2, P2, A>&& source);
#endif

    template <typename H2, typename P2>
    void merge(boost::unordered_map<K, T, H2, P2, A>& source);

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
    template <typename H2, typename P2>
    void merge(boost::unordered_map<K, T, H2, P2, A>&& source);
#endif

    // observers

    hasher hash_function() const;
    key_equal key_eq() const;

    // lookup

    iterator find(const key_type&);
    const_iterator find(const key_type&) const;

    template <class CompatibleKey, class CompatibleHash,
        class CompatiblePredicate>
    iterator find(CompatibleKey const&, CompatibleHash const&,
        CompatiblePredicate const&);

    template <class CompatibleKey, class CompatibleHash,
        class CompatiblePredicate>
    const_iterator find(CompatibleKey const&, CompatibleHash const&,
        CompatiblePredicate const&) const;

    size_type count(const key_type&) const;

    std::pair<iterator, iterator> equal_range(const key_type&);
    std::pair<const_iterator, const_iterator> equal_range(
        const key_type&) const;

    // bucket interface

    size_type bucket_count() const BOOST_NOEXCEPT
    {
        return table_.bucket_count_;
    }

    size_type max_bucket_count() const BOOST_NOEXCEPT
    {
        return table_.max_bucket_count();
    }

    size_type bucket_size(size_type) const;

    size_type bucket(const key_type& k) const
    {
        return table_.hash_to_bucket(table_.hash(k));
    }

    local_iterator begin(size_type n)
    {
        return local_iterator(table_.begin(n), n, table_.bucket_count_);
    }

    const_local_iterator begin(size_type n) const
    {
        return const_local_iterator(table_.begin(n), n, table_.bucket_count_);
    }

    local_iterator end(size_type) { return local_iterator(); }

    const_local_iterator end(size_type) const { return const_local_iterator(); }

    const_local_iterator cbegin(size_type n) const
    {
        return const_local_iterator(table_.begin(n), n, table_.bucket_count_);
    }

    const_local_iterator cend(size_type) const
    {
        return const_local_iterator();
    }

    // hash policy

    float load_factor() const BOOST_NOEXCEPT;
    float max_load_factor() const BOOST_NOEXCEPT { return table_.mlf_; }
    void max_load_factor(float) BOOST_NOEXCEPT;
    void rehash(size_type);
    void reserve(size_type);

#if !BOOST_WORKAROUND(__BORLANDC__, < 0x0582)
    friend bool operator==
        <K, T, H, P, A>(unordered_multimap const&, unordered_multimap const&);
    friend bool operator!=
        <K, T, H, P, A>(unordered_multimap const&, unordered_multimap const&);
#endif
}; // class template unordered_multimap

////////////////////////////////////////////////////////////////////////////////

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map()
    : table_(boost::unordered::detail::default_bucket_count, hasher(),
          key_equal(), allocator_type())
{
}

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(size_type n, const hasher& hf,
    const key_equal& eql, const allocator_type& a)
    : table_(n, hf, eql, a)
{
}

template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K, T, H, P, A>::unordered_map(InputIt f, InputIt l, size_type n,
    const hasher& hf, const key_equal& eql, const allocator_type& a)
    : table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a)
{
    this->insert(f, l);
}

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(unordered_map const& other)
    : table_(other.table_,
          unordered_map::value_allocator_traits::
              select_on_container_copy_construction(other.get_allocator()))
{
    if (other.table_.size_) {
        table_.copy_buckets(
            other.table_, boost::unordered::detail::true_type());
    }
}

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(allocator_type const& a)
    : table_(boost::unordered::detail::default_bucket_count, hasher(),
          key_equal(), a)
{
}

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
    unordered_map const& other, allocator_type const& a)
    : table_(other.table_, a)
{
    if (other.table_.size_) {
        table_.copy_buckets(
            other.table_, boost::unordered::detail::true_type());
    }
}

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
    BOOST_RV_REF(unordered_map) other, allocator_type const& a)
    : table_(other.table_, a, boost::unordered::detail::move_tag())
{
    if (table_.node_alloc() == other.table_.node_alloc()) {
        table_.move_buckets_from(other.table_);
    } else if (other.table_.size_) {
        // TODO: Could pick new bucket size?
        table_.move_buckets(other.table_);
    }
}

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
    std::initializer_list<value_type> list, size_type n, const hasher& hf,
    const key_equal& eql, const allocator_type& a)
    : table_(
          boost::unordered::detail::initial_size(list.begin(), list.end(), n),
          hf, eql, a)
{
    this->insert(list.begin(), list.end());
}

#endif

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
    size_type n, const allocator_type& a)
    : table_(n, hasher(), key_equal(), a)
{
}

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
    size_type n, const hasher& hf, const allocator_type& a)
    : table_(n, hf, key_equal(), a)
{
}

template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K, T, H, P, A>::unordered_map(
    InputIt f, InputIt l, size_type n, const allocator_type& a)
    : table_(boost::unordered::detail::initial_size(f, l, n), hasher(),
          key_equal(), a)
{
    this->insert(f, l);
}

template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K, T, H, P, A>::unordered_map(InputIt f, InputIt l, size_type n,
    const hasher& hf, const allocator_type& a)
    : table_(
          boost::unordered::detail::initial_size(f, l, n), hf, key_equal(), a)
{
    this->insert(f, l);
}

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
    std::initializer_list<value_type> list, size_type n,
    const allocator_type& a)
    : table_(
          boost::unordered::detail::initial_size(list.begin(), list.end(), n),
          hasher(), key_equal(), a)
{
    this->insert(list.begin(), list.end());
}

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
    std::initializer_list<value_type> list, size_type n, const hasher& hf,
    const allocator_type& a)
    : table_(
          boost::unordered::detail::initial_size(list.begin(), list.end(), n),
          hf, key_equal(), a)
{
    this->insert(list.begin(), list.end());
}

#endif

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::~unordered_map() BOOST_NOEXCEPT
{
}

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)

template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>& unordered_map<K, T, H, P, A>::operator=(
    std::initializer_list<value_type> list)
{
    this->clear();
    this->insert(list.begin(), list.end());
    return *this;
}

#endif

// size and capacity

template <class K, class T, class H, class P, class A>
std::size_t unordered_map<K, T, H, P, A>::max_size() const BOOST_NOEXCEPT
{
    using namespace std;

    // size <= mlf_ * count
    return boost::unordered::detail::double_to_size(
               ceil(static_cast<double>(table_.mlf_) *
                    static_cast<double>(table_.max_bucket_count()))) -
           1;
}

// modifiers

template <class K, class T, class H, class P, class A>
template <class InputIt>
void unordered_map<K, T, H, P, A>::insert(InputIt first, InputIt last)
{
    if (first != last) {
        table_.insert_range_unique(
            table::extractor::extract(*first), first, last);
    }
}

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::insert(
    std::initializer_list<value_type> list)
{
    this->insert(list.begin(), list.end());
}
#endif

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::erase(iterator position)
{
    node_pointer node = table::get_node(position);
    BOOST_ASSERT(node);
    node_pointer next = table::next_node(node);
    table_.erase_nodes_unique(node, next);
    return iterator(next);
}

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::erase(const_iterator position)
{
    node_pointer node = table::get_node(position);
    BOOST_ASSERT(node);
    node_pointer next = table::next_node(node);
    table_.erase_nodes_unique(node, next);
    return iterator(next);
}

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::size_type
unordered_map<K, T, H, P, A>::erase(const key_type& k)
{
    return table_.erase_key_unique(k);
}

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::erase(const_iterator first, const_iterator last)
{
    node_pointer last_node = table::get_node(last);
    if (first == last)
        return iterator(last_node);
    table_.erase_nodes_unique(table::get_node(first), last_node);
    return iterator(last_node);
}

template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::swap(unordered_map& other)
// C++17 support: BOOST_NOEXCEPT_IF(
//    value_allocator_traits::is_always_equal::value &&
//    is_nothrow_move_assignable_v<H> &&
//    is_nothrow_move_assignable_v<P>)
{
    table_.swap(other.table_);
}

template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
    boost::unordered_map<K, T, H2, P2, A>& source)
{
    table_.merge_unique(source.table_);
}

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
    boost::unordered_map<K, T, H2, P2, A>&& source)
{
    table_.merge_unique(source.table_);
}
#endif

template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
    boost::unordered_multimap<K, T, H2, P2, A>& source)
{
    table_.merge_unique(source.table_);
}

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
    boost::unordered_multimap<K, T, H2, P2, A>&& source)
{
    table_.merge_unique(source.table_);
}
#endif

// observers

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::hasher
unordered_map<K, T, H, P, A>::hash_function() const
{
    return table_.hash_function();
}

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::key_equal
unordered_map<K, T, H, P, A>::key_eq() const
{
    return table_.key_eq();
}

// lookup

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::find(const key_type& k)
{
    return iterator(table_.find_node(k));
}

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::const_iterator
unordered_map<K, T, H, P, A>::find(const key_type& k) const
{
    return const_iterator(table_.find_node(k));
}

template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::find(CompatibleKey const& k,
    CompatibleHash const& hash, CompatiblePredicate const& eq)
{
    return iterator(
        table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq));
}

template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate>
typename unordered_map<K, T, H, P, A>::const_iterator
unordered_map<K, T, H, P, A>::find(CompatibleKey const& k,
    CompatibleHash const& hash, CompatiblePredicate const& eq) const
{
    return const_iterator(
        table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq));
}

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::size_type
unordered_map<K, T, H, P, A>::count(const key_type& k) const
{
    return table_.find_node(k) ? 1 : 0;
}

template <class K, class T, class H, class P, class A>
std::pair<typename unordered_map<K, T, H, P, A>::iterator,
    typename unordered_map<K, T, H, P, A>::iterator>
unordered_map<K, T, H, P, A>::equal_range(const key_type& k)
{
    node_pointer n = table_.find_node(k);
    return std::make_pair(iterator(n), iterator(n ? table::next_node(n) : n));
}

template <class K, class T, class H, class P, class A>
std::pair<typename unordered_map<K, T, H, P, A>::const_iterator,
    typename unordered_map<K, T, H, P, A>::const_iterator>
unordered_map<K, T, H, P, A>::equal_range(const key_type& k) const
{
    node_pointer n = table_.find_node(k);
    return std::make_pair(
        const_iterator(n), const_iterator(n ? table::next_node(n) : n));
}

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type&
    unordered_map<K, T, H, P, A>::operator[](const key_type& k)
{
    return table_.try_emplace_unique(k).first->second;
}

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type&
    unordered_map<K, T, H, P, A>::operator[](BOOST_RV_REF(key_type) k)
{
    return table_.try_emplace_unique(boost::move(k)).first->second;
}

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type&
unordered_map<K, T, H, P, A>::at(const key_type& k)
{
    if (table_.size_) {
        node_pointer n = table_.find_node(k);
        if (n)
            return n->value().second;
    }

    boost::throw_exception(
        std::out_of_range("Unable to find key in unordered_map."));
}

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type const&
unordered_map<K, T, H, P, A>::at(const key_type& k) const
{
    if (table_.size_) {
        node_pointer n = table_.find_node(k);
        if (n)
            return n->value().second;
    }

    boost::throw_exception(
        std::out_of_range("Unable to find key in unordered_map."));
}

template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::size_type
unordered_map<K, T, H, P, A>::bucket_size(size_type n) const
{
    return table_.bucket_size(n);
}

// hash policy

template <class K, class T, class H, class P, class A>
float unordered_map<K, T, H, P, A>::load_factor() const BOOST_NOEXCEPT
{
    BOOST_ASSERT(table_.bucket_count_ != 0);
    return static_cast<float>(table_.size_) /
           static_cast<float>(table_.bucket_count_);
}

template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::max_load_factor(float m) BOOST_NOEXCEPT
{
    table_.max_load_factor(m);
}

template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::rehash(size_type n)
{
    table_.rehash(n);
}

template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::reserve(size_type n)
{
    table_.rehash(static_cast<std::size_t>(
        std::ceil(static_cast<double>(n) / table_.mlf_)));
}

template <class K, class T, class H, class P, class A>
inline bool operator==(unordered_map<K, T, H, P, A> const& m1,
    unordered_map<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
    struct dummy
    {
        unordered_map<K, T, H, P, A> x;
    };
#endif
    return m1.table_.equals_unique(m2.table_);
}

template <class K, class T, class H, class P, class A>
inline bool operator!=(unordered_map<K, T, H, P, A> const& m1,
    unordered_map<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
    struct dummy
    {
        unordered_map<K, T, H, P, A> x;
    };
#endif
    return !m1.table_.equals_unique(m2.table_);
}

template <class K, class T, class H, class P, class A>
inline void swap(
    unordered_map<K, T, H, P, A>& m1, unordered_map<K, T, H, P, A>& m2)
    BOOST_NOEXCEPT_IF(BOOST_NOEXCEPT_EXPR(m1.swap(m2)))
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
    struct dummy
    {
        unordered_map<K, T, H, P, A> x;
    };
#endif
    m1.swap(m2);
}

////////////////////////////////////////////////////////////////////////////////

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap()
    : table_(boost::unordered::detail::default_bucket_count, hasher(),
          key_equal(), allocator_type())
{
}

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(size_type n,
    const hasher& hf, const key_equal& eql, const allocator_type& a)
    : table_(n, hf, eql, a)
{
}

template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K, T, H, P, A>::unordered_multimap(InputIt f, InputIt l,
    size_type n, const hasher& hf, const key_equal& eql,
    const allocator_type& a)
    : table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a)
{
    this->insert(f, l);
}

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
    unordered_multimap const& other)
    : table_(other.table_,
          unordered_multimap::value_allocator_traits::
              select_on_container_copy_construction(other.get_allocator()))
{
    if (other.table_.size_) {
        table_.copy_buckets(
            other.table_, boost::unordered::detail::false_type());
    }
}

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(allocator_type const& a)
    : table_(boost::unordered::detail::default_bucket_count, hasher(),
          key_equal(), a)
{
}

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
    unordered_multimap const& other, allocator_type const& a)
    : table_(other.table_, a)
{
    if (other.table_.size_) {
        table_.copy_buckets(
            other.table_, boost::unordered::detail::false_type());
    }
}

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
    BOOST_RV_REF(unordered_multimap) other, allocator_type const& a)
    : table_(other.table_, a, boost::unordered::detail::move_tag())
{
    if (table_.node_alloc() == other.table_.node_alloc()) {
        table_.move_buckets_from(other.table_);
    } else if (other.table_.size_) {
        // TODO: Could pick new bucket size?
        table_.move_buckets_equiv(other.table_);
    }
}

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
    std::initializer_list<value_type> list, size_type n, const hasher& hf,
    const key_equal& eql, const allocator_type& a)
    : table_(
          boost::unordered::detail::initial_size(list.begin(), list.end(), n),
          hf, eql, a)
{
    this->insert(list.begin(), list.end());
}

#endif

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
    size_type n, const allocator_type& a)
    : table_(n, hasher(), key_equal(), a)
{
}

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
    size_type n, const hasher& hf, const allocator_type& a)
    : table_(n, hf, key_equal(), a)
{
}

template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
    InputIt f, InputIt l, size_type n, const allocator_type& a)
    : table_(boost::unordered::detail::initial_size(f, l, n), hasher(),
          key_equal(), a)
{
    this->insert(f, l);
}

template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K, T, H, P, A>::unordered_multimap(InputIt f, InputIt l,
    size_type n, const hasher& hf, const allocator_type& a)
    : table_(
          boost::unordered::detail::initial_size(f, l, n), hf, key_equal(), a)
{
    this->insert(f, l);
}

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
    std::initializer_list<value_type> list, size_type n,
    const allocator_type& a)
    : table_(
          boost::unordered::detail::initial_size(list.begin(), list.end(), n),
          hasher(), key_equal(), a)
{
    this->insert(list.begin(), list.end());
}

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
    std::initializer_list<value_type> list, size_type n, const hasher& hf,
    const allocator_type& a)
    : table_(
          boost::unordered::detail::initial_size(list.begin(), list.end(), n),
          hf, key_equal(), a)
{
    this->insert(list.begin(), list.end());
}

#endif

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::~unordered_multimap() BOOST_NOEXCEPT
{
}

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)

template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>& unordered_multimap<K, T, H, P, A>::operator=(
    std::initializer_list<value_type> list)
{
    this->clear();
    this->insert(list.begin(), list.end());
    return *this;
}

#endif

// size and capacity

template <class K, class T, class H, class P, class A>
std::size_t unordered_multimap<K, T, H, P, A>::max_size() const BOOST_NOEXCEPT
{
    using namespace std;

    // size <= mlf_ * count
    return boost::unordered::detail::double_to_size(
               ceil(static_cast<double>(table_.mlf_) *
                    static_cast<double>(table_.max_bucket_count()))) -
           1;
}

// modifiers

template <class K, class T, class H, class P, class A>
template <class InputIt>
void unordered_multimap<K, T, H, P, A>::insert(InputIt first, InputIt last)
{
    table_.insert_range_equiv(first, last);
}

#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::insert(
    std::initializer_list<value_type> list)
{
    this->insert(list.begin(), list.end());
}
#endif

template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::erase(iterator position)
{
    node_pointer node = table::get_node(position);
    BOOST_ASSERT(node);
    node_pointer next = table::next_node(node);
    table_.erase_nodes_equiv(node, next);
    return iterator(next);
}

template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::erase(const_iterator position)
{
    node_pointer node = table::get_node(position);
    BOOST_ASSERT(node);
    node_pointer next = table::next_node(node);
    table_.erase_nodes_equiv(node, next);
    return iterator(next);
}

template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::size_type
unordered_multimap<K, T, H, P, A>::erase(const key_type& k)
{
    return table_.erase_key_equiv(k);
}

template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::erase(
    const_iterator first, const_iterator last)
{
    node_pointer last_node = table::get_node(last);
    if (first == last)
        return iterator(last_node);
    table_.erase_nodes_equiv(table::get_node(first), last_node);
    return iterator(last_node);
}

template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::swap(unordered_multimap& other)
// C++17 support: BOOST_NOEXCEPT_IF(
//    value_allocator_traits::is_always_equal::value &&
//    is_nothrow_move_assignable_v<H> &&
//    is_nothrow_move_assignable_v<P>)
{
    table_.swap(other.table_);
}

// observers

template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::hasher
unordered_multimap<K, T, H, P, A>::hash_function() const
{
    return table_.hash_function();
}

template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::key_equal
unordered_multimap<K, T, H, P, A>::key_eq() const
{
    return table_.key_eq();
}

template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
    boost::unordered_multimap<K, T, H2, P2, A>& source)
{
    while (!source.empty()) {
        insert(source.extract(source.begin()));
    }
}

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
    boost::unordered_multimap<K, T, H2, P2, A>&& source)
{
    while (!source.empty()) {
        insert(source.extract(source.begin()));
    }
}
#endif

template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
    boost::unordered_map<K, T, H2, P2, A>& source)
{
    while (!source.empty()) {
        insert(source.extract(source.begin()));
    }
}

#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
    boost::unordered_map<K, T, H2, P2, A>&& source)
{
    while (!source.empty()) {
        insert(source.extract(source.begin()));
    }
}
#endif

// lookup

template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::find(const key_type& k)
{
    return iterator(table_.find_node(k));
}

template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::const_iterator
unordered_multimap<K, T, H, P, A>::find(const key_type& k) const
{
    return const_iterator(table_.find_node(k));
}

template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::find(CompatibleKey const& k,
    CompatibleHash const& hash, CompatiblePredicate const& eq)
{
    return iterator(
        table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq));
}

template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate>
typename unordered_multimap<K, T, H, P, A>::const_iterator
unordered_multimap<K, T, H, P, A>::find(CompatibleKey const& k,
    CompatibleHash const& hash, CompatiblePredicate const& eq) const
{
    return const_iterator(
        table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq));
}

template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::size_type
unordered_multimap<K, T, H, P, A>::count(const key_type& k) const
{
    node_pointer n = table_.find_node(k);
    return n ? table_.group_count(n) : 0;
}

template <class K, class T, class H, class P, class A>
std::pair<typename unordered_multimap<K, T, H, P, A>::iterator,
    typename unordered_multimap<K, T, H, P, A>::iterator>
unordered_multimap<K, T, H, P, A>::equal_range(const key_type& k)
{
    node_pointer n = table_.find_node(k);
    return std::make_pair(iterator(n), iterator(n ? table_.next_group(n) : n));
}

template <class K, class T, class H, class P, class A>
std::pair<typename unordered_multimap<K, T, H, P, A>::const_iterator,
    typename unordered_multimap<K, T, H, P, A>::const_iterator>
unordered_multimap<K, T, H, P, A>::equal_range(const key_type& k) const
{
    node_pointer n = table_.find_node(k);
    return std::make_pair(
        const_iterator(n), const_iterator(n ? table_.next_group(n) : n));
}

template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::size_type
unordered_multimap<K, T, H, P, A>::bucket_size(size_type n) const
{
    return table_.bucket_size(n);
}

// hash policy

template <class K, class T, class H, class P, class A>
float unordered_multimap<K, T, H, P, A>::load_factor() const BOOST_NOEXCEPT
{
    BOOST_ASSERT(table_.bucket_count_ != 0);
    return static_cast<float>(table_.size_) /
           static_cast<float>(table_.bucket_count_);
}

template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::max_load_factor(float m) BOOST_NOEXCEPT
{
    table_.max_load_factor(m);
}

template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::rehash(size_type n)
{
    table_.rehash(n);
}

template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::reserve(size_type n)
{
    table_.rehash(static_cast<std::size_t>(
        std::ceil(static_cast<double>(n) / table_.mlf_)));
}

template <class K, class T, class H, class P, class A>
inline bool operator==(unordered_multimap<K, T, H, P, A> const& m1,
    unordered_multimap<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
    struct dummy
    {
        unordered_multimap<K, T, H, P, A> x;
    };
#endif
    return m1.table_.equals_equiv(m2.table_);
}

template <class K, class T, class H, class P, class A>
inline bool operator!=(unordered_multimap<K, T, H, P, A> const& m1,
    unordered_multimap<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
    struct dummy
    {
        unordered_multimap<K, T, H, P, A> x;
    };
#endif
    return !m1.table_.equals_equiv(m2.table_);
}

template <class K, class T, class H, class P, class A>
inline void swap(unordered_multimap<K, T, H, P, A>& m1,
    unordered_multimap<K, T, H, P, A>& m2)
    BOOST_NOEXCEPT_IF(BOOST_NOEXCEPT_EXPR(m1.swap(m2)))
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
    struct dummy
    {
        unordered_multimap<K, T, H, P, A> x;
    };
#endif
    m1.swap(m2);
}

template <typename N, class K, class T, class A> class node_handle_map
{
    BOOST_MOVABLE_BUT_NOT_COPYABLE(node_handle_map)

    template <typename Types> friend struct ::boost::unordered::detail::table;
    template <class K2, class T2, class H2, class P2, class A2>
    friend class boost::unordered::unordered_map;
    template <class K2, class T2, class H2, class P2, class A2>
    friend class boost::unordered::unordered_multimap;

    typedef typename boost::unordered::detail::rebind_wrap<A,
        std::pair<K const, T> >::type value_allocator;
    typedef boost::unordered::detail::allocator_traits<value_allocator>
        value_allocator_traits;
    typedef N node;
    typedef typename boost::unordered::detail::rebind_wrap<A, node>::type
        node_allocator;
    typedef boost::unordered::detail::allocator_traits<node_allocator>
        node_allocator_traits;
    typedef typename node_allocator_traits::pointer node_pointer;

  public:
    typedef K key_type;
    typedef T mapped_type;
    typedef A allocator_type;

  private:
    node_pointer ptr_;
    bool has_alloc_;
    boost::unordered::detail::value_base<value_allocator> alloc_;

    node_handle_map(node_pointer ptr, allocator_type const& a)
        : ptr_(ptr), has_alloc_(false)
    {
        if (ptr_) {
            new ((void*)&alloc_) value_allocator(a);
            has_alloc_ = true;
        }
    }

  public:
    BOOST_CONSTEXPR node_handle_map() BOOST_NOEXCEPT : ptr_(), has_alloc_(false)
    {
    }

    ~node_handle_map()
    {
        if (has_alloc_ && ptr_) {
            node_allocator node_alloc(alloc_.value());
            boost::unordered::detail::node_tmp<node_allocator> tmp(
                ptr_, node_alloc);
        }
        if (has_alloc_) {
            alloc_.value_ptr()->~value_allocator();
        }
    }

    node_handle_map(BOOST_RV_REF(node_handle_map) n) BOOST_NOEXCEPT
        : ptr_(n.ptr_),
          has_alloc_(false)
    {
        if (n.has_alloc_) {
            new ((void*)&alloc_) value_allocator(boost::move(n.alloc_.value()));
            has_alloc_ = true;
            n.ptr_ = node_pointer();
            n.alloc_.value_ptr()->~value_allocator();
            n.has_alloc_ = false;
        }
    }

    node_handle_map& operator=(BOOST_RV_REF(node_handle_map) n)
    {
        BOOST_ASSERT(!has_alloc_ ||
                     value_allocator_traits::
                         propagate_on_container_move_assignment::value ||
                     (n.has_alloc_ && alloc_.value() == n.alloc_.value()));

        if (ptr_) {
            node_allocator node_alloc(alloc_.value());
            boost::unordered::detail::node_tmp<node_allocator> tmp(
                ptr_, node_alloc);
            ptr_ = node_pointer();
        }

        if (has_alloc_) {
            alloc_.value_ptr()->~value_allocator();
            has_alloc_ = false;
        }

        if (!has_alloc_ && n.has_alloc_) {
            move_allocator(n);
        }

        ptr_ = n.ptr_;
        n.ptr_ = node_pointer();

        return *this;
    }

    key_type& key() const { return const_cast<key_type&>(ptr_->value().first); }

    mapped_type& mapped() const { return ptr_->value().second; }

    allocator_type get_allocator() const { return alloc_.value(); }

    BOOST_EXPLICIT_OPERATOR_BOOL_NOEXCEPT()

    bool operator!() const BOOST_NOEXCEPT { return ptr_ ? 0 : 1; }

    bool empty() const BOOST_NOEXCEPT { return ptr_ ? 0 : 1; }

    void swap(node_handle_map& n) BOOST_NOEXCEPT_IF(
        value_allocator_traits::propagate_on_container_swap::value
        /* || value_allocator_traits::is_always_equal::value */)
    {
        if (!has_alloc_) {
            if (n.has_alloc_) {
                move_allocator(n);
            }
        } else if (!n.has_alloc_) {
            n.move_allocator(*this);
        } else {
            swap_impl(n, boost::unordered::detail::integral_constant<bool,
                             value_allocator_traits::
                                 propagate_on_container_swap::value>());
        }
        boost::swap(ptr_, n.ptr_);
    }

  private:
    void move_allocator(node_handle_map& n)
    {
        new ((void*)&alloc_) value_allocator(boost::move(n.alloc_.value()));
        n.alloc_.value_ptr()->~value_allocator();
        has_alloc_ = true;
        n.has_alloc_ = false;
    }

    void swap_impl(node_handle_map&, boost::unordered::detail::false_type) {}

    void swap_impl(node_handle_map& n, boost::unordered::detail::true_type)
    {
        boost::swap(alloc_, n.alloc_);
    }
};

template <class N, class K, class T, class A>
void swap(node_handle_map<N, K, T, A>& x, node_handle_map<N, K, T, A>& y)
    BOOST_NOEXCEPT_IF(BOOST_NOEXCEPT_EXPR(x.swap(y)))
{
    x.swap(y);
}

template <class N, class K, class T, class A> struct insert_return_type_map
{
  private:
    BOOST_MOVABLE_BUT_NOT_COPYABLE(insert_return_type_map)

    typedef typename boost::unordered::detail::rebind_wrap<A,
        std::pair<K const, T> >::type value_allocator;
    typedef N node_;

  public:
    bool inserted;
    boost::unordered::iterator_detail::iterator<node_> position;
    boost::unordered::node_handle_map<N, K, T, A> node;

    insert_return_type_map() : inserted(false), position(), node() {}

    insert_return_type_map(BOOST_RV_REF(insert_return_type_map)
            x) BOOST_NOEXCEPT : inserted(x.inserted),
                                position(x.position),
                                node(boost::move(x.node))
    {
    }

    insert_return_type_map& operator=(BOOST_RV_REF(insert_return_type_map) x)
    {
        inserted = x.inserted;
        position = x.position;
        node = boost::move(x.node);
        return *this;
    }
};

template <class N, class K, class T, class A>
void swap(insert_return_type_map<N, K, T, A>& x,
    insert_return_type_map<N, K, T, A>& y)
{
    boost::swap(x.node, y.node);
    boost::swap(x.inserted, y.inserted);
    boost::swap(x.position, y.position);
}
} // namespace unordered
} // namespace boost

#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif

#endif // BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED