boost/unordered/unordered_map.hpp
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/unordered for documentation
#ifndef BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED
#define BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED
#include <boost/config.hpp>
#if defined(BOOST_HAS_PRAGMA_ONCE)
#pragma once
#endif
#include <boost/core/explicit_operator_bool.hpp>
#include <boost/functional/hash.hpp>
#include <boost/move/move.hpp>
#include <boost/type_traits/is_constructible.hpp>
#include <boost/unordered/detail/map.hpp>
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
#include <initializer_list>
#endif
#if defined(BOOST_MSVC)
#pragma warning(push)
#if BOOST_MSVC >= 1400
#pragma warning(disable : 4396) // the inline specifier cannot be used when a
// friend declaration refers to a specialization
// of a function template
#endif
#endif
namespace boost {
namespace unordered {
template <class K, class T, class H, class P, class A> class unordered_map
{
#if defined(BOOST_UNORDERED_USE_MOVE)
BOOST_COPYABLE_AND_MOVABLE(unordered_map)
#endif
template <typename, typename, typename, typename, typename>
friend class unordered_multimap;
public:
typedef K key_type;
typedef T mapped_type;
typedef std::pair<const K, T> value_type;
typedef H hasher;
typedef P key_equal;
typedef A allocator_type;
private:
typedef boost::unordered::detail::map<A, K, T, H, P> types;
typedef typename types::value_allocator_traits value_allocator_traits;
typedef typename types::table table;
typedef typename table::node_pointer node_pointer;
typedef typename table::link_pointer link_pointer;
public:
typedef typename value_allocator_traits::pointer pointer;
typedef typename value_allocator_traits::const_pointer const_pointer;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef typename table::iterator iterator;
typedef typename table::c_iterator const_iterator;
typedef typename table::l_iterator local_iterator;
typedef typename table::cl_iterator const_local_iterator;
typedef typename types::node_type node_type;
typedef typename types::insert_return_type insert_return_type;
private:
table table_;
public:
// constructors
unordered_map();
explicit unordered_map(size_type, const hasher& = hasher(),
const key_equal& = key_equal(),
const allocator_type& = allocator_type());
template <class InputIt>
unordered_map(InputIt, InputIt,
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(), const key_equal& = key_equal(),
const allocator_type& = allocator_type());
unordered_map(unordered_map const&);
#if defined(BOOST_UNORDERED_USE_MOVE) || \
!defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
unordered_map(BOOST_RV_REF(unordered_map) other)
BOOST_NOEXCEPT_IF(table::nothrow_move_constructible)
: table_(other.table_, boost::unordered::detail::move_tag())
{
// The move is done in table_
}
#endif
explicit unordered_map(allocator_type const&);
unordered_map(unordered_map const&, allocator_type const&);
unordered_map(BOOST_RV_REF(unordered_map), allocator_type const&);
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
unordered_map(std::initializer_list<value_type>,
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(), const key_equal& l = key_equal(),
const allocator_type& = allocator_type());
#endif
explicit unordered_map(size_type, const allocator_type&);
explicit unordered_map(size_type, const hasher&, const allocator_type&);
template <class InputIt>
unordered_map(InputIt, InputIt, size_type, const allocator_type&);
template <class InputIt>
unordered_map(
InputIt, InputIt, size_type, const hasher&, const allocator_type&);
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
unordered_map(
std::initializer_list<value_type>, size_type, const allocator_type&);
unordered_map(std::initializer_list<value_type>, size_type, const hasher&,
const allocator_type&);
#endif
// Destructor
~unordered_map() BOOST_NOEXCEPT;
// Assign
#if defined(BOOST_UNORDERED_USE_MOVE)
unordered_map& operator=(BOOST_COPY_ASSIGN_REF(unordered_map) x)
{
table_.assign(x.table_, boost::unordered::detail::true_type());
return *this;
}
unordered_map& operator=(BOOST_RV_REF(unordered_map) x)
// C++17 support: BOOST_NOEXCEPT_IF(
// value_allocator_traits::is_always_equal::value &&
// is_nothrow_move_assignable_v<H> &&
// is_nothrow_move_assignable_v<P>)
{
table_.move_assign(x.table_, boost::unordered::detail::true_type());
return *this;
}
#else
unordered_map& operator=(unordered_map const& x)
{
table_.assign(x.table_, boost::unordered::detail::true_type());
return *this;
}
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
unordered_map& operator=(unordered_map&& x)
// C++17 support: BOOST_NOEXCEPT_IF(
// value_allocator_traits::is_always_equal::value &&
// is_nothrow_move_assignable_v<H> &&
// is_nothrow_move_assignable_v<P>)
{
table_.move_assign(x.table_, boost::unordered::detail::true_type());
return *this;
}
#endif
#endif
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
unordered_map& operator=(std::initializer_list<value_type>);
#endif
allocator_type get_allocator() const BOOST_NOEXCEPT
{
return table_.node_alloc();
}
// iterators
iterator begin() BOOST_NOEXCEPT { return iterator(table_.begin()); }
const_iterator begin() const BOOST_NOEXCEPT
{
return const_iterator(table_.begin());
}
iterator end() BOOST_NOEXCEPT { return iterator(); }
const_iterator end() const BOOST_NOEXCEPT { return const_iterator(); }
const_iterator cbegin() const BOOST_NOEXCEPT
{
return const_iterator(table_.begin());
}
const_iterator cend() const BOOST_NOEXCEPT { return const_iterator(); }
// size and capacity
bool empty() const BOOST_NOEXCEPT { return table_.size_ == 0; }
size_type size() const BOOST_NOEXCEPT { return table_.size_; }
size_type max_size() const BOOST_NOEXCEPT;
// emplace
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args>
std::pair<iterator, bool> emplace(BOOST_FWD_REF(Args)... args)
{
return table_.emplace_unique(
table::extractor::extract(boost::forward<Args>(args)...),
boost::forward<Args>(args)...);
}
#else
#if !BOOST_UNORDERED_SUN_WORKAROUNDS1
// 0 argument emplace requires special treatment in case
// the container is instantiated with a value type that
// doesn't have a default constructor.
std::pair<iterator, bool> emplace(
boost::unordered::detail::empty_emplace =
boost::unordered::detail::empty_emplace(),
value_type v = value_type())
{
return this->emplace(boost::move(v));
}
#endif
template <typename A0>
std::pair<iterator, bool> emplace(BOOST_FWD_REF(A0) a0)
{
return table_.emplace_unique(
table::extractor::extract(boost::forward<A0>(a0)),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0)));
}
template <typename A0, typename A1>
std::pair<iterator, bool> emplace(
BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
{
return table_.emplace_unique(
table::extractor::extract(
boost::forward<A0>(a0), boost::forward<A1>(a1)),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1)));
}
template <typename A0, typename A1, typename A2>
std::pair<iterator, bool> emplace(
BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
return table_.emplace_unique(
table::extractor::extract(
boost::forward<A0>(a0), boost::forward<A1>(a1)),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1),
boost::forward<A2>(a2)));
}
#endif
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args>
iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(Args)... args)
{
return table_.emplace_hint_unique(hint,
table::extractor::extract(boost::forward<Args>(args)...),
boost::forward<Args>(args)...);
}
#else
#if !BOOST_UNORDERED_SUN_WORKAROUNDS1
iterator emplace_hint(const_iterator hint,
boost::unordered::detail::empty_emplace =
boost::unordered::detail::empty_emplace(),
value_type v = value_type())
{
return this->emplace_hint(hint, boost::move(v));
}
#endif
template <typename A0>
iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0)
{
return table_.emplace_hint_unique(hint,
table::extractor::extract(boost::forward<A0>(a0)),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0)));
}
template <typename A0, typename A1>
iterator emplace_hint(
const_iterator hint, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
{
return table_.emplace_hint_unique(
hint, table::extractor::extract(
boost::forward<A0>(a0), boost::forward<A1>(a1)),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1)));
}
template <typename A0, typename A1, typename A2>
iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0,
BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
return table_.emplace_hint_unique(
hint, table::extractor::extract(
boost::forward<A0>(a0), boost::forward<A1>(a1)),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1),
boost::forward<A2>(a2)));
}
#endif
#if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#define BOOST_UNORDERED_EMPLACE(z, n, _) \
template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
std::pair<iterator, bool> emplace( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \
{ \
return table_.emplace_unique( \
table::extractor::extract( \
boost::forward<A0>(a0), boost::forward<A1>(a1)), \
boost::unordered::detail::create_emplace_args( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))); \
} \
\
template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
iterator emplace_hint(const_iterator hint, \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \
{ \
return table_.emplace_hint_unique( \
hint, table::extractor::extract( \
boost::forward<A0>(a0), boost::forward<A1>(a1)), \
boost::unordered::detail::create_emplace_args( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))); \
}
BOOST_UNORDERED_EMPLACE(1, 4, _)
BOOST_UNORDERED_EMPLACE(1, 5, _)
BOOST_UNORDERED_EMPLACE(1, 6, _)
BOOST_UNORDERED_EMPLACE(1, 7, _)
BOOST_UNORDERED_EMPLACE(1, 8, _)
BOOST_UNORDERED_EMPLACE(1, 9, _)
BOOST_PP_REPEAT_FROM_TO(10, BOOST_PP_INC(BOOST_UNORDERED_EMPLACE_LIMIT),
BOOST_UNORDERED_EMPLACE, _)
#undef BOOST_UNORDERED_EMPLACE
#endif
std::pair<iterator, bool> insert(value_type const& x)
{
return this->emplace(x);
}
std::pair<iterator, bool> insert(BOOST_RV_REF(value_type) x)
{
return this->emplace(boost::move(x));
}
template <class P2>
std::pair<iterator, bool> insert(BOOST_RV_REF(P2) obj,
typename boost::enable_if_c<
boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value,
void*>::type = 0)
{
return this->emplace(boost::forward<P2>(obj));
}
iterator insert(const_iterator hint, value_type const& x)
{
return this->emplace_hint(hint, x);
}
iterator insert(const_iterator hint, BOOST_RV_REF(value_type) x)
{
return this->emplace_hint(hint, boost::move(x));
}
template <class P2>
iterator insert(const_iterator hint, BOOST_RV_REF(P2) obj,
typename boost::enable_if_c<
boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value,
void*>::type = 0)
{
return this->emplace_hint(hint, boost::forward<P2>(obj));
}
template <class InputIt> void insert(InputIt, InputIt);
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
void insert(std::initializer_list<value_type>);
#endif
// extract
node_type extract(const_iterator position)
{
return node_type(
table_.extract_by_iterator_unique(position), table_.node_alloc());
}
node_type extract(const key_type& k)
{
return node_type(table_.extract_by_key(k), table_.node_alloc());
}
insert_return_type insert(BOOST_RV_REF(node_type) np)
{
insert_return_type result;
table_.move_insert_node_type_unique(np, result);
return boost::move(result);
}
iterator insert(const_iterator hint, BOOST_RV_REF(node_type) np)
{
return table_.move_insert_node_type_with_hint_unique(hint, np);
}
#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES) || \
(BOOST_COMP_GNUC && BOOST_COMP_GNUC < BOOST_VERSION_NUMBER(4, 6, 0))
private:
// Note: Use r-value node_type to insert.
insert_return_type insert(node_type&);
iterator insert(const_iterator, node_type& np);
public:
#endif
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args>
std::pair<iterator, bool> try_emplace(
key_type const& k, BOOST_FWD_REF(Args)... args)
{
return table_.try_emplace_unique(k, boost::forward<Args>(args)...);
}
template <class... Args>
std::pair<iterator, bool> try_emplace(
BOOST_RV_REF(key_type) k, BOOST_FWD_REF(Args)... args)
{
return table_.try_emplace_unique(
boost::move(k), boost::forward<Args>(args)...);
}
template <class... Args>
iterator try_emplace(
const_iterator hint, key_type const& k, BOOST_FWD_REF(Args)... args)
{
return table_.try_emplace_hint_unique(
hint, k, boost::forward<Args>(args)...);
}
template <class... Args>
iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k,
BOOST_FWD_REF(Args)... args)
{
return table_.try_emplace_hint_unique(
hint, boost::move(k), boost::forward<Args>(args)...);
}
#else
// In order to make this a template, this handles both:
// try_emplace(key const&)
// try_emplace(key&&)
template <typename Key>
std::pair<iterator, bool> try_emplace(BOOST_FWD_REF(Key) k)
{
return table_.try_emplace_unique(boost::forward<Key>(k));
}
// In order to make this a template, this handles both:
// try_emplace(const_iterator hint, key const&)
// try_emplace(const_iterator hint, key&&)
template <typename Key>
iterator try_emplace(const_iterator hint, BOOST_FWD_REF(Key) k)
{
return table_.try_emplace_hint_unique(hint, boost::forward<Key>(k));
}
// try_emplace(key const&, Args&&...)
template <typename A0>
std::pair<iterator, bool> try_emplace(
key_type const& k, BOOST_FWD_REF(A0) a0)
{
return table_.try_emplace_unique(
k, boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0)));
}
template <typename A0, typename A1>
std::pair<iterator, bool> try_emplace(
key_type const& k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
{
return table_.try_emplace_unique(
k, boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1)));
}
template <typename A0, typename A1, typename A2>
std::pair<iterator, bool> try_emplace(key_type const& k,
BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
return table_.try_emplace_unique(
k, boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1),
boost::forward<A2>(a2)));
}
// try_emplace(key&&, Args&&...)
template <typename A0>
std::pair<iterator, bool> try_emplace(
BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0)
{
return table_.try_emplace_unique(
boost::move(k), boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0)));
}
template <typename A0, typename A1>
std::pair<iterator, bool> try_emplace(
BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
{
return table_.try_emplace_unique(
boost::move(k),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1)));
}
template <typename A0, typename A1, typename A2>
std::pair<iterator, bool> try_emplace(BOOST_RV_REF(key_type) k,
BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
return table_.try_emplace_unique(
boost::move(k), boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1),
boost::forward<A2>(a2)));
}
// try_emplace(const_iterator hint, key const&, Args&&...)
template <typename A0>
iterator try_emplace(
const_iterator hint, key_type const& k, BOOST_FWD_REF(A0) a0)
{
return table_.try_emplace_hint_unique(
hint, k, boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0)));
}
template <typename A0, typename A1>
iterator try_emplace(const_iterator hint, key_type const& k,
BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
{
return table_.try_emplace_hint_unique(
hint, k, boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1)));
}
template <typename A0, typename A1, typename A2>
iterator try_emplace(const_iterator hint, key_type const& k,
BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
return table_.try_emplace_hint_unique(
hint, k, boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1),
boost::forward<A2>(a2)));
}
// try_emplace(const_iterator hint, key&&, Args&&...)
template <typename A0>
iterator try_emplace(
const_iterator hint, BOOST_RV_REF(key_type) k, BOOST_FWD_REF(A0) a0)
{
return table_.try_emplace_hint_unique(
hint, boost::move(k), boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0)));
}
template <typename A0, typename A1>
iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k,
BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
{
return table_.try_emplace_hint_unique(
hint, boost::move(k),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1)));
}
template <typename A0, typename A1, typename A2>
iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k,
BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
return table_.try_emplace_hint_unique(
hint, boost::move(k),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1),
boost::forward<A2>(a2)));
}
#define BOOST_UNORDERED_TRY_EMPLACE(z, n, _) \
\
template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
std::pair<iterator, bool> try_emplace( \
key_type const& k, BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \
{ \
return table_.try_emplace_unique( \
k, boost::unordered::detail::create_emplace_args( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))); \
} \
\
template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
std::pair<iterator, bool> try_emplace(BOOST_RV_REF(key_type) k, \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \
{ \
return table_.try_emplace_unique(boost::move(k), \
boost::unordered::detail::create_emplace_args(BOOST_PP_ENUM_##z( \
n, BOOST_UNORDERED_CALL_FORWARD, a))); \
} \
\
template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
iterator try_emplace(const_iterator hint, key_type const& k, \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \
{ \
return table_.try_emplace_hint_unique(hint, k, \
boost::unordered::detail::create_emplace_args(BOOST_PP_ENUM_##z( \
n, BOOST_UNORDERED_CALL_FORWARD, a))); \
} \
\
template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
iterator try_emplace(const_iterator hint, BOOST_RV_REF(key_type) k, \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \
{ \
return table_.try_emplace_hint_unique(hint, boost::move(k), \
boost::unordered::detail::create_emplace_args(BOOST_PP_ENUM_##z( \
n, BOOST_UNORDERED_CALL_FORWARD, a))); \
}
BOOST_UNORDERED_TRY_EMPLACE(1, 4, _)
BOOST_UNORDERED_TRY_EMPLACE(1, 5, _)
BOOST_UNORDERED_TRY_EMPLACE(1, 6, _)
BOOST_UNORDERED_TRY_EMPLACE(1, 7, _)
BOOST_UNORDERED_TRY_EMPLACE(1, 8, _)
BOOST_UNORDERED_TRY_EMPLACE(1, 9, _)
BOOST_PP_REPEAT_FROM_TO(10, BOOST_PP_INC(BOOST_UNORDERED_EMPLACE_LIMIT),
BOOST_UNORDERED_TRY_EMPLACE, _)
#undef BOOST_UNORDERED_TRY_EMPLACE
#endif
template <class M>
std::pair<iterator, bool> insert_or_assign(
key_type const& k, BOOST_FWD_REF(M) obj)
{
return table_.insert_or_assign_unique(k, boost::forward<M>(obj));
}
template <class M>
std::pair<iterator, bool> insert_or_assign(
BOOST_RV_REF(key_type) k, BOOST_FWD_REF(M) obj)
{
return table_.insert_or_assign_unique(
boost::move(k), boost::forward<M>(obj));
}
template <class M>
iterator insert_or_assign(
const_iterator, key_type const& k, BOOST_FWD_REF(M) obj)
{
return table_.insert_or_assign_unique(k, boost::forward<M>(obj)).first;
}
template <class M>
iterator insert_or_assign(
const_iterator, BOOST_RV_REF(key_type) k, BOOST_FWD_REF(M) obj)
{
return table_
.insert_or_assign_unique(boost::move(k), boost::forward<M>(obj))
.first;
}
iterator erase(iterator);
iterator erase(const_iterator);
size_type erase(const key_type&);
iterator erase(const_iterator, const_iterator);
BOOST_UNORDERED_DEPRECATED("Use erase instead")
void quick_erase(const_iterator it) { erase(it); }
BOOST_UNORDERED_DEPRECATED("Use erase instead")
void erase_return_void(const_iterator it) { erase(it); }
void swap(unordered_map&);
// C++17 support: BOOST_NOEXCEPT_IF(
// value_allocator_traits::is_always_equal::value &&
// is_nothrow_move_assignable_v<H> &&
// is_nothrow_move_assignable_v<P>)
void clear() BOOST_NOEXCEPT { table_.clear_impl(); }
template <typename H2, typename P2>
void merge(boost::unordered_map<K, T, H2, P2, A>& source);
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <typename H2, typename P2>
void merge(boost::unordered_map<K, T, H2, P2, A>&& source);
#endif
template <typename H2, typename P2>
void merge(boost::unordered_multimap<K, T, H2, P2, A>& source);
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <typename H2, typename P2>
void merge(boost::unordered_multimap<K, T, H2, P2, A>&& source);
#endif
// observers
hasher hash_function() const;
key_equal key_eq() const;
// lookup
iterator find(const key_type&);
const_iterator find(const key_type&) const;
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
iterator find(CompatibleKey const&, CompatibleHash const&,
CompatiblePredicate const&);
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
const_iterator find(CompatibleKey const&, CompatibleHash const&,
CompatiblePredicate const&) const;
size_type count(const key_type&) const;
std::pair<iterator, iterator> equal_range(const key_type&);
std::pair<const_iterator, const_iterator> equal_range(
const key_type&) const;
mapped_type& operator[](const key_type&);
mapped_type& operator[](BOOST_RV_REF(key_type));
mapped_type& at(const key_type&);
mapped_type const& at(const key_type&) const;
// bucket interface
size_type bucket_count() const BOOST_NOEXCEPT
{
return table_.bucket_count_;
}
size_type max_bucket_count() const BOOST_NOEXCEPT
{
return table_.max_bucket_count();
}
size_type bucket_size(size_type) const;
size_type bucket(const key_type& k) const
{
return table_.hash_to_bucket(table_.hash(k));
}
local_iterator begin(size_type n)
{
return local_iterator(table_.begin(n), n, table_.bucket_count_);
}
const_local_iterator begin(size_type n) const
{
return const_local_iterator(table_.begin(n), n, table_.bucket_count_);
}
local_iterator end(size_type) { return local_iterator(); }
const_local_iterator end(size_type) const { return const_local_iterator(); }
const_local_iterator cbegin(size_type n) const
{
return const_local_iterator(table_.begin(n), n, table_.bucket_count_);
}
const_local_iterator cend(size_type) const
{
return const_local_iterator();
}
// hash policy
float load_factor() const BOOST_NOEXCEPT;
float max_load_factor() const BOOST_NOEXCEPT { return table_.mlf_; }
void max_load_factor(float) BOOST_NOEXCEPT;
void rehash(size_type);
void reserve(size_type);
#if !BOOST_WORKAROUND(__BORLANDC__, < 0x0582)
friend bool operator==
<K, T, H, P, A>(unordered_map const&, unordered_map const&);
friend bool operator!=
<K, T, H, P, A>(unordered_map const&, unordered_map const&);
#endif
}; // class template unordered_map
template <class K, class T, class H, class P, class A> class unordered_multimap
{
#if defined(BOOST_UNORDERED_USE_MOVE)
BOOST_COPYABLE_AND_MOVABLE(unordered_multimap)
#endif
template <typename, typename, typename, typename, typename>
friend class unordered_map;
public:
typedef K key_type;
typedef T mapped_type;
typedef std::pair<const K, T> value_type;
typedef H hasher;
typedef P key_equal;
typedef A allocator_type;
private:
typedef boost::unordered::detail::map<A, K, T, H, P> types;
typedef typename types::value_allocator_traits value_allocator_traits;
typedef typename types::table table;
typedef typename table::node_pointer node_pointer;
typedef typename table::link_pointer link_pointer;
public:
typedef typename value_allocator_traits::pointer pointer;
typedef typename value_allocator_traits::const_pointer const_pointer;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef typename table::iterator iterator;
typedef typename table::c_iterator const_iterator;
typedef typename table::l_iterator local_iterator;
typedef typename table::cl_iterator const_local_iterator;
typedef typename types::node_type node_type;
private:
table table_;
public:
// constructors
unordered_multimap();
explicit unordered_multimap(size_type, const hasher& = hasher(),
const key_equal& = key_equal(),
const allocator_type& = allocator_type());
template <class InputIt>
unordered_multimap(InputIt, InputIt,
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(), const key_equal& = key_equal(),
const allocator_type& = allocator_type());
unordered_multimap(unordered_multimap const&);
#if defined(BOOST_UNORDERED_USE_MOVE) || \
!defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
unordered_multimap(BOOST_RV_REF(unordered_multimap) other)
BOOST_NOEXCEPT_IF(table::nothrow_move_constructible)
: table_(other.table_, boost::unordered::detail::move_tag())
{
// The move is done in table_
}
#endif
explicit unordered_multimap(allocator_type const&);
unordered_multimap(unordered_multimap const&, allocator_type const&);
unordered_multimap(BOOST_RV_REF(unordered_multimap), allocator_type const&);
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
unordered_multimap(std::initializer_list<value_type>,
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(), const key_equal& l = key_equal(),
const allocator_type& = allocator_type());
#endif
explicit unordered_multimap(size_type, const allocator_type&);
explicit unordered_multimap(
size_type, const hasher&, const allocator_type&);
template <class InputIt>
unordered_multimap(InputIt, InputIt, size_type, const allocator_type&);
template <class InputIt>
unordered_multimap(
InputIt, InputIt, size_type, const hasher&, const allocator_type&);
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
unordered_multimap(
std::initializer_list<value_type>, size_type, const allocator_type&);
unordered_multimap(std::initializer_list<value_type>, size_type,
const hasher&, const allocator_type&);
#endif
// Destructor
~unordered_multimap() BOOST_NOEXCEPT;
// Assign
#if defined(BOOST_UNORDERED_USE_MOVE)
unordered_multimap& operator=(BOOST_COPY_ASSIGN_REF(unordered_multimap) x)
{
table_.assign(x.table_, boost::unordered::detail::false_type());
return *this;
}
unordered_multimap& operator=(BOOST_RV_REF(unordered_multimap) x)
// C++17 support: BOOST_NOEXCEPT_IF(
// value_allocator_traits::is_always_equal::value &&
// is_nothrow_move_assignable_v<H> &&
// is_nothrow_move_assignable_v<P>)
{
table_.move_assign(x.table_, boost::unordered::detail::false_type());
return *this;
}
#else
unordered_multimap& operator=(unordered_multimap const& x)
{
table_.assign(x.table_, boost::unordered::detail::false_type());
return *this;
}
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
unordered_multimap& operator=(unordered_multimap&& x)
// C++17 support: BOOST_NOEXCEPT_IF(
// value_allocator_traits::is_always_equal::value &&
// is_nothrow_move_assignable_v<H> &&
// is_nothrow_move_assignable_v<P>)
{
table_.move_assign(x.table_, boost::unordered::detail::false_type());
return *this;
}
#endif
#endif
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
unordered_multimap& operator=(std::initializer_list<value_type>);
#endif
allocator_type get_allocator() const BOOST_NOEXCEPT
{
return table_.node_alloc();
}
// iterators
iterator begin() BOOST_NOEXCEPT { return iterator(table_.begin()); }
const_iterator begin() const BOOST_NOEXCEPT
{
return const_iterator(table_.begin());
}
iterator end() BOOST_NOEXCEPT { return iterator(); }
const_iterator end() const BOOST_NOEXCEPT { return const_iterator(); }
const_iterator cbegin() const BOOST_NOEXCEPT
{
return const_iterator(table_.begin());
}
const_iterator cend() const BOOST_NOEXCEPT { return const_iterator(); }
// size and capacity
bool empty() const BOOST_NOEXCEPT { return table_.size_ == 0; }
size_type size() const BOOST_NOEXCEPT { return table_.size_; }
size_type max_size() const BOOST_NOEXCEPT;
// emplace
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args> iterator emplace(BOOST_FWD_REF(Args)... args)
{
return iterator(table_.emplace_equiv(
boost::unordered::detail::func::construct_node_from_args(
table_.node_alloc(), boost::forward<Args>(args)...)));
}
#else
#if !BOOST_UNORDERED_SUN_WORKAROUNDS1
// 0 argument emplace requires special treatment in case
// the container is instantiated with a value type that
// doesn't have a default constructor.
iterator emplace(boost::unordered::detail::empty_emplace =
boost::unordered::detail::empty_emplace(),
value_type v = value_type())
{
return this->emplace(boost::move(v));
}
#endif
template <typename A0> iterator emplace(BOOST_FWD_REF(A0) a0)
{
return iterator(table_.emplace_equiv(
boost::unordered::detail::func::construct_node_from_args(
table_.node_alloc(),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0)))));
}
template <typename A0, typename A1>
iterator emplace(BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
{
return iterator(table_.emplace_equiv(
boost::unordered::detail::func::construct_node_from_args(
table_.node_alloc(),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1)))));
}
template <typename A0, typename A1, typename A2>
iterator emplace(
BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
return iterator(table_.emplace_equiv(
boost::unordered::detail::func::construct_node_from_args(
table_.node_alloc(),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1),
boost::forward<A2>(a2)))));
}
#endif
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args>
iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(Args)... args)
{
return iterator(table_.emplace_hint_equiv(
hint, boost::unordered::detail::func::construct_node_from_args(
table_.node_alloc(), boost::forward<Args>(args)...)));
}
#else
#if !BOOST_UNORDERED_SUN_WORKAROUNDS1
iterator emplace_hint(const_iterator hint,
boost::unordered::detail::empty_emplace =
boost::unordered::detail::empty_emplace(),
value_type v = value_type())
{
return this->emplace_hint(hint, boost::move(v));
}
#endif
template <typename A0>
iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0)
{
return iterator(table_.emplace_hint_equiv(
hint, boost::unordered::detail::func::construct_node_from_args(
table_.node_alloc(),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0)))));
}
template <typename A0, typename A1>
iterator emplace_hint(
const_iterator hint, BOOST_FWD_REF(A0) a0, BOOST_FWD_REF(A1) a1)
{
return iterator(table_.emplace_hint_equiv(
hint, boost::unordered::detail::func::construct_node_from_args(
table_.node_alloc(),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1)))));
}
template <typename A0, typename A1, typename A2>
iterator emplace_hint(const_iterator hint, BOOST_FWD_REF(A0) a0,
BOOST_FWD_REF(A1) a1, BOOST_FWD_REF(A2) a2)
{
return iterator(table_.emplace_hint_equiv(
hint, boost::unordered::detail::func::construct_node_from_args(
table_.node_alloc(),
boost::unordered::detail::create_emplace_args(
boost::forward<A0>(a0), boost::forward<A1>(a1),
boost::forward<A2>(a2)))));
}
#endif
#if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#define BOOST_UNORDERED_EMPLACE(z, n, _) \
template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
iterator emplace(BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \
{ \
return iterator(table_.emplace_equiv( \
boost::unordered::detail::func::construct_node_from_args( \
table_.node_alloc(), \
boost::unordered::detail::create_emplace_args( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))))); \
} \
\
template <BOOST_PP_ENUM_PARAMS_Z(z, n, typename A)> \
iterator emplace_hint(const_iterator hint, \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_FWD_PARAM, a)) \
{ \
return iterator(table_.emplace_hint_equiv( \
hint, \
boost::unordered::detail::func::construct_node_from_args( \
table_.node_alloc(), \
boost::unordered::detail::create_emplace_args( \
BOOST_PP_ENUM_##z(n, BOOST_UNORDERED_CALL_FORWARD, a))))); \
}
BOOST_UNORDERED_EMPLACE(1, 4, _)
BOOST_UNORDERED_EMPLACE(1, 5, _)
BOOST_UNORDERED_EMPLACE(1, 6, _)
BOOST_UNORDERED_EMPLACE(1, 7, _)
BOOST_UNORDERED_EMPLACE(1, 8, _)
BOOST_UNORDERED_EMPLACE(1, 9, _)
BOOST_PP_REPEAT_FROM_TO(10, BOOST_PP_INC(BOOST_UNORDERED_EMPLACE_LIMIT),
BOOST_UNORDERED_EMPLACE, _)
#undef BOOST_UNORDERED_EMPLACE
#endif
iterator insert(value_type const& x) { return this->emplace(x); }
iterator insert(BOOST_RV_REF(value_type) x)
{
return this->emplace(boost::move(x));
}
template <class P2>
iterator insert(BOOST_RV_REF(P2) obj,
typename boost::enable_if_c<
boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value,
void*>::type = 0)
{
return this->emplace(boost::forward<P2>(obj));
}
iterator insert(const_iterator hint, value_type const& x)
{
return this->emplace_hint(hint, x);
}
iterator insert(const_iterator hint, BOOST_RV_REF(value_type) x)
{
return this->emplace_hint(hint, boost::move(x));
}
template <class P2>
iterator insert(const_iterator hint, BOOST_RV_REF(P2) obj,
typename boost::enable_if_c<
boost::is_constructible<value_type, BOOST_RV_REF(P2)>::value,
void*>::type = 0)
{
return this->emplace_hint(hint, boost::forward<P2>(obj));
}
template <class InputIt> void insert(InputIt, InputIt);
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
void insert(std::initializer_list<value_type>);
#endif
// extract
node_type extract(const_iterator position)
{
return node_type(
table_.extract_by_iterator_equiv(position), table_.node_alloc());
}
node_type extract(const key_type& k)
{
return node_type(table_.extract_by_key(k), table_.node_alloc());
}
iterator insert(BOOST_RV_REF(node_type) np)
{
return table_.move_insert_node_type_equiv(np);
}
iterator insert(const_iterator hint, BOOST_RV_REF(node_type) np)
{
return table_.move_insert_node_type_with_hint_equiv(hint, np);
}
#if defined(BOOST_NO_CXX11_RVALUE_REFERENCES) || \
(BOOST_COMP_GNUC && BOOST_COMP_GNUC < BOOST_VERSION_NUMBER(4, 6, 0))
private:
// Note: Use r-value node_type to insert.
iterator insert(node_type&);
iterator insert(const_iterator, node_type& np);
public:
#endif
iterator erase(iterator);
iterator erase(const_iterator);
size_type erase(const key_type&);
iterator erase(const_iterator, const_iterator);
BOOST_UNORDERED_DEPRECATED("Use erase instead")
void quick_erase(const_iterator it) { erase(it); }
BOOST_UNORDERED_DEPRECATED("Use erase instead")
void erase_return_void(const_iterator it) { erase(it); }
void swap(unordered_multimap&);
// C++17 support: BOOST_NOEXCEPT_IF(
// value_allocator_traits::is_always_equal::value &&
// is_nothrow_move_assignable_v<H> &&
// is_nothrow_move_assignable_v<P>)
void clear() BOOST_NOEXCEPT { table_.clear_impl(); }
template <typename H2, typename P2>
void merge(boost::unordered_multimap<K, T, H2, P2, A>& source);
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <typename H2, typename P2>
void merge(boost::unordered_multimap<K, T, H2, P2, A>&& source);
#endif
template <typename H2, typename P2>
void merge(boost::unordered_map<K, T, H2, P2, A>& source);
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <typename H2, typename P2>
void merge(boost::unordered_map<K, T, H2, P2, A>&& source);
#endif
// observers
hasher hash_function() const;
key_equal key_eq() const;
// lookup
iterator find(const key_type&);
const_iterator find(const key_type&) const;
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
iterator find(CompatibleKey const&, CompatibleHash const&,
CompatiblePredicate const&);
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
const_iterator find(CompatibleKey const&, CompatibleHash const&,
CompatiblePredicate const&) const;
size_type count(const key_type&) const;
std::pair<iterator, iterator> equal_range(const key_type&);
std::pair<const_iterator, const_iterator> equal_range(
const key_type&) const;
// bucket interface
size_type bucket_count() const BOOST_NOEXCEPT
{
return table_.bucket_count_;
}
size_type max_bucket_count() const BOOST_NOEXCEPT
{
return table_.max_bucket_count();
}
size_type bucket_size(size_type) const;
size_type bucket(const key_type& k) const
{
return table_.hash_to_bucket(table_.hash(k));
}
local_iterator begin(size_type n)
{
return local_iterator(table_.begin(n), n, table_.bucket_count_);
}
const_local_iterator begin(size_type n) const
{
return const_local_iterator(table_.begin(n), n, table_.bucket_count_);
}
local_iterator end(size_type) { return local_iterator(); }
const_local_iterator end(size_type) const { return const_local_iterator(); }
const_local_iterator cbegin(size_type n) const
{
return const_local_iterator(table_.begin(n), n, table_.bucket_count_);
}
const_local_iterator cend(size_type) const
{
return const_local_iterator();
}
// hash policy
float load_factor() const BOOST_NOEXCEPT;
float max_load_factor() const BOOST_NOEXCEPT { return table_.mlf_; }
void max_load_factor(float) BOOST_NOEXCEPT;
void rehash(size_type);
void reserve(size_type);
#if !BOOST_WORKAROUND(__BORLANDC__, < 0x0582)
friend bool operator==
<K, T, H, P, A>(unordered_multimap const&, unordered_multimap const&);
friend bool operator!=
<K, T, H, P, A>(unordered_multimap const&, unordered_multimap const&);
#endif
}; // class template unordered_multimap
////////////////////////////////////////////////////////////////////////////////
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map()
: table_(boost::unordered::detail::default_bucket_count, hasher(),
key_equal(), allocator_type())
{
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(size_type n, const hasher& hf,
const key_equal& eql, const allocator_type& a)
: table_(n, hf, eql, a)
{
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K, T, H, P, A>::unordered_map(InputIt f, InputIt l, size_type n,
const hasher& hf, const key_equal& eql, const allocator_type& a)
: table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(unordered_map const& other)
: table_(other.table_,
unordered_map::value_allocator_traits::
select_on_container_copy_construction(other.get_allocator()))
{
if (other.table_.size_) {
table_.copy_buckets(
other.table_, boost::unordered::detail::true_type());
}
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(allocator_type const& a)
: table_(boost::unordered::detail::default_bucket_count, hasher(),
key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
unordered_map const& other, allocator_type const& a)
: table_(other.table_, a)
{
if (other.table_.size_) {
table_.copy_buckets(
other.table_, boost::unordered::detail::true_type());
}
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
BOOST_RV_REF(unordered_map) other, allocator_type const& a)
: table_(other.table_, a, boost::unordered::detail::move_tag())
{
if (table_.node_alloc() == other.table_.node_alloc()) {
table_.move_buckets_from(other.table_);
} else if (other.table_.size_) {
// TODO: Could pick new bucket size?
table_.move_buckets(other.table_);
}
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
std::initializer_list<value_type> list, size_type n, const hasher& hf,
const key_equal& eql, const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hf, eql, a)
{
this->insert(list.begin(), list.end());
}
#endif
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
size_type n, const allocator_type& a)
: table_(n, hasher(), key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
size_type n, const hasher& hf, const allocator_type& a)
: table_(n, hf, key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K, T, H, P, A>::unordered_map(
InputIt f, InputIt l, size_type n, const allocator_type& a)
: table_(boost::unordered::detail::initial_size(f, l, n), hasher(),
key_equal(), a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K, T, H, P, A>::unordered_map(InputIt f, InputIt l, size_type n,
const hasher& hf, const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(f, l, n), hf, key_equal(), a)
{
this->insert(f, l);
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
std::initializer_list<value_type> list, size_type n,
const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hasher(), key_equal(), a)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
std::initializer_list<value_type> list, size_type n, const hasher& hf,
const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hf, key_equal(), a)
{
this->insert(list.begin(), list.end());
}
#endif
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::~unordered_map() BOOST_NOEXCEPT
{
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>& unordered_map<K, T, H, P, A>::operator=(
std::initializer_list<value_type> list)
{
this->clear();
this->insert(list.begin(), list.end());
return *this;
}
#endif
// size and capacity
template <class K, class T, class H, class P, class A>
std::size_t unordered_map<K, T, H, P, A>::max_size() const BOOST_NOEXCEPT
{
using namespace std;
// size <= mlf_ * count
return boost::unordered::detail::double_to_size(
ceil(static_cast<double>(table_.mlf_) *
static_cast<double>(table_.max_bucket_count()))) -
1;
}
// modifiers
template <class K, class T, class H, class P, class A>
template <class InputIt>
void unordered_map<K, T, H, P, A>::insert(InputIt first, InputIt last)
{
if (first != last) {
table_.insert_range_unique(
table::extractor::extract(*first), first, last);
}
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::insert(
std::initializer_list<value_type> list)
{
this->insert(list.begin(), list.end());
}
#endif
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::erase(iterator position)
{
node_pointer node = table::get_node(position);
BOOST_ASSERT(node);
node_pointer next = table::next_node(node);
table_.erase_nodes_unique(node, next);
return iterator(next);
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::erase(const_iterator position)
{
node_pointer node = table::get_node(position);
BOOST_ASSERT(node);
node_pointer next = table::next_node(node);
table_.erase_nodes_unique(node, next);
return iterator(next);
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::size_type
unordered_map<K, T, H, P, A>::erase(const key_type& k)
{
return table_.erase_key_unique(k);
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::erase(const_iterator first, const_iterator last)
{
node_pointer last_node = table::get_node(last);
if (first == last)
return iterator(last_node);
table_.erase_nodes_unique(table::get_node(first), last_node);
return iterator(last_node);
}
template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::swap(unordered_map& other)
// C++17 support: BOOST_NOEXCEPT_IF(
// value_allocator_traits::is_always_equal::value &&
// is_nothrow_move_assignable_v<H> &&
// is_nothrow_move_assignable_v<P>)
{
table_.swap(other.table_);
}
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
boost::unordered_map<K, T, H2, P2, A>& source)
{
table_.merge_unique(source.table_);
}
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
boost::unordered_map<K, T, H2, P2, A>&& source)
{
table_.merge_unique(source.table_);
}
#endif
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
boost::unordered_multimap<K, T, H2, P2, A>& source)
{
table_.merge_unique(source.table_);
}
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
boost::unordered_multimap<K, T, H2, P2, A>&& source)
{
table_.merge_unique(source.table_);
}
#endif
// observers
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::hasher
unordered_map<K, T, H, P, A>::hash_function() const
{
return table_.hash_function();
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::key_equal
unordered_map<K, T, H, P, A>::key_eq() const
{
return table_.key_eq();
}
// lookup
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::find(const key_type& k)
{
return iterator(table_.find_node(k));
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::const_iterator
unordered_map<K, T, H, P, A>::find(const key_type& k) const
{
return const_iterator(table_.find_node(k));
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::find(CompatibleKey const& k,
CompatibleHash const& hash, CompatiblePredicate const& eq)
{
return iterator(
table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq));
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate>
typename unordered_map<K, T, H, P, A>::const_iterator
unordered_map<K, T, H, P, A>::find(CompatibleKey const& k,
CompatibleHash const& hash, CompatiblePredicate const& eq) const
{
return const_iterator(
table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq));
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::size_type
unordered_map<K, T, H, P, A>::count(const key_type& k) const
{
return table_.find_node(k) ? 1 : 0;
}
template <class K, class T, class H, class P, class A>
std::pair<typename unordered_map<K, T, H, P, A>::iterator,
typename unordered_map<K, T, H, P, A>::iterator>
unordered_map<K, T, H, P, A>::equal_range(const key_type& k)
{
node_pointer n = table_.find_node(k);
return std::make_pair(iterator(n), iterator(n ? table::next_node(n) : n));
}
template <class K, class T, class H, class P, class A>
std::pair<typename unordered_map<K, T, H, P, A>::const_iterator,
typename unordered_map<K, T, H, P, A>::const_iterator>
unordered_map<K, T, H, P, A>::equal_range(const key_type& k) const
{
node_pointer n = table_.find_node(k);
return std::make_pair(
const_iterator(n), const_iterator(n ? table::next_node(n) : n));
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type&
unordered_map<K, T, H, P, A>::operator[](const key_type& k)
{
return table_.try_emplace_unique(k).first->second;
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type&
unordered_map<K, T, H, P, A>::operator[](BOOST_RV_REF(key_type) k)
{
return table_.try_emplace_unique(boost::move(k)).first->second;
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type&
unordered_map<K, T, H, P, A>::at(const key_type& k)
{
if (table_.size_) {
node_pointer n = table_.find_node(k);
if (n)
return n->value().second;
}
boost::throw_exception(
std::out_of_range("Unable to find key in unordered_map."));
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type const&
unordered_map<K, T, H, P, A>::at(const key_type& k) const
{
if (table_.size_) {
node_pointer n = table_.find_node(k);
if (n)
return n->value().second;
}
boost::throw_exception(
std::out_of_range("Unable to find key in unordered_map."));
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::size_type
unordered_map<K, T, H, P, A>::bucket_size(size_type n) const
{
return table_.bucket_size(n);
}
// hash policy
template <class K, class T, class H, class P, class A>
float unordered_map<K, T, H, P, A>::load_factor() const BOOST_NOEXCEPT
{
BOOST_ASSERT(table_.bucket_count_ != 0);
return static_cast<float>(table_.size_) /
static_cast<float>(table_.bucket_count_);
}
template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::max_load_factor(float m) BOOST_NOEXCEPT
{
table_.max_load_factor(m);
}
template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::rehash(size_type n)
{
table_.rehash(n);
}
template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::reserve(size_type n)
{
table_.rehash(static_cast<std::size_t>(
std::ceil(static_cast<double>(n) / table_.mlf_)));
}
template <class K, class T, class H, class P, class A>
inline bool operator==(unordered_map<K, T, H, P, A> const& m1,
unordered_map<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_map<K, T, H, P, A> x;
};
#endif
return m1.table_.equals_unique(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline bool operator!=(unordered_map<K, T, H, P, A> const& m1,
unordered_map<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_map<K, T, H, P, A> x;
};
#endif
return !m1.table_.equals_unique(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline void swap(
unordered_map<K, T, H, P, A>& m1, unordered_map<K, T, H, P, A>& m2)
BOOST_NOEXCEPT_IF(BOOST_NOEXCEPT_EXPR(m1.swap(m2)))
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_map<K, T, H, P, A> x;
};
#endif
m1.swap(m2);
}
////////////////////////////////////////////////////////////////////////////////
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap()
: table_(boost::unordered::detail::default_bucket_count, hasher(),
key_equal(), allocator_type())
{
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(size_type n,
const hasher& hf, const key_equal& eql, const allocator_type& a)
: table_(n, hf, eql, a)
{
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K, T, H, P, A>::unordered_multimap(InputIt f, InputIt l,
size_type n, const hasher& hf, const key_equal& eql,
const allocator_type& a)
: table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
unordered_multimap const& other)
: table_(other.table_,
unordered_multimap::value_allocator_traits::
select_on_container_copy_construction(other.get_allocator()))
{
if (other.table_.size_) {
table_.copy_buckets(
other.table_, boost::unordered::detail::false_type());
}
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(allocator_type const& a)
: table_(boost::unordered::detail::default_bucket_count, hasher(),
key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
unordered_multimap const& other, allocator_type const& a)
: table_(other.table_, a)
{
if (other.table_.size_) {
table_.copy_buckets(
other.table_, boost::unordered::detail::false_type());
}
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
BOOST_RV_REF(unordered_multimap) other, allocator_type const& a)
: table_(other.table_, a, boost::unordered::detail::move_tag())
{
if (table_.node_alloc() == other.table_.node_alloc()) {
table_.move_buckets_from(other.table_);
} else if (other.table_.size_) {
// TODO: Could pick new bucket size?
table_.move_buckets_equiv(other.table_);
}
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
std::initializer_list<value_type> list, size_type n, const hasher& hf,
const key_equal& eql, const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hf, eql, a)
{
this->insert(list.begin(), list.end());
}
#endif
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
size_type n, const allocator_type& a)
: table_(n, hasher(), key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
size_type n, const hasher& hf, const allocator_type& a)
: table_(n, hf, key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
InputIt f, InputIt l, size_type n, const allocator_type& a)
: table_(boost::unordered::detail::initial_size(f, l, n), hasher(),
key_equal(), a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K, T, H, P, A>::unordered_multimap(InputIt f, InputIt l,
size_type n, const hasher& hf, const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(f, l, n), hf, key_equal(), a)
{
this->insert(f, l);
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
std::initializer_list<value_type> list, size_type n,
const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hasher(), key_equal(), a)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
std::initializer_list<value_type> list, size_type n, const hasher& hf,
const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hf, key_equal(), a)
{
this->insert(list.begin(), list.end());
}
#endif
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::~unordered_multimap() BOOST_NOEXCEPT
{
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>& unordered_multimap<K, T, H, P, A>::operator=(
std::initializer_list<value_type> list)
{
this->clear();
this->insert(list.begin(), list.end());
return *this;
}
#endif
// size and capacity
template <class K, class T, class H, class P, class A>
std::size_t unordered_multimap<K, T, H, P, A>::max_size() const BOOST_NOEXCEPT
{
using namespace std;
// size <= mlf_ * count
return boost::unordered::detail::double_to_size(
ceil(static_cast<double>(table_.mlf_) *
static_cast<double>(table_.max_bucket_count()))) -
1;
}
// modifiers
template <class K, class T, class H, class P, class A>
template <class InputIt>
void unordered_multimap<K, T, H, P, A>::insert(InputIt first, InputIt last)
{
table_.insert_range_equiv(first, last);
}
#if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST)
template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::insert(
std::initializer_list<value_type> list)
{
this->insert(list.begin(), list.end());
}
#endif
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::erase(iterator position)
{
node_pointer node = table::get_node(position);
BOOST_ASSERT(node);
node_pointer next = table::next_node(node);
table_.erase_nodes_equiv(node, next);
return iterator(next);
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::erase(const_iterator position)
{
node_pointer node = table::get_node(position);
BOOST_ASSERT(node);
node_pointer next = table::next_node(node);
table_.erase_nodes_equiv(node, next);
return iterator(next);
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::size_type
unordered_multimap<K, T, H, P, A>::erase(const key_type& k)
{
return table_.erase_key_equiv(k);
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::erase(
const_iterator first, const_iterator last)
{
node_pointer last_node = table::get_node(last);
if (first == last)
return iterator(last_node);
table_.erase_nodes_equiv(table::get_node(first), last_node);
return iterator(last_node);
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::swap(unordered_multimap& other)
// C++17 support: BOOST_NOEXCEPT_IF(
// value_allocator_traits::is_always_equal::value &&
// is_nothrow_move_assignable_v<H> &&
// is_nothrow_move_assignable_v<P>)
{
table_.swap(other.table_);
}
// observers
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::hasher
unordered_multimap<K, T, H, P, A>::hash_function() const
{
return table_.hash_function();
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::key_equal
unordered_multimap<K, T, H, P, A>::key_eq() const
{
return table_.key_eq();
}
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
boost::unordered_multimap<K, T, H2, P2, A>& source)
{
while (!source.empty()) {
insert(source.extract(source.begin()));
}
}
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
boost::unordered_multimap<K, T, H2, P2, A>&& source)
{
while (!source.empty()) {
insert(source.extract(source.begin()));
}
}
#endif
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
boost::unordered_map<K, T, H2, P2, A>& source)
{
while (!source.empty()) {
insert(source.extract(source.begin()));
}
}
#if !defined(BOOST_NO_CXX11_RVALUE_REFERENCES)
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
boost::unordered_map<K, T, H2, P2, A>&& source)
{
while (!source.empty()) {
insert(source.extract(source.begin()));
}
}
#endif
// lookup
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::find(const key_type& k)
{
return iterator(table_.find_node(k));
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::const_iterator
unordered_multimap<K, T, H, P, A>::find(const key_type& k) const
{
return const_iterator(table_.find_node(k));
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::find(CompatibleKey const& k,
CompatibleHash const& hash, CompatiblePredicate const& eq)
{
return iterator(
table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq));
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash, class CompatiblePredicate>
typename unordered_multimap<K, T, H, P, A>::const_iterator
unordered_multimap<K, T, H, P, A>::find(CompatibleKey const& k,
CompatibleHash const& hash, CompatiblePredicate const& eq) const
{
return const_iterator(
table_.find_node_impl(table::policy::apply_hash(hash, k), k, eq));
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::size_type
unordered_multimap<K, T, H, P, A>::count(const key_type& k) const
{
node_pointer n = table_.find_node(k);
return n ? table_.group_count(n) : 0;
}
template <class K, class T, class H, class P, class A>
std::pair<typename unordered_multimap<K, T, H, P, A>::iterator,
typename unordered_multimap<K, T, H, P, A>::iterator>
unordered_multimap<K, T, H, P, A>::equal_range(const key_type& k)
{
node_pointer n = table_.find_node(k);
return std::make_pair(iterator(n), iterator(n ? table_.next_group(n) : n));
}
template <class K, class T, class H, class P, class A>
std::pair<typename unordered_multimap<K, T, H, P, A>::const_iterator,
typename unordered_multimap<K, T, H, P, A>::const_iterator>
unordered_multimap<K, T, H, P, A>::equal_range(const key_type& k) const
{
node_pointer n = table_.find_node(k);
return std::make_pair(
const_iterator(n), const_iterator(n ? table_.next_group(n) : n));
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::size_type
unordered_multimap<K, T, H, P, A>::bucket_size(size_type n) const
{
return table_.bucket_size(n);
}
// hash policy
template <class K, class T, class H, class P, class A>
float unordered_multimap<K, T, H, P, A>::load_factor() const BOOST_NOEXCEPT
{
BOOST_ASSERT(table_.bucket_count_ != 0);
return static_cast<float>(table_.size_) /
static_cast<float>(table_.bucket_count_);
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::max_load_factor(float m) BOOST_NOEXCEPT
{
table_.max_load_factor(m);
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::rehash(size_type n)
{
table_.rehash(n);
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::reserve(size_type n)
{
table_.rehash(static_cast<std::size_t>(
std::ceil(static_cast<double>(n) / table_.mlf_)));
}
template <class K, class T, class H, class P, class A>
inline bool operator==(unordered_multimap<K, T, H, P, A> const& m1,
unordered_multimap<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_multimap<K, T, H, P, A> x;
};
#endif
return m1.table_.equals_equiv(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline bool operator!=(unordered_multimap<K, T, H, P, A> const& m1,
unordered_multimap<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_multimap<K, T, H, P, A> x;
};
#endif
return !m1.table_.equals_equiv(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline void swap(unordered_multimap<K, T, H, P, A>& m1,
unordered_multimap<K, T, H, P, A>& m2)
BOOST_NOEXCEPT_IF(BOOST_NOEXCEPT_EXPR(m1.swap(m2)))
{
#if BOOST_WORKAROUND(__CODEGEARC__, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_multimap<K, T, H, P, A> x;
};
#endif
m1.swap(m2);
}
template <typename N, class K, class T, class A> class node_handle_map
{
BOOST_MOVABLE_BUT_NOT_COPYABLE(node_handle_map)
template <typename Types> friend struct ::boost::unordered::detail::table;
template <class K2, class T2, class H2, class P2, class A2>
friend class boost::unordered::unordered_map;
template <class K2, class T2, class H2, class P2, class A2>
friend class boost::unordered::unordered_multimap;
typedef typename boost::unordered::detail::rebind_wrap<A,
std::pair<K const, T> >::type value_allocator;
typedef boost::unordered::detail::allocator_traits<value_allocator>
value_allocator_traits;
typedef N node;
typedef typename boost::unordered::detail::rebind_wrap<A, node>::type
node_allocator;
typedef boost::unordered::detail::allocator_traits<node_allocator>
node_allocator_traits;
typedef typename node_allocator_traits::pointer node_pointer;
public:
typedef K key_type;
typedef T mapped_type;
typedef A allocator_type;
private:
node_pointer ptr_;
bool has_alloc_;
boost::unordered::detail::value_base<value_allocator> alloc_;
node_handle_map(node_pointer ptr, allocator_type const& a)
: ptr_(ptr), has_alloc_(false)
{
if (ptr_) {
new ((void*)&alloc_) value_allocator(a);
has_alloc_ = true;
}
}
public:
BOOST_CONSTEXPR node_handle_map() BOOST_NOEXCEPT : ptr_(), has_alloc_(false)
{
}
~node_handle_map()
{
if (has_alloc_ && ptr_) {
node_allocator node_alloc(alloc_.value());
boost::unordered::detail::node_tmp<node_allocator> tmp(
ptr_, node_alloc);
}
if (has_alloc_) {
alloc_.value_ptr()->~value_allocator();
}
}
node_handle_map(BOOST_RV_REF(node_handle_map) n) BOOST_NOEXCEPT
: ptr_(n.ptr_),
has_alloc_(false)
{
if (n.has_alloc_) {
new ((void*)&alloc_) value_allocator(boost::move(n.alloc_.value()));
has_alloc_ = true;
n.ptr_ = node_pointer();
n.alloc_.value_ptr()->~value_allocator();
n.has_alloc_ = false;
}
}
node_handle_map& operator=(BOOST_RV_REF(node_handle_map) n)
{
BOOST_ASSERT(!has_alloc_ ||
value_allocator_traits::
propagate_on_container_move_assignment::value ||
(n.has_alloc_ && alloc_.value() == n.alloc_.value()));
if (ptr_) {
node_allocator node_alloc(alloc_.value());
boost::unordered::detail::node_tmp<node_allocator> tmp(
ptr_, node_alloc);
ptr_ = node_pointer();
}
if (has_alloc_) {
alloc_.value_ptr()->~value_allocator();
has_alloc_ = false;
}
if (!has_alloc_ && n.has_alloc_) {
move_allocator(n);
}
ptr_ = n.ptr_;
n.ptr_ = node_pointer();
return *this;
}
key_type& key() const { return const_cast<key_type&>(ptr_->value().first); }
mapped_type& mapped() const { return ptr_->value().second; }
allocator_type get_allocator() const { return alloc_.value(); }
BOOST_EXPLICIT_OPERATOR_BOOL_NOEXCEPT()
bool operator!() const BOOST_NOEXCEPT { return ptr_ ? 0 : 1; }
bool empty() const BOOST_NOEXCEPT { return ptr_ ? 0 : 1; }
void swap(node_handle_map& n) BOOST_NOEXCEPT_IF(
value_allocator_traits::propagate_on_container_swap::value
/* || value_allocator_traits::is_always_equal::value */)
{
if (!has_alloc_) {
if (n.has_alloc_) {
move_allocator(n);
}
} else if (!n.has_alloc_) {
n.move_allocator(*this);
} else {
swap_impl(n, boost::unordered::detail::integral_constant<bool,
value_allocator_traits::
propagate_on_container_swap::value>());
}
boost::swap(ptr_, n.ptr_);
}
private:
void move_allocator(node_handle_map& n)
{
new ((void*)&alloc_) value_allocator(boost::move(n.alloc_.value()));
n.alloc_.value_ptr()->~value_allocator();
has_alloc_ = true;
n.has_alloc_ = false;
}
void swap_impl(node_handle_map&, boost::unordered::detail::false_type) {}
void swap_impl(node_handle_map& n, boost::unordered::detail::true_type)
{
boost::swap(alloc_, n.alloc_);
}
};
template <class N, class K, class T, class A>
void swap(node_handle_map<N, K, T, A>& x, node_handle_map<N, K, T, A>& y)
BOOST_NOEXCEPT_IF(BOOST_NOEXCEPT_EXPR(x.swap(y)))
{
x.swap(y);
}
template <class N, class K, class T, class A> struct insert_return_type_map
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(insert_return_type_map)
typedef typename boost::unordered::detail::rebind_wrap<A,
std::pair<K const, T> >::type value_allocator;
typedef N node_;
public:
bool inserted;
boost::unordered::iterator_detail::iterator<node_> position;
boost::unordered::node_handle_map<N, K, T, A> node;
insert_return_type_map() : inserted(false), position(), node() {}
insert_return_type_map(BOOST_RV_REF(insert_return_type_map)
x) BOOST_NOEXCEPT : inserted(x.inserted),
position(x.position),
node(boost::move(x.node))
{
}
insert_return_type_map& operator=(BOOST_RV_REF(insert_return_type_map) x)
{
inserted = x.inserted;
position = x.position;
node = boost::move(x.node);
return *this;
}
};
template <class N, class K, class T, class A>
void swap(insert_return_type_map<N, K, T, A>& x,
insert_return_type_map<N, K, T, A>& y)
{
boost::swap(x.node, y.node);
boost::swap(x.inserted, y.inserted);
boost::swap(x.position, y.position);
}
} // namespace unordered
} // namespace boost
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif // BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED