boost/unordered/unordered_map.hpp
// Copyright (C) 2003-2004 Jeremy B. Maitin-Shepard.
// Copyright (C) 2005-2011 Daniel James.
// Copyright (C) 2022-2023 Christian Mazakas
// Copyright (C) 2024 Joaquin M Lopez Munoz.
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// See http://www.boost.org/libs/unordered for documentation
#ifndef BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED
#define BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED
#include <boost/config.hpp>
#if defined(BOOST_HAS_PRAGMA_ONCE)
#pragma once
#endif
#include <boost/unordered/detail/map.hpp>
#include <boost/unordered/detail/serialize_fca_container.hpp>
#include <boost/unordered/detail/throw_exception.hpp>
#include <boost/unordered/detail/type_traits.hpp>
#include <boost/container_hash/hash.hpp>
#include <initializer_list>
#if defined(BOOST_MSVC)
#pragma warning(push)
// conditional expression is constant
#pragma warning(disable : 4127)
#if BOOST_MSVC >= 1400
// the inline specifier cannot be used when a friend declaration refers to a
// specialization of a function template
#pragma warning(disable : 4396)
#endif
#endif
namespace boost {
namespace unordered {
template <class K, class T, class H, class P, class A> class unordered_map
{
template <typename, typename, typename, typename, typename>
friend class unordered_multimap;
public:
typedef K key_type;
typedef T mapped_type;
typedef std::pair<const K, T> value_type;
typedef typename boost::unordered::detail::type_identity<H>::type hasher;
typedef
typename boost::unordered::detail::type_identity<P>::type key_equal;
typedef typename boost::unordered::detail::type_identity<A>::type
allocator_type;
private:
typedef boost::unordered::detail::map<A, K, T, H, P> types;
typedef typename types::value_allocator_traits value_allocator_traits;
typedef typename types::table table;
public:
typedef typename value_allocator_traits::pointer pointer;
typedef typename value_allocator_traits::const_pointer const_pointer;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef typename table::iterator iterator;
typedef typename table::c_iterator const_iterator;
typedef typename table::l_iterator local_iterator;
typedef typename table::cl_iterator const_local_iterator;
typedef typename types::node_type node_type;
typedef typename types::insert_return_type insert_return_type;
private:
table table_;
public:
// constructors
unordered_map();
explicit unordered_map(size_type, const hasher& = hasher(),
const key_equal& = key_equal(),
const allocator_type& = allocator_type());
template <class InputIt>
unordered_map(InputIt, InputIt,
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(), const key_equal& = key_equal(),
const allocator_type& = allocator_type());
unordered_map(unordered_map const&);
unordered_map(unordered_map&& other)
noexcept(table::nothrow_move_constructible)
: table_(other.table_, boost::unordered::detail::move_tag())
{
// The move is done in table_
}
explicit unordered_map(allocator_type const&);
unordered_map(unordered_map const&, allocator_type const&);
unordered_map(unordered_map&&, allocator_type const&);
unordered_map(std::initializer_list<value_type>,
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(), const key_equal& l = key_equal(),
const allocator_type& = allocator_type());
explicit unordered_map(size_type, const allocator_type&);
explicit unordered_map(size_type, const hasher&, const allocator_type&);
template <class InputIterator>
unordered_map(InputIterator, InputIterator, const allocator_type&);
template <class InputIt>
unordered_map(InputIt, InputIt, size_type, const allocator_type&);
template <class InputIt>
unordered_map(
InputIt, InputIt, size_type, const hasher&, const allocator_type&);
unordered_map(std::initializer_list<value_type>, const allocator_type&);
unordered_map(
std::initializer_list<value_type>, size_type, const allocator_type&);
unordered_map(std::initializer_list<value_type>, size_type, const hasher&,
const allocator_type&);
// Destructor
~unordered_map() noexcept;
// Assign
unordered_map& operator=(unordered_map const& x)
{
table_.assign(x.table_, std::true_type());
return *this;
}
unordered_map& operator=(unordered_map&& x)
noexcept(value_allocator_traits::is_always_equal::value&&
std::is_nothrow_move_assignable<H>::value&&
std::is_nothrow_move_assignable<P>::value)
{
table_.move_assign(x.table_, std::true_type());
return *this;
}
unordered_map& operator=(std::initializer_list<value_type>);
allocator_type get_allocator() const noexcept
{
return allocator_type(table_.node_alloc());
}
// // iterators
iterator begin() noexcept { return table_.begin(); }
const_iterator begin() const noexcept
{
return const_iterator(table_.begin());
}
iterator end() noexcept { return iterator(); }
const_iterator end() const noexcept { return const_iterator(); }
const_iterator cbegin() const noexcept
{
return const_iterator(table_.begin());
}
const_iterator cend() const noexcept { return const_iterator(); }
// size and capacity
BOOST_ATTRIBUTE_NODISCARD bool empty() const noexcept
{
return table_.size_ == 0;
}
size_type size() const noexcept { return table_.size_; }
size_type max_size() const noexcept;
// emplace
template <class... Args> std::pair<iterator, bool> emplace(Args&&... args)
{
return table_.emplace_unique(
table::extractor::extract(std::forward<Args>(args)...),
std::forward<Args>(args)...);
}
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{
return table_.emplace_hint_unique(hint,
table::extractor::extract(std::forward<Args>(args)...),
std::forward<Args>(args)...);
}
std::pair<iterator, bool> insert(value_type const& x)
{
return this->emplace(x);
}
std::pair<iterator, bool> insert(value_type&& x)
{
return this->emplace(std::move(x));
}
template <class P2>
typename boost::enable_if<std::is_constructible<value_type, P2&&>,
std::pair<iterator, bool> >::type
insert(P2&& obj)
{
return this->emplace(std::forward<P2>(obj));
}
iterator insert(const_iterator hint, value_type const& x)
{
return this->emplace_hint(hint, x);
}
iterator insert(const_iterator hint, value_type&& x)
{
return this->emplace_hint(hint, std::move(x));
}
template <class P2>
typename boost::enable_if<std::is_constructible<value_type, P2&&>,
iterator>::type
insert(const_iterator hint, P2&& obj)
{
return this->emplace_hint(hint, std::forward<P2>(obj));
}
template <class InputIt> void insert(InputIt, InputIt);
void insert(std::initializer_list<value_type>);
// extract
node_type extract(const_iterator position)
{
return node_type(
table_.extract_by_iterator_unique(position),
allocator_type(table_.node_alloc()));
}
node_type extract(const key_type& k)
{
return node_type(
table_.extract_by_key_impl(k),
allocator_type(table_.node_alloc()));
}
template <class Key>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
node_type>::type
extract(Key&& k)
{
return node_type(
table_.extract_by_key_impl(std::forward<Key>(k)),
allocator_type(table_.node_alloc()));
}
insert_return_type insert(node_type&& np)
{
insert_return_type result;
table_.move_insert_node_type_unique((node_type&)np, result);
return result;
}
iterator insert(const_iterator hint, node_type&& np)
{
return table_.move_insert_node_type_with_hint_unique(hint, np);
}
template <class... Args>
std::pair<iterator, bool> try_emplace(key_type const& k, Args&&... args)
{
return table_.try_emplace_unique(k, std::forward<Args>(args)...);
}
template <class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args)
{
return table_.try_emplace_unique(
std::move(k), std::forward<Args>(args)...);
}
template <class Key, class... Args>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
std::pair<iterator, bool> >::type
try_emplace(Key&& k, Args&&... args)
{
return table_.try_emplace_unique(
std::forward<Key>(k), std::forward<Args>(args)...);
}
template <class... Args>
iterator try_emplace(
const_iterator hint, key_type const& k, Args&&... args)
{
return table_.try_emplace_hint_unique(
hint, k, std::forward<Args>(args)...);
}
template <class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args)
{
return table_.try_emplace_hint_unique(
hint, std::move(k), std::forward<Args>(args)...);
}
template <class Key, class... Args>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
iterator>::type
try_emplace(const_iterator hint, Key&& k, Args&&... args)
{
return table_.try_emplace_hint_unique(
hint, std::forward<Key>(k), std::forward<Args>(args)...);
}
template <class M>
std::pair<iterator, bool> insert_or_assign(key_type const& k, M&& obj)
{
return table_.insert_or_assign_unique(k, std::forward<M>(obj));
}
template <class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj)
{
return table_.insert_or_assign_unique(
std::move(k), std::forward<M>(obj));
}
template <class Key, class M>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
std::pair<iterator, bool> >::type
insert_or_assign(Key&& k, M&& obj)
{
return table_.insert_or_assign_unique(
std::forward<Key>(k), std::forward<M>(obj));
}
template <class M>
iterator insert_or_assign(const_iterator, key_type const& k, M&& obj)
{
return table_.insert_or_assign_unique(k, std::forward<M>(obj)).first;
}
template <class M>
iterator insert_or_assign(const_iterator, key_type&& k, M&& obj)
{
return table_
.insert_or_assign_unique(std::move(k), std::forward<M>(obj))
.first;
}
template <class Key, class M>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
iterator>::type
insert_or_assign(const_iterator, Key&& k, M&& obj)
{
return table_
.insert_or_assign_unique(std::forward<Key>(k), std::forward<M>(obj))
.first;
}
iterator erase(iterator);
iterator erase(const_iterator);
size_type erase(const key_type&);
iterator erase(const_iterator, const_iterator);
template <class Key>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_map>::value,
size_type>::type
erase(Key&& k)
{
return table_.erase_key_unique_impl(std::forward<Key>(k));
}
BOOST_UNORDERED_DEPRECATED("Use erase instead")
void quick_erase(const_iterator it) { erase(it); }
BOOST_UNORDERED_DEPRECATED("Use erase instead")
void erase_return_void(const_iterator it) { erase(it); }
void swap(unordered_map&)
noexcept(value_allocator_traits::is_always_equal::value&&
boost::unordered::detail::is_nothrow_swappable<H>::value&&
boost::unordered::detail::is_nothrow_swappable<P>::value);
void clear() noexcept { table_.clear_impl(); }
template <typename H2, typename P2>
void merge(boost::unordered_map<K, T, H2, P2, A>& source);
template <typename H2, typename P2>
void merge(boost::unordered_map<K, T, H2, P2, A>&& source);
template <typename H2, typename P2>
void merge(boost::unordered_multimap<K, T, H2, P2, A>& source);
template <typename H2, typename P2>
void merge(boost::unordered_multimap<K, T, H2, P2, A>&& source);
// observers
hasher hash_function() const;
key_equal key_eq() const;
// lookup
iterator find(const key_type&);
const_iterator find(const key_type&) const;
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
iterator>::type
find(const Key& key)
{
return table_.find(key);
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
const_iterator>::type
find(const Key& key) const
{
return const_iterator(table_.find(key));
}
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
iterator find(CompatibleKey const&, CompatibleHash const&,
CompatiblePredicate const&);
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
const_iterator find(CompatibleKey const&, CompatibleHash const&,
CompatiblePredicate const&) const;
bool contains(const key_type& k) const
{
return table_.find(k) != this->end();
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
bool>::type
contains(const Key& k) const
{
return table_.find(k) != this->end();
}
size_type count(const key_type&) const;
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
size_type>::type
count(const Key& k) const
{
return (table_.find(k) != this->end() ? 1 : 0);
}
std::pair<iterator, iterator> equal_range(const key_type&);
std::pair<const_iterator, const_iterator> equal_range(
const key_type&) const;
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
std::pair<iterator, iterator> >::type
equal_range(const Key& key)
{
iterator first = table_.find(key);
iterator last = first;
if (last != this->end()) {
++last;
}
return std::make_pair(first, last);
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
std::pair<const_iterator, const_iterator> >::type
equal_range(const Key& key) const
{
iterator first = table_.find(key);
iterator last = first;
if (last != this->end()) {
++last;
}
return std::make_pair(first, last);
}
mapped_type& operator[](const key_type&);
mapped_type& operator[](key_type&&);
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
mapped_type&>::type
operator[](Key&& k);
mapped_type& at(const key_type&);
mapped_type const& at(const key_type&) const;
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
mapped_type&>::type
at(Key&& k);
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
mapped_type const&>::type
at(Key&& k) const;
// bucket interface
size_type bucket_count() const noexcept { return table_.bucket_count(); }
size_type max_bucket_count() const noexcept
{
return table_.max_bucket_count();
}
size_type bucket_size(size_type) const;
size_type bucket(const key_type& k) const
{
return table_.hash_to_bucket(table_.hash(k));
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
size_type>::type
bucket(Key&& k) const
{
return table_.hash_to_bucket(table_.hash(std::forward<Key>(k)));
}
local_iterator begin(size_type n) { return table_.begin(n); }
const_local_iterator begin(size_type n) const
{
return const_local_iterator(table_.begin(n));
}
local_iterator end(size_type) { return local_iterator(); }
const_local_iterator end(size_type) const
{
return const_local_iterator();
}
const_local_iterator cbegin(size_type n) const
{
return const_local_iterator(table_.begin(n));
}
const_local_iterator cend(size_type) const
{
return const_local_iterator();
}
// hash policy
float load_factor() const noexcept;
float max_load_factor() const noexcept { return table_.mlf_; }
void max_load_factor(float) noexcept;
void rehash(size_type);
void reserve(size_type);
#if !BOOST_WORKAROUND(BOOST_BORLANDC, < 0x0582)
friend bool operator==
<K, T, H, P, A>(unordered_map const&, unordered_map const&);
friend bool operator!=
<K, T, H, P, A>(unordered_map const&, unordered_map const&);
#endif
}; // class template unordered_map
template <class Archive, class K, class T, class H, class P, class A>
void serialize(
Archive& ar, unordered_map<K, T, H, P, A>& m, unsigned int version)
{
detail::serialize_fca_container(ar, m, version);
}
#if BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES
template <class InputIterator,
class Hash =
boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >,
class Pred =
std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >,
class Allocator = std::allocator<
boost::unordered::detail::iter_to_alloc_t<InputIterator> >,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_pred_v<Pred> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_map(InputIterator, InputIterator,
std::size_t = boost::unordered::detail::default_bucket_count,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())
-> unordered_map<boost::unordered::detail::iter_key_t<InputIterator>,
boost::unordered::detail::iter_val_t<InputIterator>, Hash, Pred,
Allocator>;
template <class Key, class T,
class Hash = boost::hash<std::remove_const_t<Key> >,
class Pred = std::equal_to<std::remove_const_t<Key> >,
class Allocator = std::allocator<std::pair<const Key, T> >,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_pred_v<Pred> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_map(std::initializer_list<std::pair<Key, T> >,
std::size_t = boost::unordered::detail::default_bucket_count,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())
-> unordered_map<std::remove_const_t<Key>, T, Hash, Pred, Allocator>;
template <class InputIterator, class Allocator,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_map(InputIterator, InputIterator, std::size_t, Allocator)
-> unordered_map<boost::unordered::detail::iter_key_t<InputIterator>,
boost::unordered::detail::iter_val_t<InputIterator>,
boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >,
std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >,
Allocator>;
template <class InputIterator, class Allocator,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_map(InputIterator, InputIterator, Allocator)
-> unordered_map<boost::unordered::detail::iter_key_t<InputIterator>,
boost::unordered::detail::iter_val_t<InputIterator>,
boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >,
std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >,
Allocator>;
template <class InputIterator, class Hash, class Allocator,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_map(InputIterator, InputIterator, std::size_t, Hash, Allocator)
-> unordered_map<boost::unordered::detail::iter_key_t<InputIterator>,
boost::unordered::detail::iter_val_t<InputIterator>, Hash,
std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >,
Allocator>;
template <class Key, class T, class Allocator,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_map(std::initializer_list<std::pair<Key, T> >, std::size_t,
Allocator) -> unordered_map<std::remove_const_t<Key>, T,
boost::hash<std::remove_const_t<Key> >,
std::equal_to<std::remove_const_t<Key> >, Allocator>;
template <class Key, class T, class Allocator,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_map(std::initializer_list<std::pair<Key, T> >, Allocator)
-> unordered_map<std::remove_const_t<Key>, T,
boost::hash<std::remove_const_t<Key> >,
std::equal_to<std::remove_const_t<Key> >, Allocator>;
template <class Key, class T, class Hash, class Allocator,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_map(std::initializer_list<std::pair<Key, T> >, std::size_t, Hash,
Allocator) -> unordered_map<std::remove_const_t<Key>, T, Hash,
std::equal_to<std::remove_const_t<Key> >, Allocator>;
#endif
template <class K, class T, class H, class P, class A>
class unordered_multimap
{
template <typename, typename, typename, typename, typename>
friend class unordered_map;
public:
typedef K key_type;
typedef T mapped_type;
typedef std::pair<const K, T> value_type;
typedef typename boost::unordered::detail::type_identity<H>::type hasher;
typedef
typename boost::unordered::detail::type_identity<P>::type key_equal;
typedef typename boost::unordered::detail::type_identity<A>::type
allocator_type;
private:
typedef boost::unordered::detail::map<A, K, T, H, P> types;
typedef typename types::value_allocator_traits value_allocator_traits;
typedef typename types::table table;
public:
typedef typename value_allocator_traits::pointer pointer;
typedef typename value_allocator_traits::const_pointer const_pointer;
typedef value_type& reference;
typedef value_type const& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef typename table::iterator iterator;
typedef typename table::c_iterator const_iterator;
typedef typename table::l_iterator local_iterator;
typedef typename table::cl_iterator const_local_iterator;
typedef typename types::node_type node_type;
private:
table table_;
public:
// constructors
unordered_multimap();
explicit unordered_multimap(size_type, const hasher& = hasher(),
const key_equal& = key_equal(),
const allocator_type& = allocator_type());
template <class InputIt>
unordered_multimap(InputIt, InputIt,
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(), const key_equal& = key_equal(),
const allocator_type& = allocator_type());
unordered_multimap(unordered_multimap const&);
unordered_multimap(unordered_multimap&& other)
noexcept(table::nothrow_move_constructible)
: table_(other.table_, boost::unordered::detail::move_tag())
{
// The move is done in table_
}
explicit unordered_multimap(allocator_type const&);
unordered_multimap(unordered_multimap const&, allocator_type const&);
unordered_multimap(unordered_multimap&&, allocator_type const&);
unordered_multimap(std::initializer_list<value_type>,
size_type = boost::unordered::detail::default_bucket_count,
const hasher& = hasher(), const key_equal& l = key_equal(),
const allocator_type& = allocator_type());
explicit unordered_multimap(size_type, const allocator_type&);
explicit unordered_multimap(
size_type, const hasher&, const allocator_type&);
template <class InputIterator>
unordered_multimap(InputIterator, InputIterator, const allocator_type&);
template <class InputIt>
unordered_multimap(InputIt, InputIt, size_type, const allocator_type&);
template <class InputIt>
unordered_multimap(
InputIt, InputIt, size_type, const hasher&, const allocator_type&);
unordered_multimap(
std::initializer_list<value_type>, const allocator_type&);
unordered_multimap(
std::initializer_list<value_type>, size_type, const allocator_type&);
unordered_multimap(std::initializer_list<value_type>, size_type,
const hasher&, const allocator_type&);
// Destructor
~unordered_multimap() noexcept;
// Assign
unordered_multimap& operator=(unordered_multimap const& x)
{
table_.assign(x.table_, std::false_type());
return *this;
}
unordered_multimap& operator=(unordered_multimap&& x)
noexcept(value_allocator_traits::is_always_equal::value&&
std::is_nothrow_move_assignable<H>::value&&
std::is_nothrow_move_assignable<P>::value)
{
table_.move_assign(x.table_, std::false_type());
return *this;
}
unordered_multimap& operator=(std::initializer_list<value_type>);
allocator_type get_allocator() const noexcept
{
return allocator_type(table_.node_alloc());
}
// iterators
iterator begin() noexcept { return iterator(table_.begin()); }
const_iterator begin() const noexcept
{
return const_iterator(table_.begin());
}
iterator end() noexcept { return iterator(); }
const_iterator end() const noexcept { return const_iterator(); }
const_iterator cbegin() const noexcept
{
return const_iterator(table_.begin());
}
const_iterator cend() const noexcept { return const_iterator(); }
// size and capacity
BOOST_ATTRIBUTE_NODISCARD bool empty() const noexcept
{
return table_.size_ == 0;
}
size_type size() const noexcept { return table_.size_; }
size_type max_size() const noexcept;
// emplace
template <class... Args> iterator emplace(Args&&... args)
{
return iterator(table_.emplace_equiv(
boost::unordered::detail::func::construct_node_from_args(
table_.node_alloc(), std::forward<Args>(args)...)));
}
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args)
{
return iterator(table_.emplace_hint_equiv(
hint, boost::unordered::detail::func::construct_node_from_args(
table_.node_alloc(), std::forward<Args>(args)...)));
}
iterator insert(value_type const& x) { return this->emplace(x); }
iterator insert(value_type&& x) { return this->emplace(std::move(x)); }
template <class P2>
typename boost::enable_if<std::is_constructible<value_type, P2&&>,
iterator>::type
insert(P2&& obj)
{
return this->emplace(std::forward<P2>(obj));
}
iterator insert(const_iterator hint, value_type const& x)
{
return this->emplace_hint(hint, x);
}
iterator insert(const_iterator hint, value_type&& x)
{
return this->emplace_hint(hint, std::move(x));
}
template <class P2>
typename boost::enable_if<std::is_constructible<value_type, P2&&>,
iterator>::type
insert(const_iterator hint, P2&& obj)
{
return this->emplace_hint(hint, std::forward<P2>(obj));
}
template <class InputIt> void insert(InputIt, InputIt);
void insert(std::initializer_list<value_type>);
// extract
node_type extract(const_iterator position)
{
return node_type(
table_.extract_by_iterator_equiv(position), table_.node_alloc());
}
node_type extract(const key_type& k)
{
return node_type(table_.extract_by_key_impl(k), table_.node_alloc());
}
template <class Key>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_multimap>::value,
node_type>::type
extract(const Key& k)
{
return node_type(table_.extract_by_key_impl(k), table_.node_alloc());
}
iterator insert(node_type&& np)
{
return table_.move_insert_node_type_equiv(np);
}
iterator insert(const_iterator hint, node_type&& np)
{
return table_.move_insert_node_type_with_hint_equiv(hint, np);
}
iterator erase(iterator);
iterator erase(const_iterator);
size_type erase(const key_type&);
iterator erase(const_iterator, const_iterator);
template <class Key>
typename boost::enable_if_c<
detail::transparent_non_iterable<Key, unordered_multimap>::value,
size_type>::type
erase(Key&& k)
{
return table_.erase_key_equiv_impl(std::forward<Key>(k));
}
BOOST_UNORDERED_DEPRECATED("Use erase instead")
void quick_erase(const_iterator it) { erase(it); }
BOOST_UNORDERED_DEPRECATED("Use erase instead")
void erase_return_void(const_iterator it) { erase(it); }
void swap(unordered_multimap&)
noexcept(value_allocator_traits::is_always_equal::value&&
boost::unordered::detail::is_nothrow_swappable<H>::value&&
boost::unordered::detail::is_nothrow_swappable<P>::value);
void clear() noexcept { table_.clear_impl(); }
template <typename H2, typename P2>
void merge(boost::unordered_multimap<K, T, H2, P2, A>& source);
template <typename H2, typename P2>
void merge(boost::unordered_multimap<K, T, H2, P2, A>&& source);
template <typename H2, typename P2>
void merge(boost::unordered_map<K, T, H2, P2, A>& source);
template <typename H2, typename P2>
void merge(boost::unordered_map<K, T, H2, P2, A>&& source);
// observers
hasher hash_function() const;
key_equal key_eq() const;
// lookup
iterator find(const key_type&);
const_iterator find(const key_type&) const;
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
iterator>::type
find(const Key& key)
{
return table_.find(key);
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
const_iterator>::type
find(const Key& key) const
{
return const_iterator(table_.find(key));
}
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
iterator find(CompatibleKey const&, CompatibleHash const&,
CompatiblePredicate const&);
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
const_iterator find(CompatibleKey const&, CompatibleHash const&,
CompatiblePredicate const&) const;
bool contains(key_type const& k) const
{
return table_.find(k) != this->end();
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
bool>::type
contains(const Key& k) const
{
return table_.find(k) != this->end();
}
size_type count(const key_type&) const;
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
size_type>::type
count(const Key& k) const
{
return table_.group_count(k);
}
std::pair<iterator, iterator> equal_range(const key_type&);
std::pair<const_iterator, const_iterator> equal_range(
const key_type&) const;
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
std::pair<iterator, iterator> >::type
equal_range(const Key& key)
{
iterator p = table_.find(key);
return std::make_pair(p, table_.next_group(key, p));
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
std::pair<const_iterator, const_iterator> >::type
equal_range(const Key& key) const
{
iterator p = table_.find(key);
return std::make_pair(
const_iterator(p), const_iterator(table_.next_group(key, p)));
}
// bucket interface
size_type bucket_count() const noexcept { return table_.bucket_count(); }
size_type max_bucket_count() const noexcept
{
return table_.max_bucket_count();
}
size_type bucket_size(size_type) const;
size_type bucket(const key_type& k) const
{
return table_.hash_to_bucket(table_.hash(k));
}
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
size_type>::type
bucket(Key&& k) const
{
return table_.hash_to_bucket(table_.hash(std::forward<Key>(k)));
}
local_iterator begin(size_type n)
{
return local_iterator(table_.begin(n));
}
const_local_iterator begin(size_type n) const
{
return const_local_iterator(table_.begin(n));
}
local_iterator end(size_type) { return local_iterator(); }
const_local_iterator end(size_type) const
{
return const_local_iterator();
}
const_local_iterator cbegin(size_type n) const
{
return const_local_iterator(table_.begin(n));
}
const_local_iterator cend(size_type) const
{
return const_local_iterator();
}
// hash policy
float load_factor() const noexcept;
float max_load_factor() const noexcept { return table_.mlf_; }
void max_load_factor(float) noexcept;
void rehash(size_type);
void reserve(size_type);
#if !BOOST_WORKAROUND(BOOST_BORLANDC, < 0x0582)
friend bool operator==
<K, T, H, P, A>(unordered_multimap const&, unordered_multimap const&);
friend bool operator!=
<K, T, H, P, A>(unordered_multimap const&, unordered_multimap const&);
#endif
}; // class template unordered_multimap
template <class Archive, class K, class T, class H, class P, class A>
void serialize(
Archive& ar, unordered_multimap<K, T, H, P, A>& m, unsigned int version)
{
detail::serialize_fca_container(ar, m, version);
}
#if BOOST_UNORDERED_TEMPLATE_DEDUCTION_GUIDES
template <class InputIterator,
class Hash =
boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >,
class Pred =
std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >,
class Allocator = std::allocator<
boost::unordered::detail::iter_to_alloc_t<InputIterator> >,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_pred_v<Pred> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_multimap(InputIterator, InputIterator,
std::size_t = boost::unordered::detail::default_bucket_count,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())
-> unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>,
boost::unordered::detail::iter_val_t<InputIterator>, Hash, Pred,
Allocator>;
template <class Key, class T,
class Hash = boost::hash<std::remove_const_t<Key> >,
class Pred = std::equal_to<std::remove_const_t<Key> >,
class Allocator = std::allocator<std::pair<const Key, T> >,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_pred_v<Pred> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_multimap(std::initializer_list<std::pair<Key, T> >,
std::size_t = boost::unordered::detail::default_bucket_count,
Hash = Hash(), Pred = Pred(), Allocator = Allocator())
-> unordered_multimap<std::remove_const_t<Key>, T, Hash, Pred, Allocator>;
template <class InputIterator, class Allocator,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_multimap(InputIterator, InputIterator, std::size_t, Allocator)
-> unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>,
boost::unordered::detail::iter_val_t<InputIterator>,
boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >,
std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >,
Allocator>;
template <class InputIterator, class Allocator,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_multimap(InputIterator, InputIterator, Allocator)
-> unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>,
boost::unordered::detail::iter_val_t<InputIterator>,
boost::hash<boost::unordered::detail::iter_key_t<InputIterator> >,
std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >,
Allocator>;
template <class InputIterator, class Hash, class Allocator,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_input_iterator_v<InputIterator> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_multimap(
InputIterator, InputIterator, std::size_t, Hash, Allocator)
-> unordered_multimap<boost::unordered::detail::iter_key_t<InputIterator>,
boost::unordered::detail::iter_val_t<InputIterator>, Hash,
std::equal_to<boost::unordered::detail::iter_key_t<InputIterator> >,
Allocator>;
template <class Key, class T, class Allocator,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_multimap(std::initializer_list<std::pair<Key, T> >, std::size_t,
Allocator) -> unordered_multimap<std::remove_const_t<Key>, T,
boost::hash<std::remove_const_t<Key> >,
std::equal_to<std::remove_const_t<Key> >, Allocator>;
template <class Key, class T, class Allocator,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_multimap(std::initializer_list<std::pair<Key, T> >, Allocator)
-> unordered_multimap<std::remove_const_t<Key>, T,
boost::hash<std::remove_const_t<Key> >,
std::equal_to<std::remove_const_t<Key> >, Allocator>;
template <class Key, class T, class Hash, class Allocator,
class = std::enable_if_t<detail::is_hash_v<Hash> >,
class = std::enable_if_t<detail::is_allocator_v<Allocator> > >
unordered_multimap(std::initializer_list<std::pair<Key, T> >, std::size_t,
Hash, Allocator) -> unordered_multimap<std::remove_const_t<Key>, T, Hash,
std::equal_to<std::remove_const_t<Key> >, Allocator>;
#endif
////////////////////////////////////////////////////////////////////////////
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map()
{
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(size_type n, const hasher& hf,
const key_equal& eql, const allocator_type& a)
: table_(n, hf, eql, a)
{
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K, T, H, P, A>::unordered_map(InputIt f, InputIt l,
size_type n, const hasher& hf, const key_equal& eql,
const allocator_type& a)
: table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(unordered_map const& other)
: table_(other.table_,
unordered_map::value_allocator_traits::
select_on_container_copy_construction(other.get_allocator()))
{
if (other.size()) {
table_.copy_buckets(other.table_, std::true_type());
}
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(allocator_type const& a)
: table_(boost::unordered::detail::default_bucket_count, hasher(),
key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
unordered_map const& other, allocator_type const& a)
: table_(other.table_, a)
{
if (other.table_.size_) {
table_.copy_buckets(other.table_, std::true_type());
}
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
unordered_map&& other, allocator_type const& a)
: table_(other.table_, a, boost::unordered::detail::move_tag())
{
table_.move_construct_buckets(other.table_);
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
std::initializer_list<value_type> list, size_type n, const hasher& hf,
const key_equal& eql, const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hf, eql, a)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
size_type n, const allocator_type& a)
: table_(n, hasher(), key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
size_type n, const hasher& hf, const allocator_type& a)
: table_(n, hf, key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
template <class InputIterator>
unordered_map<K, T, H, P, A>::unordered_map(
InputIterator f, InputIterator l, const allocator_type& a)
: table_(boost::unordered::detail::initial_size(
f, l, detail::default_bucket_count),
hasher(), key_equal(), a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K, T, H, P, A>::unordered_map(
InputIt f, InputIt l, size_type n, const allocator_type& a)
: table_(boost::unordered::detail::initial_size(f, l, n), hasher(),
key_equal(), a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_map<K, T, H, P, A>::unordered_map(InputIt f, InputIt l,
size_type n, const hasher& hf, const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(f, l, n), hf, key_equal(), a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
std::initializer_list<value_type> list, const allocator_type& a)
: table_(boost::unordered::detail::initial_size(
list.begin(), list.end(), detail::default_bucket_count),
hasher(), key_equal(), a)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
std::initializer_list<value_type> list, size_type n,
const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hasher(), key_equal(), a)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::unordered_map(
std::initializer_list<value_type> list, size_type n, const hasher& hf,
const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hf, key_equal(), a)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>::~unordered_map() noexcept
{
}
template <class K, class T, class H, class P, class A>
unordered_map<K, T, H, P, A>& unordered_map<K, T, H, P, A>::operator=(
std::initializer_list<value_type> list)
{
this->clear();
this->insert(list.begin(), list.end());
return *this;
}
// size and capacity
template <class K, class T, class H, class P, class A>
std::size_t unordered_map<K, T, H, P, A>::max_size() const noexcept
{
using namespace std;
// size <= mlf_ * count
return boost::unordered::detail::double_to_size(
ceil(static_cast<double>(table_.mlf_) *
static_cast<double>(table_.max_bucket_count()))) -
1;
}
// modifiers
template <class K, class T, class H, class P, class A>
template <class InputIt>
void unordered_map<K, T, H, P, A>::insert(InputIt first, InputIt last)
{
if (first != last) {
table_.insert_range_unique(
table::extractor::extract(*first), first, last);
}
}
template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::insert(
std::initializer_list<value_type> list)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::erase(iterator position)
{
return table_.erase_node(position);
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::erase(const_iterator position)
{
return table_.erase_node(position);
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::size_type
unordered_map<K, T, H, P, A>::erase(const key_type& k)
{
return table_.erase_key_unique_impl(k);
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::erase(
const_iterator first, const_iterator last)
{
return table_.erase_nodes_range(first, last);
}
template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::swap(unordered_map& other)
noexcept(value_allocator_traits::is_always_equal::value&&
boost::unordered::detail::is_nothrow_swappable<H>::value&&
boost::unordered::detail::is_nothrow_swappable<P>::value)
{
table_.swap(other.table_);
}
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
boost::unordered_map<K, T, H2, P2, A>& source)
{
table_.merge_unique(source.table_);
}
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
boost::unordered_map<K, T, H2, P2, A>&& source)
{
table_.merge_unique(source.table_);
}
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
boost::unordered_multimap<K, T, H2, P2, A>& source)
{
table_.merge_unique(source.table_);
}
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_map<K, T, H, P, A>::merge(
boost::unordered_multimap<K, T, H2, P2, A>&& source)
{
table_.merge_unique(source.table_);
}
// observers
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::hasher
unordered_map<K, T, H, P, A>::hash_function() const
{
return table_.hash_function();
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::key_equal
unordered_map<K, T, H, P, A>::key_eq() const
{
return table_.key_eq();
}
// lookup
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::find(const key_type& k)
{
return iterator(table_.find(k));
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::const_iterator
unordered_map<K, T, H, P, A>::find(const key_type& k) const
{
return const_iterator(table_.find(k));
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
typename unordered_map<K, T, H, P, A>::iterator
unordered_map<K, T, H, P, A>::find(CompatibleKey const& k,
CompatibleHash const& hash, CompatiblePredicate const& eq)
{
return table_.transparent_find(k, hash, eq);
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
typename unordered_map<K, T, H, P, A>::const_iterator
unordered_map<K, T, H, P, A>::find(CompatibleKey const& k,
CompatibleHash const& hash, CompatiblePredicate const& eq) const
{
return table_.transparent_find(k, hash, eq);
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::size_type
unordered_map<K, T, H, P, A>::count(const key_type& k) const
{
return table_.find_node(k) ? 1 : 0;
}
template <class K, class T, class H, class P, class A>
std::pair<typename unordered_map<K, T, H, P, A>::iterator,
typename unordered_map<K, T, H, P, A>::iterator>
unordered_map<K, T, H, P, A>::equal_range(const key_type& k)
{
iterator first = table_.find(k);
iterator second = first;
if (second != this->end()) {
++second;
}
return std::make_pair(first, second);
}
template <class K, class T, class H, class P, class A>
std::pair<typename unordered_map<K, T, H, P, A>::const_iterator,
typename unordered_map<K, T, H, P, A>::const_iterator>
unordered_map<K, T, H, P, A>::equal_range(const key_type& k) const
{
iterator first = table_.find(k);
iterator second = first;
if (second != this->end()) {
++second;
}
return std::make_pair(const_iterator(first), const_iterator(second));
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type&
unordered_map<K, T, H, P, A>::operator[](const key_type& k)
{
return table_.try_emplace_unique(k).first->second;
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type&
unordered_map<K, T, H, P, A>::operator[](key_type&& k)
{
return table_.try_emplace_unique(std::move(k)).first->second;
}
template <class K, class T, class H, class P, class A>
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
typename unordered_map<K, T, H, P, A>::mapped_type&>::type
unordered_map<K, T, H, P, A>::operator[](Key&& k)
{
return table_.try_emplace_unique(std::forward<Key>(k)).first->second;
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type&
unordered_map<K, T, H, P, A>::at(const key_type& k)
{
typedef typename table::node_pointer node_pointer;
if (table_.size_) {
node_pointer p = table_.find_node(k);
if (p)
return p->value().second;
}
boost::unordered::detail::throw_out_of_range(
"Unable to find key in unordered_map.");
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::mapped_type const&
unordered_map<K, T, H, P, A>::at(const key_type& k) const
{
typedef typename table::node_pointer node_pointer;
if (table_.size_) {
node_pointer p = table_.find_node(k);
if (p)
return p->value().second;
}
boost::unordered::detail::throw_out_of_range(
"Unable to find key in unordered_map.");
}
template <class K, class T, class H, class P, class A>
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
typename unordered_map<K, T, H, P, A>::mapped_type&>::type
unordered_map<K, T, H, P, A>::at(Key&& k)
{
typedef typename table::node_pointer node_pointer;
if (table_.size_) {
node_pointer p = table_.find_node(std::forward<Key>(k));
if (p)
return p->value().second;
}
boost::unordered::detail::throw_out_of_range(
"Unable to find key in unordered_map.");
}
template <class K, class T, class H, class P, class A>
template <class Key>
typename boost::enable_if_c<detail::are_transparent<Key, H, P>::value,
typename unordered_map<K, T, H, P, A>::mapped_type const&>::type
unordered_map<K, T, H, P, A>::at(Key&& k) const
{
typedef typename table::node_pointer node_pointer;
if (table_.size_) {
node_pointer p = table_.find_node(std::forward<Key>(k));
if (p)
return p->value().second;
}
boost::unordered::detail::throw_out_of_range(
"Unable to find key in unordered_map.");
}
template <class K, class T, class H, class P, class A>
typename unordered_map<K, T, H, P, A>::size_type
unordered_map<K, T, H, P, A>::bucket_size(size_type n) const
{
return table_.bucket_size(n);
}
// hash policy
template <class K, class T, class H, class P, class A>
float unordered_map<K, T, H, P, A>::load_factor() const noexcept
{
if (table_.size_ == 0) {
return 0.0f;
}
BOOST_ASSERT(table_.bucket_count() != 0);
return static_cast<float>(table_.size_) /
static_cast<float>(table_.bucket_count());
}
template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::max_load_factor(float m) noexcept
{
table_.max_load_factor(m);
}
template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::rehash(size_type n)
{
table_.rehash(n);
}
template <class K, class T, class H, class P, class A>
void unordered_map<K, T, H, P, A>::reserve(size_type n)
{
table_.reserve(n);
}
template <class K, class T, class H, class P, class A>
inline bool operator==(unordered_map<K, T, H, P, A> const& m1,
unordered_map<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_map<K, T, H, P, A> x;
};
#endif
return m1.table_.equals_unique(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline bool operator!=(unordered_map<K, T, H, P, A> const& m1,
unordered_map<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_map<K, T, H, P, A> x;
};
#endif
return !m1.table_.equals_unique(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline void swap(unordered_map<K, T, H, P, A>& m1,
unordered_map<K, T, H, P, A>& m2) noexcept(noexcept(m1.swap(m2)))
{
#if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_map<K, T, H, P, A> x;
};
#endif
m1.swap(m2);
}
template <class K, class T, class H, class P, class A, class Predicate>
typename unordered_map<K, T, H, P, A>::size_type erase_if(
unordered_map<K, T, H, P, A>& c, Predicate pred)
{
return detail::erase_if(c, pred);
}
////////////////////////////////////////////////////////////////////////////
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap()
{
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(size_type n,
const hasher& hf, const key_equal& eql, const allocator_type& a)
: table_(n, hf, eql, a)
{
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K, T, H, P, A>::unordered_multimap(InputIt f, InputIt l,
size_type n, const hasher& hf, const key_equal& eql,
const allocator_type& a)
: table_(boost::unordered::detail::initial_size(f, l, n), hf, eql, a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
unordered_multimap const& other)
: table_(other.table_,
unordered_multimap::value_allocator_traits::
select_on_container_copy_construction(other.get_allocator()))
{
if (other.table_.size_) {
table_.copy_buckets(other.table_, std::false_type());
}
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
allocator_type const& a)
: table_(boost::unordered::detail::default_bucket_count, hasher(),
key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
unordered_multimap const& other, allocator_type const& a)
: table_(other.table_, a)
{
if (other.table_.size_) {
table_.copy_buckets(other.table_, std::false_type());
}
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
unordered_multimap&& other, allocator_type const& a)
: table_(other.table_, a, boost::unordered::detail::move_tag())
{
table_.move_construct_buckets(other.table_);
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
std::initializer_list<value_type> list, size_type n, const hasher& hf,
const key_equal& eql, const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hf, eql, a)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
size_type n, const allocator_type& a)
: table_(n, hasher(), key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
size_type n, const hasher& hf, const allocator_type& a)
: table_(n, hf, key_equal(), a)
{
}
template <class K, class T, class H, class P, class A>
template <class InputIterator>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
InputIterator f, InputIterator l, const allocator_type& a)
: table_(boost::unordered::detail::initial_size(
f, l, detail::default_bucket_count),
hasher(), key_equal(), a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
InputIt f, InputIt l, size_type n, const allocator_type& a)
: table_(boost::unordered::detail::initial_size(f, l, n), hasher(),
key_equal(), a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
template <class InputIt>
unordered_multimap<K, T, H, P, A>::unordered_multimap(InputIt f, InputIt l,
size_type n, const hasher& hf, const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(f, l, n), hf, key_equal(), a)
{
this->insert(f, l);
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
std::initializer_list<value_type> list, const allocator_type& a)
: table_(boost::unordered::detail::initial_size(
list.begin(), list.end(), detail::default_bucket_count),
hasher(), key_equal(), a)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
std::initializer_list<value_type> list, size_type n,
const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hasher(), key_equal(), a)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::unordered_multimap(
std::initializer_list<value_type> list, size_type n, const hasher& hf,
const allocator_type& a)
: table_(
boost::unordered::detail::initial_size(list.begin(), list.end(), n),
hf, key_equal(), a)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>::~unordered_multimap() noexcept
{
}
template <class K, class T, class H, class P, class A>
unordered_multimap<K, T, H, P, A>&
unordered_multimap<K, T, H, P, A>::operator=(
std::initializer_list<value_type> list)
{
this->clear();
this->insert(list.begin(), list.end());
return *this;
}
// size and capacity
template <class K, class T, class H, class P, class A>
std::size_t unordered_multimap<K, T, H, P, A>::max_size() const noexcept
{
using namespace std;
// size <= mlf_ * count
return boost::unordered::detail::double_to_size(
ceil(static_cast<double>(table_.mlf_) *
static_cast<double>(table_.max_bucket_count()))) -
1;
}
// modifiers
template <class K, class T, class H, class P, class A>
template <class InputIt>
void unordered_multimap<K, T, H, P, A>::insert(InputIt first, InputIt last)
{
table_.insert_range_equiv(first, last);
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::insert(
std::initializer_list<value_type> list)
{
this->insert(list.begin(), list.end());
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::erase(iterator position)
{
BOOST_ASSERT(position != this->end());
return table_.erase_node(position);
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::erase(const_iterator position)
{
BOOST_ASSERT(position != this->end());
return table_.erase_node(position);
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::size_type
unordered_multimap<K, T, H, P, A>::erase(const key_type& k)
{
return table_.erase_key_equiv(k);
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::erase(
const_iterator first, const_iterator last)
{
return table_.erase_nodes_range(first, last);
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::swap(unordered_multimap& other)
noexcept(value_allocator_traits::is_always_equal::value&&
boost::unordered::detail::is_nothrow_swappable<H>::value&&
boost::unordered::detail::is_nothrow_swappable<P>::value)
{
table_.swap(other.table_);
}
// observers
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::hasher
unordered_multimap<K, T, H, P, A>::hash_function() const
{
return table_.hash_function();
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::key_equal
unordered_multimap<K, T, H, P, A>::key_eq() const
{
return table_.key_eq();
}
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
boost::unordered_multimap<K, T, H2, P2, A>& source)
{
while (!source.empty()) {
insert(source.extract(source.begin()));
}
}
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
boost::unordered_multimap<K, T, H2, P2, A>&& source)
{
while (!source.empty()) {
insert(source.extract(source.begin()));
}
}
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
boost::unordered_map<K, T, H2, P2, A>& source)
{
while (!source.empty()) {
insert(source.extract(source.begin()));
}
}
template <class K, class T, class H, class P, class A>
template <typename H2, typename P2>
void unordered_multimap<K, T, H, P, A>::merge(
boost::unordered_map<K, T, H2, P2, A>&& source)
{
while (!source.empty()) {
insert(source.extract(source.begin()));
}
}
// lookup
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::find(const key_type& k)
{
return iterator(table_.find(k));
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::const_iterator
unordered_multimap<K, T, H, P, A>::find(const key_type& k) const
{
return const_iterator(table_.find(k));
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
typename unordered_multimap<K, T, H, P, A>::iterator
unordered_multimap<K, T, H, P, A>::find(CompatibleKey const& k,
CompatibleHash const& hash, CompatiblePredicate const& eq)
{
return table_.transparent_find(k, hash, eq);
}
template <class K, class T, class H, class P, class A>
template <class CompatibleKey, class CompatibleHash,
class CompatiblePredicate>
typename unordered_multimap<K, T, H, P, A>::const_iterator
unordered_multimap<K, T, H, P, A>::find(CompatibleKey const& k,
CompatibleHash const& hash, CompatiblePredicate const& eq) const
{
return table_.transparent_find(k, hash, eq);
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::size_type
unordered_multimap<K, T, H, P, A>::count(const key_type& k) const
{
return table_.group_count(k);
}
template <class K, class T, class H, class P, class A>
std::pair<typename unordered_multimap<K, T, H, P, A>::iterator,
typename unordered_multimap<K, T, H, P, A>::iterator>
unordered_multimap<K, T, H, P, A>::equal_range(const key_type& k)
{
iterator n = table_.find(k);
return std::make_pair(n, (n == end() ? n : table_.next_group(k, n)));
}
template <class K, class T, class H, class P, class A>
std::pair<typename unordered_multimap<K, T, H, P, A>::const_iterator,
typename unordered_multimap<K, T, H, P, A>::const_iterator>
unordered_multimap<K, T, H, P, A>::equal_range(const key_type& k) const
{
iterator n = table_.find(k);
return std::make_pair(const_iterator(n),
const_iterator(n == end() ? n : table_.next_group(k, n)));
}
template <class K, class T, class H, class P, class A>
typename unordered_multimap<K, T, H, P, A>::size_type
unordered_multimap<K, T, H, P, A>::bucket_size(size_type n) const
{
return table_.bucket_size(n);
}
// hash policy
template <class K, class T, class H, class P, class A>
float unordered_multimap<K, T, H, P, A>::load_factor() const noexcept
{
if (table_.size_ == 0) {
return 0.0f;
}
BOOST_ASSERT(table_.bucket_count() != 0);
return static_cast<float>(table_.size_) /
static_cast<float>(table_.bucket_count());
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::max_load_factor(float m) noexcept
{
table_.max_load_factor(m);
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::rehash(size_type n)
{
table_.rehash(n);
}
template <class K, class T, class H, class P, class A>
void unordered_multimap<K, T, H, P, A>::reserve(size_type n)
{
table_.reserve(n);
}
template <class K, class T, class H, class P, class A>
inline bool operator==(unordered_multimap<K, T, H, P, A> const& m1,
unordered_multimap<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_multimap<K, T, H, P, A> x;
};
#endif
return m1.table_.equals_equiv(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline bool operator!=(unordered_multimap<K, T, H, P, A> const& m1,
unordered_multimap<K, T, H, P, A> const& m2)
{
#if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_multimap<K, T, H, P, A> x;
};
#endif
return !m1.table_.equals_equiv(m2.table_);
}
template <class K, class T, class H, class P, class A>
inline void swap(unordered_multimap<K, T, H, P, A>& m1,
unordered_multimap<K, T, H, P, A>& m2) noexcept(noexcept(m1.swap(m2)))
{
#if BOOST_WORKAROUND(BOOST_CODEGEARC, BOOST_TESTED_AT(0x0613))
struct dummy
{
unordered_multimap<K, T, H, P, A> x;
};
#endif
m1.swap(m2);
}
template <class K, class T, class H, class P, class A, class Predicate>
typename unordered_multimap<K, T, H, P, A>::size_type erase_if(
unordered_multimap<K, T, H, P, A>& c, Predicate pred)
{
return detail::erase_if(c, pred);
}
template <typename N, class K, class T, class A> class node_handle_map
{
template <typename Types> friend struct ::boost::unordered::detail::table;
template <class K2, class T2, class H2, class P2, class A2>
friend class boost::unordered::unordered_map;
template <class K2, class T2, class H2, class P2, class A2>
friend class boost::unordered::unordered_multimap;
typedef typename boost::allocator_rebind<A, std::pair<K const, T> >::type
value_allocator;
typedef N node;
typedef typename boost::allocator_rebind<A, node>::type node_allocator;
typedef
typename boost::allocator_pointer<node_allocator>::type node_pointer;
public:
typedef K key_type;
typedef T mapped_type;
typedef A allocator_type;
private:
node_pointer ptr_;
boost::unordered::detail::optional<value_allocator> alloc_;
node_handle_map(node_pointer ptr, allocator_type const& a)
: ptr_(ptr), alloc_(a)
{
}
public:
constexpr node_handle_map() noexcept : ptr_(), alloc_() {}
node_handle_map(node_handle_map const&) = delete;
node_handle_map& operator=(node_handle_map const&) = delete;
~node_handle_map()
{
if (ptr_) {
node_allocator node_alloc(*alloc_);
boost::unordered::detail::node_tmp<node_allocator> tmp(
ptr_, node_alloc);
}
}
node_handle_map(node_handle_map&& n) noexcept
: ptr_(n.ptr_),
alloc_(std::move(n.alloc_))
{
n.ptr_ = node_pointer();
}
node_handle_map& operator=(node_handle_map&& n)
{
BOOST_ASSERT(!alloc_.has_value() ||
boost::allocator_propagate_on_container_move_assignment<
value_allocator>::type::value ||
(n.alloc_.has_value() && alloc_ == n.alloc_));
if (ptr_) {
node_allocator node_alloc(*alloc_);
boost::unordered::detail::node_tmp<node_allocator> tmp(
ptr_, node_alloc);
ptr_ = node_pointer();
}
if (!alloc_.has_value() ||
boost::allocator_propagate_on_container_move_assignment<
value_allocator>::type::value) {
alloc_ = std::move(n.alloc_);
}
ptr_ = n.ptr_;
n.ptr_ = node_pointer();
return *this;
}
key_type& key() const
{
return const_cast<key_type&>(ptr_->value().first);
}
mapped_type& mapped() const { return ptr_->value().second; }
allocator_type get_allocator() const { return *alloc_; }
explicit operator bool() const noexcept
{
return !this->operator!();
}
bool operator!() const noexcept { return ptr_ ? 0 : 1; }
BOOST_ATTRIBUTE_NODISCARD bool empty() const noexcept
{
return ptr_ ? 0 : 1;
}
void swap(node_handle_map& n)
noexcept(boost::allocator_propagate_on_container_swap<
value_allocator>::type::value ||
boost::allocator_is_always_equal<value_allocator>::type::value)
{
BOOST_ASSERT(!alloc_.has_value() || !n.alloc_.has_value() ||
boost::allocator_propagate_on_container_swap<
value_allocator>::type::value ||
alloc_ == n.alloc_);
if (boost::allocator_propagate_on_container_swap<
value_allocator>::type::value ||
!alloc_.has_value() || !n.alloc_.has_value()) {
boost::core::invoke_swap(alloc_, n.alloc_);
}
boost::core::invoke_swap(ptr_, n.ptr_);
}
};
template <class N, class K, class T, class A>
void swap(node_handle_map<N, K, T, A>& x, node_handle_map<N, K, T, A>& y)
noexcept(noexcept(x.swap(y)))
{
x.swap(y);
}
template <class Iter, class NodeType> struct insert_return_type_map
{
public:
Iter position;
bool inserted;
NodeType node;
insert_return_type_map() : position(), inserted(false), node() {}
insert_return_type_map(insert_return_type_map const&) = delete;
insert_return_type_map& operator=(insert_return_type_map const&) = delete;
insert_return_type_map(insert_return_type_map&& x) noexcept
: position(x.position),
inserted(x.inserted),
node(std::move(x.node))
{
}
insert_return_type_map& operator=(insert_return_type_map&& x)
{
inserted = x.inserted;
position = x.position;
node = std::move(x.node);
return *this;
}
};
template <class Iter, class NodeType>
void swap(insert_return_type_map<Iter, NodeType>& x,
insert_return_type_map<Iter, NodeType>& y)
{
boost::core::invoke_swap(x.node, y.node);
boost::core::invoke_swap(x.inserted, y.inserted);
boost::core::invoke_swap(x.position, y.position);
}
} // namespace unordered
namespace serialization {
template <class K, class T, class H, class P, class A>
struct version<boost::unordered_map<K, T, H, P, A> >
{
BOOST_STATIC_CONSTANT(int, value = 1);
};
template <class K, class T, class H, class P, class A>
struct version<boost::unordered_multimap<K, T, H, P, A> >
{
BOOST_STATIC_CONSTANT(int, value = 1);
};
} // namespace serialization
} // namespace boost
#if defined(BOOST_MSVC)
#pragma warning(pop)
#endif
#endif // BOOST_UNORDERED_UNORDERED_MAP_HPP_INCLUDED