boost/container/stable_vector.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2008-2013. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
// Stable vector.
//
// Copyright 2008 Joaquin M Lopez Munoz.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_STABLE_VECTOR_HPP
#define BOOST_CONTAINER_STABLE_VECTOR_HPP
#if defined(_MSC_VER)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <boost/assert.hpp>
#include <boost/container/throw_exception.hpp>
#include <boost/container/detail/allocator_version_traits.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/algorithms.hpp>
#include <boost/container/allocator_traits.hpp>
#include <boost/container/throw_exception.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/aligned_storage.hpp>
#include <boost/move/utility.hpp>
#include <boost/move/iterator.hpp>
#include <boost/move/detail/move_helpers.hpp>
#include <algorithm> //max
#include <memory>
#include <new> //placement new
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
#include <boost/container/vector.hpp>
//#define STABLE_VECTOR_ENABLE_INVARIANT_CHECKING
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace boost {
namespace container {
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace stable_vector_detail{
template <class C>
class clear_on_destroy
{
public:
clear_on_destroy(C &c)
: c_(c), do_clear_(true)
{}
void release()
{ do_clear_ = false; }
~clear_on_destroy()
{
if(do_clear_){
c_.clear();
c_.priv_clear_pool();
}
}
private:
clear_on_destroy(const clear_on_destroy &);
clear_on_destroy &operator=(const clear_on_destroy &);
C &c_;
bool do_clear_;
};
template<typename Pointer>
struct node;
template<class VoidPtr>
struct node_base
{
private:
typedef typename boost::intrusive::
pointer_traits<VoidPtr> void_ptr_traits;
typedef typename void_ptr_traits::
template rebind_pointer
<node_base>::type node_base_ptr;
typedef typename void_ptr_traits::
template rebind_pointer
<node_base_ptr>::type node_base_ptr_ptr;
public:
node_base(const node_base_ptr_ptr &n)
: up(n)
{}
node_base()
: up()
{}
node_base_ptr_ptr up;
};
template<typename Pointer>
struct node
: public node_base
<typename ::boost::intrusive::pointer_traits<Pointer>::template
rebind_pointer<void>::type
>
{
private:
node();
public:
typename ::boost::intrusive::pointer_traits<Pointer>::element_type value;
};
template<class VoidPtr, class VoidAllocator>
struct index_traits
{
typedef boost::intrusive::
pointer_traits
<VoidPtr> void_ptr_traits;
typedef stable_vector_detail::
node_base<VoidPtr> node_base_type;
typedef typename void_ptr_traits::template
rebind_pointer<node_base_type>::type node_base_ptr;
typedef typename void_ptr_traits::template
rebind_pointer<node_base_ptr>::type node_base_ptr_ptr;
typedef boost::intrusive::
pointer_traits<node_base_ptr> node_base_ptr_traits;
typedef boost::intrusive::
pointer_traits<node_base_ptr_ptr> node_base_ptr_ptr_traits;
typedef typename allocator_traits<VoidAllocator>::
template portable_rebind_alloc
<node_base_ptr>::type node_base_ptr_allocator;
typedef ::boost::container::vector
<node_base_ptr, node_base_ptr_allocator> index_type;
typedef typename index_type::iterator index_iterator;
typedef typename index_type::const_iterator const_index_iterator;
typedef typename index_type::size_type size_type;
static const size_type ExtraPointers = 3;
//Stable vector stores metadata at the end of the index (node_base_ptr vector) with additional 3 pointers:
// back() is this->index.back() - ExtraPointers;
// end node index is *(this->index.end() - 3)
// Node cache first is *(this->index.end() - 2);
// Node cache last is this->index.back();
static node_base_ptr_ptr ptr_to_node_base_ptr(node_base_ptr &n)
{ return node_base_ptr_ptr_traits::pointer_to(n); }
static void fix_up_pointers(index_iterator first, index_iterator last)
{
while(first != last){
typedef typename index_type::reference node_base_ptr_ref;
node_base_ptr_ref nbp = *first;
nbp->up = index_traits::ptr_to_node_base_ptr(nbp);
++first;
}
}
static index_iterator get_fix_up_end(index_type &index)
{ return index.end() - (ExtraPointers - 1); }
static void fix_up_pointers_from(index_type & index, index_iterator first)
{ index_traits::fix_up_pointers(first, index_traits::get_fix_up_end(index)); }
static void readjust_end_node(index_type &index, node_base_type &end_node)
{
if(!index.empty()){
index_iterator end_node_it(index_traits::get_fix_up_end(index));
node_base_ptr &end_node_idx_ref = *(--end_node_it);
end_node_idx_ref = node_base_ptr_traits::pointer_to(end_node);
end_node.up = node_base_ptr_ptr_traits::pointer_to(end_node_idx_ref);
}
else{
end_node.up = node_base_ptr_ptr();
}
}
static void initialize_end_node(index_type &index, node_base_type &end_node, const size_type index_capacity_if_empty)
{
if(index.empty()){
index.reserve(index_capacity_if_empty + ExtraPointers);
index.resize(ExtraPointers);
node_base_ptr &end_node_ref = *index.data();
end_node_ref = node_base_ptr_traits::pointer_to(end_node);
end_node.up = index_traits::ptr_to_node_base_ptr(end_node_ref);
}
}
#ifdef STABLE_VECTOR_ENABLE_INVARIANT_CHECKING
static bool invariants(index_type &index)
{
for( index_iterator it = index.begin()
, it_end = index_traits::get_fix_up_end(index)
; it != it_end
; ++it){
if((*it)->up != index_traits::ptr_to_node_base_ptr(*it)){
return false;
}
}
return true;
}
#endif //STABLE_VECTOR_ENABLE_INVARIANT_CHECKING
};
} //namespace stable_vector_detail
template<typename Pointer, bool IsConst>
class stable_vector_iterator
{
typedef boost::intrusive::pointer_traits<Pointer> non_const_ptr_traits;
public:
typedef std::random_access_iterator_tag iterator_category;
typedef typename non_const_ptr_traits::element_type value_type;
typedef typename non_const_ptr_traits::difference_type difference_type;
typedef typename ::boost::container::container_detail::if_c
< IsConst
, typename non_const_ptr_traits::template
rebind_pointer<const value_type>::type
, Pointer
>::type pointer;
typedef boost::intrusive::pointer_traits<pointer> ptr_traits;
typedef typename ptr_traits::reference reference;
private:
typedef typename non_const_ptr_traits::template
rebind_pointer<void>::type void_ptr;
typedef stable_vector_detail::node<Pointer> node_type;
typedef stable_vector_detail::node_base<void_ptr> node_base_type;
typedef typename non_const_ptr_traits::template
rebind_pointer<node_type>::type node_ptr;
typedef boost::intrusive::
pointer_traits<node_ptr> node_ptr_traits;
typedef typename non_const_ptr_traits::template
rebind_pointer<node_base_type>::type node_base_ptr;
typedef typename non_const_ptr_traits::template
rebind_pointer<node_base_ptr>::type node_base_ptr_ptr;
node_base_ptr m_pn;
public:
explicit stable_vector_iterator(node_base_ptr p) BOOST_CONTAINER_NOEXCEPT
: m_pn(p)
{}
stable_vector_iterator() BOOST_CONTAINER_NOEXCEPT
{}
stable_vector_iterator(stable_vector_iterator<Pointer, false> const& other) BOOST_CONTAINER_NOEXCEPT
: m_pn(other.node_pointer())
{}
node_ptr node_pointer() const BOOST_CONTAINER_NOEXCEPT
{ return node_ptr_traits::static_cast_from(m_pn); }
public:
//Pointer like operators
reference operator*() const BOOST_CONTAINER_NOEXCEPT
{ return node_pointer()->value; }
pointer operator->() const BOOST_CONTAINER_NOEXCEPT
{ return ptr_traits::pointer_to(this->operator*()); }
//Increment / Decrement
stable_vector_iterator& operator++() BOOST_CONTAINER_NOEXCEPT
{
node_base_ptr_ptr p(this->m_pn->up);
this->m_pn = *(++p);
return *this;
}
stable_vector_iterator operator++(int) BOOST_CONTAINER_NOEXCEPT
{ stable_vector_iterator tmp(*this); ++*this; return stable_vector_iterator(tmp); }
stable_vector_iterator& operator--() BOOST_CONTAINER_NOEXCEPT
{
node_base_ptr_ptr p(this->m_pn->up);
this->m_pn = *(--p);
return *this;
}
stable_vector_iterator operator--(int) BOOST_CONTAINER_NOEXCEPT
{ stable_vector_iterator tmp(*this); --*this; return stable_vector_iterator(tmp); }
reference operator[](difference_type off) const BOOST_CONTAINER_NOEXCEPT
{ return node_ptr_traits::static_cast_from(this->m_pn->up[off])->value; }
stable_vector_iterator& operator+=(difference_type off) BOOST_CONTAINER_NOEXCEPT
{
if(off) this->m_pn = this->m_pn->up[off];
return *this;
}
friend stable_vector_iterator operator+(const stable_vector_iterator &left, difference_type off) BOOST_CONTAINER_NOEXCEPT
{
stable_vector_iterator tmp(left);
tmp += off;
return tmp;
}
friend stable_vector_iterator operator+(difference_type off, const stable_vector_iterator& right) BOOST_CONTAINER_NOEXCEPT
{
stable_vector_iterator tmp(right);
tmp += off;
return tmp;
}
stable_vector_iterator& operator-=(difference_type off) BOOST_CONTAINER_NOEXCEPT
{ *this += -off; return *this; }
friend stable_vector_iterator operator-(const stable_vector_iterator &left, difference_type off) BOOST_CONTAINER_NOEXCEPT
{
stable_vector_iterator tmp(left);
tmp -= off;
return tmp;
}
friend difference_type operator-(const stable_vector_iterator& left, const stable_vector_iterator& right) BOOST_CONTAINER_NOEXCEPT
{ return left.m_pn->up - right.m_pn->up; }
//Comparison operators
friend bool operator== (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_pn == r.m_pn; }
friend bool operator!= (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_pn != r.m_pn; }
friend bool operator< (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_pn->up < r.m_pn->up; }
friend bool operator<= (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_pn->up <= r.m_pn->up; }
friend bool operator> (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_pn->up > r.m_pn->up; }
friend bool operator>= (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_pn->up >= r.m_pn->up; }
};
#if defined(STABLE_VECTOR_ENABLE_INVARIANT_CHECKING)
#define STABLE_VECTOR_CHECK_INVARIANT \
invariant_checker BOOST_JOIN(check_invariant_,__LINE__)(*this); \
BOOST_JOIN(check_invariant_,__LINE__).touch();
#else //STABLE_VECTOR_ENABLE_INVARIANT_CHECKING
#define STABLE_VECTOR_CHECK_INVARIANT
#endif //#if defined(STABLE_VECTOR_ENABLE_INVARIANT_CHECKING)
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//! Originally developed by Joaquin M. Lopez Munoz, stable_vector is a std::vector
//! drop-in replacement implemented as a node container, offering iterator and reference
//! stability.
//!
//! Here are the details taken from the author's blog
//! (<a href="http://bannalia.blogspot.com/2008/09/introducing-stablevector.html" >
//! Introducing stable_vector</a>):
//!
//! We present stable_vector, a fully STL-compliant stable container that provides
//! most of the features of std::vector except element contiguity.
//!
//! General properties: stable_vector satisfies all the requirements of a container,
//! a reversible container and a sequence and provides all the optional operations
//! present in std::vector. Like std::vector, iterators are random access.
//! stable_vector does not provide element contiguity; in exchange for this absence,
//! the container is stable, i.e. references and iterators to an element of a stable_vector
//! remain valid as long as the element is not erased, and an iterator that has been
//! assigned the return value of end() always remain valid until the destruction of
//! the associated stable_vector.
//!
//! Operation complexity: The big-O complexities of stable_vector operations match
//! exactly those of std::vector. In general, insertion/deletion is constant time at
//! the end of the sequence and linear elsewhere. Unlike std::vector, stable_vector
//! does not internally perform any value_type destruction, copy or assignment
//! operations other than those exactly corresponding to the insertion of new
//! elements or deletion of stored elements, which can sometimes compensate in terms
//! of performance for the extra burden of doing more pointer manipulation and an
//! additional allocation per element.
//!
//! Exception safety: As stable_vector does not internally copy elements around, some
//! operations provide stronger exception safety guarantees than in std::vector.
//!
//! \tparam T The type of object that is stored in the stable_vector
//! \tparam Allocator The allocator used for all internal memory management
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Allocator = std::allocator<T> >
#else
template <class T, class Allocator>
#endif
class stable_vector
{
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
typedef allocator_traits<Allocator> allocator_traits_type;
typedef boost::intrusive::
pointer_traits
<typename allocator_traits_type::pointer> ptr_traits;
typedef typename ptr_traits::
template rebind_pointer<void>::type void_ptr;
typedef typename allocator_traits_type::
template portable_rebind_alloc
<void>::type void_allocator_type;
typedef stable_vector_detail::index_traits
<void_ptr, void_allocator_type> index_traits_type;
typedef typename index_traits_type::node_base_type node_base_type;
typedef typename index_traits_type::node_base_ptr node_base_ptr;
typedef typename index_traits_type::
node_base_ptr_ptr node_base_ptr_ptr;
typedef typename index_traits_type::
node_base_ptr_traits node_base_ptr_traits;
typedef typename index_traits_type::
node_base_ptr_ptr_traits node_base_ptr_ptr_traits;
typedef typename index_traits_type::index_type index_type;
typedef typename index_traits_type::index_iterator index_iterator;
typedef typename index_traits_type::
const_index_iterator const_index_iterator;
typedef stable_vector_detail::node
<typename ptr_traits::pointer> node_type;
typedef typename ptr_traits::template
rebind_pointer<node_type>::type node_ptr;
typedef boost::intrusive::
pointer_traits<node_ptr> node_ptr_traits;
typedef typename ptr_traits::template
rebind_pointer<const node_type>::type const_node_ptr;
typedef boost::intrusive::
pointer_traits<const_node_ptr> const_node_ptr_traits;
typedef typename node_ptr_traits::reference node_reference;
typedef typename const_node_ptr_traits::reference const_node_reference;
typedef ::boost::container::container_detail::
integral_constant<unsigned, 1> allocator_v1;
typedef ::boost::container::container_detail::
integral_constant<unsigned, 2> allocator_v2;
typedef ::boost::container::container_detail::integral_constant
<unsigned, boost::container::container_detail::
version<Allocator>::value> alloc_version;
typedef typename allocator_traits_type::
template portable_rebind_alloc
<node_type>::type node_allocator_type;
typedef ::boost::container::container_detail::
allocator_version_traits<node_allocator_type> allocator_version_traits_t;
typedef typename allocator_version_traits_t::multiallocation_chain multiallocation_chain;
node_ptr allocate_one()
{ return allocator_version_traits_t::allocate_one(this->priv_node_alloc()); }
void deallocate_one(const node_ptr &p)
{ allocator_version_traits_t::deallocate_one(this->priv_node_alloc(), p); }
void allocate_individual(typename allocator_traits_type::size_type n, multiallocation_chain &m)
{ allocator_version_traits_t::allocate_individual(this->priv_node_alloc(), n, m); }
void deallocate_individual(multiallocation_chain &holder)
{ allocator_version_traits_t::deallocate_individual(this->priv_node_alloc(), holder); }
friend class stable_vector_detail::clear_on_destroy<stable_vector>;
typedef stable_vector_iterator
< typename allocator_traits<Allocator>::pointer
, false> iterator_impl;
typedef stable_vector_iterator
< typename allocator_traits<Allocator>::pointer
, false> const_iterator_impl;
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
//////////////////////////////////////////////
//
// types
//
//////////////////////////////////////////////
typedef T value_type;
typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::reference reference;
typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference;
typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type;
typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type;
typedef Allocator allocator_type;
typedef node_allocator_type stored_allocator_type;
typedef BOOST_CONTAINER_IMPDEF(iterator_impl) iterator;
typedef BOOST_CONTAINER_IMPDEF(const_iterator_impl) const_iterator;
typedef BOOST_CONTAINER_IMPDEF(std::reverse_iterator<iterator>) reverse_iterator;
typedef BOOST_CONTAINER_IMPDEF(std::reverse_iterator<const_iterator>) const_reverse_iterator;
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
private:
BOOST_COPYABLE_AND_MOVABLE(stable_vector)
static const size_type ExtraPointers = index_traits_type::ExtraPointers;
class insert_rollback;
friend class insert_rollback;
class push_back_rollback;
friend class push_back_rollback;
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
//////////////////////////////////////////////
//
// construct/copy/destroy
//
//////////////////////////////////////////////
//! <b>Effects</b>: Default constructs a stable_vector.
//!
//! <b>Throws</b>: If allocator_type's default constructor throws.
//!
//! <b>Complexity</b>: Constant.
stable_vector()
: internal_data(), index()
{
STABLE_VECTOR_CHECK_INVARIANT;
}
//! <b>Effects</b>: Constructs a stable_vector taking the allocator as parameter.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
explicit stable_vector(const allocator_type& al) BOOST_CONTAINER_NOEXCEPT
: internal_data(al), index(al)
{
STABLE_VECTOR_CHECK_INVARIANT;
}
//! <b>Effects</b>: Constructs a stable_vector that will use a copy of allocator a
//! and inserts n value initialized values.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's default or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
explicit stable_vector(size_type n)
: internal_data(), index()
{
stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
this->resize(n);
STABLE_VECTOR_CHECK_INVARIANT;
cod.release();
}
//! <b>Effects</b>: Constructs a stable_vector that will use a copy of allocator a
//! and inserts n default initialized values.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's default or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
//!
//! <b>Note</b>: Non-standard extension
stable_vector(size_type n, default_init_t)
: internal_data(), index()
{
stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
this->resize(n, default_init);
STABLE_VECTOR_CHECK_INVARIANT;
cod.release();
}
//! <b>Effects</b>: Constructs a stable_vector that will use a copy of allocator a
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's default or copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
stable_vector(size_type n, const T& t, const allocator_type& al = allocator_type())
: internal_data(al), index(al)
{
stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
this->insert(this->cend(), n, t);
STABLE_VECTOR_CHECK_INVARIANT;
cod.release();
}
//! <b>Effects</b>: Constructs a stable_vector that will use a copy of allocator a
//! and inserts a copy of the range [first, last) in the stable_vector.
//!
//! <b>Throws</b>: If allocator_type's default constructor
//! throws or T's constructor taking a dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InputIterator>
stable_vector(InputIterator first,InputIterator last, const allocator_type& al = allocator_type())
: internal_data(al), index(al)
{
stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
this->insert(this->cend(), first, last);
STABLE_VECTOR_CHECK_INVARIANT;
cod.release();
}
//! <b>Effects</b>: Copy constructs a stable_vector.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
stable_vector(const stable_vector& x)
: internal_data(allocator_traits<node_allocator_type>::
select_on_container_copy_construction(x.priv_node_alloc()))
, index(allocator_traits<allocator_type>::
select_on_container_copy_construction(x.index.get_stored_allocator()))
{
stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
this->insert(this->cend(), x.begin(), x.end());
STABLE_VECTOR_CHECK_INVARIANT;
cod.release();
}
//! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
stable_vector(BOOST_RV_REF(stable_vector) x)
: internal_data(boost::move(x.priv_node_alloc())), index(boost::move(x.index))
{
this->priv_swap_members(x);
}
//! <b>Effects</b>: Copy constructs a stable_vector using the specified allocator.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
stable_vector(const stable_vector& x, const allocator_type &a)
: internal_data(a), index(a)
{
stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
this->insert(this->cend(), x.begin(), x.end());
STABLE_VECTOR_CHECK_INVARIANT;
cod.release();
}
//! <b>Effects</b>: Move constructor using the specified allocator.
//! Moves mx's resources to *this.
//!
//! <b>Throws</b>: If allocator_type's copy constructor throws.
//!
//! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise
stable_vector(BOOST_RV_REF(stable_vector) x, const allocator_type &a)
: internal_data(a), index(a)
{
if(this->priv_node_alloc() == x.priv_node_alloc()){
this->priv_swap_members(x);
}
else{
stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
this->insert(this->cend(), x.begin(), x.end());
STABLE_VECTOR_CHECK_INVARIANT;
cod.release();
}
}
//! <b>Effects</b>: Destroys the stable_vector. All stored values are destroyed
//! and used memory is deallocated.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements.
~stable_vector()
{
this->clear();
this->priv_clear_pool();
}
//! <b>Effects</b>: Makes *this contain the same elements as x.
//!
//! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
//! of each of x's elements.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the number of elements in x.
stable_vector& operator=(BOOST_COPY_ASSIGN_REF(stable_vector) x)
{
STABLE_VECTOR_CHECK_INVARIANT;
if (&x != this){
node_allocator_type &this_alloc = this->priv_node_alloc();
const node_allocator_type &x_alloc = x.priv_node_alloc();
container_detail::bool_<allocator_traits_type::
propagate_on_container_copy_assignment::value> flag;
if(flag && this_alloc != x_alloc){
this->clear();
this->shrink_to_fit();
}
container_detail::assign_alloc(this->priv_node_alloc(), x.priv_node_alloc(), flag);
container_detail::assign_alloc(this->index.get_stored_allocator(), x.index.get_stored_allocator(), flag);
this->assign(x.begin(), x.end());
}
return *this;
}
//! <b>Effects</b>: Move assignment. All mx's values are transferred to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: If allocator_traits_type::propagate_on_container_move_assignment
//! is false and (allocation throws or T's move constructor throws)
//!
//! <b>Complexity</b>: Constant if allocator_traits_type::
//! propagate_on_container_move_assignment is true or
//! this->get>allocator() == x.get_allocator(). Linear otherwise.
stable_vector& operator=(BOOST_RV_REF(stable_vector) x)
BOOST_CONTAINER_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value)
{
//for move constructor, no aliasing (&x != this) is assummed.
BOOST_ASSERT(this != &x);
node_allocator_type &this_alloc = this->priv_node_alloc();
node_allocator_type &x_alloc = x.priv_node_alloc();
const bool propagate_alloc = allocator_traits_type::
propagate_on_container_move_assignment::value;
container_detail::bool_<propagate_alloc> flag;
const bool allocators_equal = this_alloc == x_alloc; (void)allocators_equal;
//Resources can be transferred if both allocators are
//going to be equal after this function (either propagated or already equal)
if(propagate_alloc || allocators_equal){
//Destroy objects but retain memory in case x reuses it in the future
this->clear();
//Move allocator if needed
container_detail::move_alloc(this_alloc, x_alloc, flag);
//Take resources
this->index = boost::move(x.index);
this->priv_swap_members(x);
}
//Else do a one by one move
else{
this->assign( boost::make_move_iterator(x.begin())
, boost::make_move_iterator(x.end()));
}
return *this;
}
//! <b>Effects</b>: Assigns the n copies of val to *this.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
void assign(size_type n, const T& t)
{
typedef constant_iterator<value_type, difference_type> cvalue_iterator;
this->assign(cvalue_iterator(t, n), cvalue_iterator());
}
//! <b>Effects</b>: Assigns the the range [first, last) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's constructor from dereferencing InpIt throws.
//!
//! <b>Complexity</b>: Linear to n.
template<typename InputIterator>
void assign(InputIterator first,InputIterator last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_convertible<InputIterator, size_type>::value
>::type * = 0
#endif
)
{
STABLE_VECTOR_CHECK_INVARIANT;
iterator first1 = this->begin();
iterator last1 = this->end();
for ( ; first1 != last1 && first != last; ++first1, ++first)
*first1 = *first;
if (first == last){
this->erase(first1, last1);
}
else{
this->insert(last1, first, last);
}
}
//! <b>Effects</b>: Returns a copy of the internal allocator.
//!
//! <b>Throws</b>: If allocator's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const
{ return this->priv_node_alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return this->priv_node_alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT
{ return this->priv_node_alloc(); }
//////////////////////////////////////////////
//
// iterators
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns an iterator to the first element contained in the stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin() BOOST_CONTAINER_NOEXCEPT
{ return (this->index.empty()) ? this->end(): iterator(node_ptr_traits::static_cast_from(this->index.front())); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const BOOST_CONTAINER_NOEXCEPT
{ return (this->index.empty()) ? this->cend() : const_iterator(node_ptr_traits::static_cast_from(this->index.front())) ; }
//! <b>Effects</b>: Returns an iterator to the end of the stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end() BOOST_CONTAINER_NOEXCEPT
{ return iterator(this->priv_get_end_node()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const BOOST_CONTAINER_NOEXCEPT
{ return const_iterator(this->priv_get_end_node()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT
{ return reverse_iterator(this->end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->end()); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT
{ return reverse_iterator(this->begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->begin()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT
{ return this->begin(); }
//! <b>Effects</b>: Returns a const_iterator to the end of the stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const BOOST_CONTAINER_NOEXCEPT
{ return this->end(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT
{ return this->rbegin(); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend()const BOOST_CONTAINER_NOEXCEPT
{ return this->rend(); }
//////////////////////////////////////////////
//
// capacity
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns true if the stable_vector contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const BOOST_CONTAINER_NOEXCEPT
{ return this->index.size() <= ExtraPointers; }
//! <b>Effects</b>: Returns the number of the elements contained in the stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const BOOST_CONTAINER_NOEXCEPT
{
const size_type index_size = this->index.size();
return (index_size - ExtraPointers) & (std::size_t(0u) -std::size_t(index_size != 0));
}
//! <b>Effects</b>: Returns the largest possible size of the stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const BOOST_CONTAINER_NOEXCEPT
{ return this->index.max_size() - ExtraPointers; }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are value initialized.
//!
//! <b>Throws</b>: If memory allocation throws, or T's value initialization throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type n)
{
typedef value_init_construct_iterator<value_type, difference_type> value_init_iterator;
STABLE_VECTOR_CHECK_INVARIANT;
if(n > this->size())
this->insert(this->cend(), value_init_iterator(n - this->size()), value_init_iterator());
else if(n < this->size())
this->erase(this->cbegin() + n, this->cend());
}
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are default initialized.
//!
//! <b>Throws</b>: If memory allocation throws, or T's default initialization throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
//!
//! <b>Note</b>: Non-standard extension
void resize(size_type n, default_init_t)
{
typedef default_init_construct_iterator<value_type, difference_type> default_init_iterator;
STABLE_VECTOR_CHECK_INVARIANT;
if(n > this->size())
this->insert(this->cend(), default_init_iterator(n - this->size()), default_init_iterator());
else if(n < this->size())
this->erase(this->cbegin() + n, this->cend());
}
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are copy constructed from x.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type n, const T& t)
{
STABLE_VECTOR_CHECK_INVARIANT;
if(n > this->size())
this->insert(this->cend(), n - this->size(), t);
else if(n < this->size())
this->erase(this->cbegin() + n, this->cend());
}
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type capacity() const BOOST_CONTAINER_NOEXCEPT
{
const size_type index_size = this->index.size();
BOOST_ASSERT(!index_size || index_size >= ExtraPointers);
const size_type bucket_extra_capacity = this->index.capacity()- index_size;
const size_type node_extra_capacity = this->internal_data.pool_size;
const size_type extra_capacity = (bucket_extra_capacity < node_extra_capacity)
? bucket_extra_capacity : node_extra_capacity;
const size_type index_offset =
(ExtraPointers + extra_capacity) & (size_type(0u) - size_type(index_size != 0));
return index_size - index_offset;
}
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws.
void reserve(size_type n)
{
STABLE_VECTOR_CHECK_INVARIANT;
if(n > this->max_size()){
throw_length_error("stable_vector::reserve max_size() exceeded");
}
size_type sz = this->size();
size_type old_capacity = this->capacity();
if(n > old_capacity){
index_traits_type::initialize_end_node(this->index, this->internal_data.end_node, n);
const void * old_ptr = &index[0];
this->index.reserve(n + ExtraPointers);
bool realloced = &index[0] != old_ptr;
//Fix the pointers for the newly allocated buffer
if(realloced){
index_traits_type::fix_up_pointers_from(this->index, this->index.begin());
}
//Now fill pool if data is not enough
if((n - sz) > this->internal_data.pool_size){
this->priv_increase_pool((n - sz) - this->internal_data.pool_size);
}
}
}
//! <b>Effects</b>: Tries to deallocate the excess of memory created
//! with previous allocations. The size of the stable_vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{
if(this->capacity()){
//First empty allocated node pool
this->priv_clear_pool();
//If empty completely destroy the index, let's recover default-constructed state
if(this->empty()){
this->index.clear();
this->index.shrink_to_fit();
this->internal_data.end_node.up = node_base_ptr_ptr();
}
//Otherwise, try to shrink-to-fit the index and readjust pointers if necessary
else{
const void* old_ptr = &index[0];
this->index.shrink_to_fit();
bool realloced = &index[0] != old_ptr;
//Fix the pointers for the newly allocated buffer
if(realloced){
index_traits_type::fix_up_pointers_from(this->index, this->index.begin());
}
}
}
}
//////////////////////////////////////////////
//
// element access
//
//////////////////////////////////////////////
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the first
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front() BOOST_CONTAINER_NOEXCEPT
{ return static_cast<node_reference>(*this->index.front()).value; }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the first
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const BOOST_CONTAINER_NOEXCEPT
{ return static_cast<const_node_reference>(*this->index.front()).value; }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference back() BOOST_CONTAINER_NOEXCEPT
{ return static_cast<node_reference>(*this->index[this->size()-1u]).value; }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference back() const BOOST_CONTAINER_NOEXCEPT
{ return static_cast<const_node_reference>(*this->index[this->size()-1u]).value; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference operator[](size_type n) BOOST_CONTAINER_NOEXCEPT
{
BOOST_ASSERT(n < this->size());
return static_cast<node_reference>(*this->index[n]).value;
}
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference operator[](size_type n) const BOOST_CONTAINER_NOEXCEPT
{
BOOST_ASSERT(n < this->size());
return static_cast<const_node_reference>(*this->index[n]).value;
}
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
reference at(size_type n)
{
if(n >= this->size()){
throw_out_of_range("vector::at invalid subscript");
}
return operator[](n);
}
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
const_reference at(size_type n)const
{
if(n >= this->size()){
throw_out_of_range("vector::at invalid subscript");
}
return operator[](n);
}
//////////////////////////////////////////////
//
// modifiers
//
//////////////////////////////////////////////
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the end of the stable_vector.
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
template<class ...Args>
void emplace_back(Args &&...args)
{
typedef emplace_functor<Args...> EmplaceFunctor;
typedef emplace_iterator<value_type, EmplaceFunctor, difference_type> EmplaceIterator;
EmplaceFunctor &&ef = EmplaceFunctor(boost::forward<Args>(args)...);
this->insert(this->cend(), EmplaceIterator(ef), EmplaceIterator());
}
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... before position
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
template<class ...Args>
iterator emplace(const_iterator position, Args && ...args)
{
//Just call more general insert(pos, size, value) and return iterator
size_type pos_n = position - cbegin();
typedef emplace_functor<Args...> EmplaceFunctor;
typedef emplace_iterator<value_type, EmplaceFunctor, difference_type> EmplaceIterator;
EmplaceFunctor &&ef = EmplaceFunctor(boost::forward<Args>(args)...);
this->insert(position, EmplaceIterator(ef), EmplaceIterator());
return iterator(this->begin() + pos_n);
}
#else
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
typedef BOOST_PP_CAT(BOOST_PP_CAT(emplace_functor, n), arg) \
BOOST_PP_EXPR_IF(n, <) BOOST_PP_ENUM_PARAMS(n, P) BOOST_PP_EXPR_IF(n, >) \
EmplaceFunctor; \
typedef emplace_iterator<value_type, EmplaceFunctor, difference_type> EmplaceIterator; \
EmplaceFunctor ef BOOST_PP_LPAREN_IF(n) \
BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) \
BOOST_PP_RPAREN_IF(n); \
this->insert(this->cend() , EmplaceIterator(ef), EmplaceIterator()); \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace(const_iterator pos \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
typedef BOOST_PP_CAT(BOOST_PP_CAT(emplace_functor, n), arg) \
BOOST_PP_EXPR_IF(n, <) BOOST_PP_ENUM_PARAMS(n, P) BOOST_PP_EXPR_IF(n, >) \
EmplaceFunctor; \
typedef emplace_iterator<value_type, EmplaceFunctor, difference_type> EmplaceIterator; \
EmplaceFunctor ef BOOST_PP_LPAREN_IF(n) \
BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) \
BOOST_PP_RPAREN_IF(n); \
size_type pos_n = pos - this->cbegin(); \
this->insert(pos, EmplaceIterator(ef), EmplaceIterator()); \
return iterator(this->begin() + pos_n); \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x at the end of the stable_vector.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(const T &x);
//! <b>Effects</b>: Constructs a new element in the end of the stable_vector
//! and moves the resources of mx to this new element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of x before position.
//!
//! <b>Returns</b>: An iterator to the inserted element.
//!
//! <b>Throws</b>: If memory allocation throws or x's copy constructor throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator position, const T &x);
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a new element before position with mx's resources.
//!
//! <b>Returns</b>: an iterator to the inserted element.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator position, T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator)
#endif
//! <b>Requires</b>: pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert n copies of x before position.
//!
//! <b>Returns</b>: an iterator to the first inserted element or position if n is 0.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
iterator insert(const_iterator position, size_type n, const T& t)
{
STABLE_VECTOR_CHECK_INVARIANT;
typedef constant_iterator<value_type, difference_type> cvalue_iterator;
return this->insert(position, cvalue_iterator(t, n), cvalue_iterator());
}
//! <b>Requires</b>: pos must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or position if first == last.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InpIt throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to std::distance [first, last).
template <class InputIterator>
iterator insert(const_iterator position, InputIterator first, InputIterator last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_convertible<InputIterator, size_type>::value
&& container_detail::is_input_iterator<InputIterator>::value
>::type * = 0
#endif
)
{
STABLE_VECTOR_CHECK_INVARIANT;
const size_type pos_n = position - this->cbegin();
for(; first != last; ++first){
this->emplace(position, *first);
}
return this->begin() + pos_n;
}
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class FwdIt>
iterator insert(const_iterator position, FwdIt first, FwdIt last
, typename container_detail::enable_if_c
< !container_detail::is_convertible<FwdIt, size_type>::value
&& !container_detail::is_input_iterator<FwdIt>::value
>::type * = 0
)
{
const size_type num_new = static_cast<size_type>(std::distance(first, last));
const size_type pos = static_cast<size_type>(position - this->cbegin());
if(num_new){
//Fills the node pool and inserts num_new null pointers in pos.
//If a new buffer was needed fixes up pointers up to pos so
//past-new nodes are not aligned until the end of this function
//or in a rollback in case of exception
index_iterator it_past_newly_constructed(this->priv_insert_forward_non_templated(pos, num_new));
const index_iterator it_past_new(it_past_newly_constructed + num_new);
{
//Prepare rollback
insert_rollback rollback(*this, it_past_newly_constructed, it_past_new);
while(first != last){
const node_ptr p = this->priv_get_from_pool();
BOOST_ASSERT(!!p);
//Put it in the index so rollback can return it in pool if construct_in_place throws
*it_past_newly_constructed = p;
//Constructs and fixes up pointers This can throw
this->priv_build_node_from_it(p, it_past_newly_constructed, first);
++first;
++it_past_newly_constructed;
}
//rollback.~insert_rollback() called in case of exception
}
//Fix up pointers for past-new nodes (new nodes were fixed during construction) and
//nodes before insertion position in priv_insert_forward_non_templated(...)
index_traits_type::fix_up_pointers_from(this->index, it_past_newly_constructed);
}
return this->begin() + pos;
}
#endif
//! <b>Effects</b>: Removes the last element from the stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
void pop_back() BOOST_CONTAINER_NOEXCEPT
{ this->erase(--this->cend()); }
//! <b>Effects</b>: Erases the element at position pos.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements between pos and the
//! last element. Constant if pos is the last element.
iterator erase(const_iterator position) BOOST_CONTAINER_NOEXCEPT
{
STABLE_VECTOR_CHECK_INVARIANT;
const size_type d = position - this->cbegin();
index_iterator it = this->index.begin() + d;
this->priv_delete_node(position.node_pointer());
it = this->index.erase(it);
index_traits_type::fix_up_pointers_from(this->index, it);
return iterator(node_ptr_traits::static_cast_from(*it));
}
//! <b>Effects</b>: Erases the elements pointed by [first, last).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the distance between first and last
//! plus linear to the elements between pos and the last element.
iterator erase(const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT
{
STABLE_VECTOR_CHECK_INVARIANT;
const const_iterator cbeg(this->cbegin());
const size_type d1 = static_cast<size_type>(first - cbeg),
d2 = static_cast<size_type>(last - cbeg);
size_type d_dif = d2 - d1;
if(d_dif){
multiallocation_chain holder;
const index_iterator it1(this->index.begin() + d1);
const index_iterator it2(it1 + d_dif);
index_iterator it(it1);
while(d_dif--){
node_base_ptr &nb = *it;
++it;
node_type &n = *node_ptr_traits::static_cast_from(nb);
this->priv_destroy_node(n);
holder.push_back(node_ptr_traits::pointer_to(n));
}
this->priv_put_in_pool(holder);
const index_iterator e = this->index.erase(it1, it2);
index_traits_type::fix_up_pointers_from(this->index, e);
}
return iterator(last.node_pointer());
}
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(stable_vector & x)
{
STABLE_VECTOR_CHECK_INVARIANT;
container_detail::bool_<allocator_traits_type::propagate_on_container_swap::value> flag;
container_detail::swap_alloc(this->priv_node_alloc(), x.priv_node_alloc(), flag);
//vector's allocator is swapped here
this->index.swap(x.index);
this->priv_swap_members(x);
}
//! <b>Effects</b>: Erases all the elements of the stable_vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements in the stable_vector.
void clear() BOOST_CONTAINER_NOEXCEPT
{ this->erase(this->cbegin(),this->cend()); }
//! <b>Effects</b>: Returns true if x and y are equal
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator==(const stable_vector& x, const stable_vector& y)
{ return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin()); }
//! <b>Effects</b>: Returns true if x and y are unequal
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator!=(const stable_vector& x, const stable_vector& y)
{ return !(x == y); }
//! <b>Effects</b>: Returns true if x is less than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator<(const stable_vector& x, const stable_vector& y)
{ return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
//! <b>Effects</b>: Returns true if x is greater than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator>(const stable_vector& x, const stable_vector& y)
{ return y < x; }
//! <b>Effects</b>: Returns true if x is equal or less than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator<=(const stable_vector& x, const stable_vector& y)
{ return !(y < x); }
//! <b>Effects</b>: Returns true if x is equal or greater than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator>=(const stable_vector& x, const stable_vector& y)
{ return !(x < y); }
//! <b>Effects</b>: x.swap(y)
//!
//! <b>Complexity</b>: Constant.
friend void swap(stable_vector& x, stable_vector& y)
{ x.swap(y); }
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
private:
class insert_rollback
{
public:
insert_rollback(stable_vector &sv, index_iterator &it_past_constructed, const index_iterator &it_past_new)
: m_sv(sv), m_it_past_constructed(it_past_constructed), m_it_past_new(it_past_new)
{}
~insert_rollback()
{
if(m_it_past_constructed != m_it_past_new){
m_sv.priv_put_in_pool(node_ptr_traits::static_cast_from(*m_it_past_constructed));
index_iterator e = m_sv.index.erase(m_it_past_constructed, m_it_past_new);
index_traits_type::fix_up_pointers_from(m_sv.index, e);
}
}
private:
stable_vector &m_sv;
index_iterator &m_it_past_constructed;
const index_iterator &m_it_past_new;
};
class push_back_rollback
{
public:
push_back_rollback(stable_vector &sv, const node_ptr &p)
: m_sv(sv), m_p(p)
{}
~push_back_rollback()
{
if(m_p){
m_sv.priv_put_in_pool(m_p);
}
}
void release()
{ m_p = node_ptr(); }
private:
stable_vector &m_sv;
node_ptr m_p;
};
index_iterator priv_insert_forward_non_templated(size_type pos, size_type num_new)
{
index_traits_type::initialize_end_node(this->index, this->internal_data.end_node, num_new);
//Now try to fill the pool with new data
if(this->internal_data.pool_size < num_new){
this->priv_increase_pool(num_new - this->internal_data.pool_size);
}
//Now try to make room in the vector
const node_base_ptr_ptr old_buffer = this->index.data();
this->index.insert(this->index.begin() + pos, num_new, node_ptr());
bool new_buffer = this->index.data() != old_buffer;
//Fix the pointers for the newly allocated buffer
const index_iterator index_beg = this->index.begin();
if(new_buffer){
index_traits_type::fix_up_pointers(index_beg, index_beg + pos);
}
return index_beg + pos;
}
bool priv_capacity_bigger_than_size() const
{
return this->index.capacity() > this->index.size() &&
this->internal_data.pool_size > 0;
}
template <class U>
void priv_push_back(BOOST_MOVE_CATCH_FWD(U) x)
{
if(this->priv_capacity_bigger_than_size()){
//Enough memory in the pool and in the index
const node_ptr p = this->priv_get_from_pool();
BOOST_ASSERT(!!p);
{
push_back_rollback rollback(*this, p);
//This might throw
this->priv_build_node_from_convertible(p, ::boost::forward<U>(x));
rollback.release();
}
//This can't throw as there is room for a new elements in the index
index_iterator new_index = this->index.insert(this->index.end() - ExtraPointers, p);
index_traits_type::fix_up_pointers_from(this->index, new_index);
}
else{
this->insert(this->cend(), ::boost::forward<U>(x));
}
}
iterator priv_insert(const_iterator position, const value_type &t)
{
typedef constant_iterator<value_type, difference_type> cvalue_iterator;
return this->insert(position, cvalue_iterator(t, 1), cvalue_iterator());
}
iterator priv_insert(const_iterator position, BOOST_RV_REF(T) x)
{
typedef repeat_iterator<T, difference_type> repeat_it;
typedef boost::move_iterator<repeat_it> repeat_move_it;
//Just call more general insert(pos, size, value) and return iterator
return this->insert(position, repeat_move_it(repeat_it(x, 1)), repeat_move_it(repeat_it()));
}
void priv_clear_pool()
{
if(!this->index.empty() && this->index.back()){
node_base_ptr &pool_first_ref = *(this->index.end() - 2);
node_base_ptr &pool_last_ref = this->index.back();
multiallocation_chain holder;
holder.incorporate_after( holder.before_begin()
, node_ptr_traits::static_cast_from(pool_first_ref)
, node_ptr_traits::static_cast_from(pool_last_ref)
, internal_data.pool_size);
this->deallocate_individual(holder);
pool_first_ref = pool_last_ref = 0;
this->internal_data.pool_size = 0;
}
}
void priv_increase_pool(size_type n)
{
node_base_ptr &pool_first_ref = *(this->index.end() - 2);
node_base_ptr &pool_last_ref = this->index.back();
multiallocation_chain holder;
holder.incorporate_after( holder.before_begin()
, node_ptr_traits::static_cast_from(pool_first_ref)
, node_ptr_traits::static_cast_from(pool_last_ref)
, internal_data.pool_size);
multiallocation_chain m;
this->allocate_individual(n, m);
holder.splice_after(holder.before_begin(), m, m.before_begin(), m.last(), n);
this->internal_data.pool_size += n;
std::pair<node_ptr, node_ptr> data(holder.extract_data());
pool_first_ref = data.first;
pool_last_ref = data.second;
}
void priv_put_in_pool(const node_ptr &p)
{
node_base_ptr &pool_first_ref = *(this->index.end()-2);
node_base_ptr &pool_last_ref = this->index.back();
multiallocation_chain holder;
holder.incorporate_after( holder.before_begin()
, node_ptr_traits::static_cast_from(pool_first_ref)
, node_ptr_traits::static_cast_from(pool_last_ref)
, internal_data.pool_size);
holder.push_front(p);
++this->internal_data.pool_size;
std::pair<node_ptr, node_ptr> ret(holder.extract_data());
pool_first_ref = ret.first;
pool_last_ref = ret.second;
}
void priv_put_in_pool(multiallocation_chain &ch)
{
node_base_ptr &pool_first_ref = *(this->index.end()-(ExtraPointers-1));
node_base_ptr &pool_last_ref = this->index.back();
ch.incorporate_after( ch.before_begin()
, node_ptr_traits::static_cast_from(pool_first_ref)
, node_ptr_traits::static_cast_from(pool_last_ref)
, internal_data.pool_size);
this->internal_data.pool_size = ch.size();
const std::pair<node_ptr, node_ptr> ret(ch.extract_data());
pool_first_ref = ret.first;
pool_last_ref = ret.second;
}
node_ptr priv_get_from_pool()
{
//Precondition: index is not empty
BOOST_ASSERT(!this->index.empty());
node_base_ptr &pool_first_ref = *(this->index.end() - (ExtraPointers-1));
node_base_ptr &pool_last_ref = this->index.back();
multiallocation_chain holder;
holder.incorporate_after( holder.before_begin()
, node_ptr_traits::static_cast_from(pool_first_ref)
, node_ptr_traits::static_cast_from(pool_last_ref)
, internal_data.pool_size);
node_ptr ret = holder.pop_front();
--this->internal_data.pool_size;
if(!internal_data.pool_size){
pool_first_ref = pool_last_ref = node_ptr();
}
else{
const std::pair<node_ptr, node_ptr> data(holder.extract_data());
pool_first_ref = data.first;
pool_last_ref = data.second;
}
return ret;
}
node_base_ptr priv_get_end_node() const
{ return node_base_ptr_traits::pointer_to(const_cast<node_base_type&>(this->internal_data.end_node)); }
void priv_destroy_node(const node_type &n)
{
allocator_traits<node_allocator_type>::
destroy(this->priv_node_alloc(), container_detail::addressof(n.value));
static_cast<const node_base_type*>(&n)->~node_base_type();
}
void priv_delete_node(const node_ptr &n)
{
this->priv_destroy_node(*n);
this->priv_put_in_pool(n);
}
template<class Iterator>
void priv_build_node_from_it(const node_ptr &p, const index_iterator &up_index, const Iterator &it)
{
//This can throw
boost::container::construct_in_place
( this->priv_node_alloc()
, container_detail::addressof(p->value)
, it);
//This does not throw
::new(static_cast<node_base_type*>(container_detail::to_raw_pointer(p)))
node_base_type(index_traits_type::ptr_to_node_base_ptr(*up_index));
}
template<class ValueConvertible>
void priv_build_node_from_convertible(const node_ptr &p, BOOST_FWD_REF(ValueConvertible) value_convertible)
{
//This can throw
boost::container::allocator_traits<node_allocator_type>::construct
( this->priv_node_alloc()
, container_detail::addressof(p->value)
, ::boost::forward<ValueConvertible>(value_convertible));
//This does not throw
::new(static_cast<node_base_type*>(container_detail::to_raw_pointer(p))) node_base_type;
}
void priv_swap_members(stable_vector &x)
{
boost::container::swap_dispatch(this->internal_data.pool_size, x.internal_data.pool_size);
index_traits_type::readjust_end_node(this->index, this->internal_data.end_node);
index_traits_type::readjust_end_node(x.index, x.internal_data.end_node);
}
#if defined(STABLE_VECTOR_ENABLE_INVARIANT_CHECKING)
bool priv_invariant()const
{
index_type & index_ref = const_cast<index_type&>(this->index);
if(index.empty())
return !this->capacity() && !this->size();
if(this->priv_get_end_node() != *(index.end() - ExtraPointers)){
return false;
}
if(!index_traits_type::invariants(index_ref)){
return false;
}
size_type n = this->capacity() - this->size();
node_base_ptr &pool_first_ref = *(index_ref.end() - (ExtraPointers-1));
node_base_ptr &pool_last_ref = index_ref.back();
multiallocation_chain holder;
holder.incorporate_after( holder.before_begin()
, node_ptr_traits::static_cast_from(pool_first_ref)
, node_ptr_traits::static_cast_from(pool_last_ref)
, internal_data.pool_size);
typename multiallocation_chain::iterator beg(holder.begin()), end(holder.end());
size_type num_pool = 0;
while(beg != end){
++num_pool;
++beg;
}
return n >= num_pool && num_pool == internal_data.pool_size;
}
class invariant_checker
{
invariant_checker(const invariant_checker &);
invariant_checker & operator=(const invariant_checker &);
const stable_vector* p;
public:
invariant_checker(const stable_vector& v):p(&v){}
~invariant_checker(){BOOST_ASSERT(p->priv_invariant());}
void touch(){}
};
#endif
class ebo_holder
: public node_allocator_type
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(ebo_holder)
public:
template<class AllocatorRLValue>
explicit ebo_holder(BOOST_FWD_REF(AllocatorRLValue) a)
: node_allocator_type(boost::forward<AllocatorRLValue>(a))
, pool_size(0)
, end_node()
{}
ebo_holder()
: node_allocator_type()
, pool_size(0)
, end_node()
{}
size_type pool_size;
node_base_type end_node;
} internal_data;
node_allocator_type &priv_node_alloc() { return internal_data; }
const node_allocator_type &priv_node_alloc() const { return internal_data; }
index_type index;
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
};
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
#undef STABLE_VECTOR_CHECK_INVARIANT
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
/*
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class Allocator>
struct has_trivial_destructor_after_move<boost::container::stable_vector<T, Allocator> >
: public has_trivial_destructor_after_move<Allocator>::value
{};
*/
}}
#include <boost/container/detail/config_end.hpp>
#endif //BOOST_CONTAINER_STABLE_VECTOR_HPP