Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

boost/container/stable_vector.hpp

//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2008-2013. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
// Stable vector.
//
// Copyright 2008 Joaquin M Lopez Munoz.
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
//////////////////////////////////////////////////////////////////////////////

#ifndef BOOST_CONTAINER_STABLE_VECTOR_HPP
#define BOOST_CONTAINER_STABLE_VECTOR_HPP

#if defined(_MSC_VER)
#  pragma once
#endif

#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <boost/assert.hpp>
#include <boost/container/throw_exception.hpp>
#include <boost/container/detail/allocator_version_traits.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/algorithms.hpp>
#include <boost/container/allocator_traits.hpp>
#include <boost/container/throw_exception.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/aligned_storage.hpp>
#include <boost/move/utility.hpp>
#include <boost/move/iterator.hpp>
#include <boost/move/detail/move_helpers.hpp>
#include <algorithm> //max

#include <memory>
#include <new> //placement new

#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

#include <boost/container/vector.hpp>

//#define STABLE_VECTOR_ENABLE_INVARIANT_CHECKING

#endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

namespace boost {
namespace container {

#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

namespace stable_vector_detail{

template <class C>
class clear_on_destroy
{
   public:
   clear_on_destroy(C &c)
      :  c_(c), do_clear_(true)
   {}

   void release()
   {  do_clear_ = false; }

   ~clear_on_destroy()
   {
      if(do_clear_){
         c_.clear();
         c_.priv_clear_pool();
      }
   }

   private:
   clear_on_destroy(const clear_on_destroy &);
   clear_on_destroy &operator=(const clear_on_destroy &);
   C &c_;
   bool do_clear_;
};

template<typename Pointer>
struct node;

template<class VoidPtr>
struct node_base
{
   private:
   typedef typename boost::intrusive::
      pointer_traits<VoidPtr>                   void_ptr_traits;
   typedef typename void_ptr_traits::
      template rebind_pointer
         <node_base>::type                      node_base_ptr;
   typedef typename void_ptr_traits::
      template rebind_pointer
         <node_base_ptr>::type                  node_base_ptr_ptr;

   public:
   node_base(const node_base_ptr_ptr &n)
      : up(n)
   {}

   node_base()
      : up()
   {}

   node_base_ptr_ptr up;
};

template<typename Pointer>
struct node
   : public node_base
      <typename ::boost::intrusive::pointer_traits<Pointer>::template
         rebind_pointer<void>::type
      >
{
   private:
   node();

   public:
   typename ::boost::intrusive::pointer_traits<Pointer>::element_type value;
};

template<class VoidPtr, class VoidAllocator>
struct index_traits
{
   typedef boost::intrusive::
      pointer_traits
         <VoidPtr>                                    void_ptr_traits;
   typedef stable_vector_detail::
      node_base<VoidPtr>                              node_base_type;
   typedef typename void_ptr_traits::template
         rebind_pointer<node_base_type>::type         node_base_ptr;
   typedef typename void_ptr_traits::template
         rebind_pointer<node_base_ptr>::type          node_base_ptr_ptr;
   typedef boost::intrusive::
      pointer_traits<node_base_ptr>                   node_base_ptr_traits;
   typedef boost::intrusive::
      pointer_traits<node_base_ptr_ptr>               node_base_ptr_ptr_traits;
   typedef typename allocator_traits<VoidAllocator>::
         template portable_rebind_alloc
            <node_base_ptr>::type                     node_base_ptr_allocator;
   typedef ::boost::container::vector
      <node_base_ptr, node_base_ptr_allocator>        index_type;
   typedef typename index_type::iterator              index_iterator;
   typedef typename index_type::const_iterator        const_index_iterator;
   typedef typename index_type::size_type             size_type;

   static const size_type ExtraPointers = 3;
   //Stable vector stores metadata at the end of the index (node_base_ptr vector) with additional 3 pointers:
   //    back() is this->index.back() - ExtraPointers;
   //    end node index is    *(this->index.end() - 3)
   //    Node cache first is  *(this->index.end() - 2);
   //    Node cache last is   this->index.back();

   static node_base_ptr_ptr ptr_to_node_base_ptr(node_base_ptr &n)
   {  return node_base_ptr_ptr_traits::pointer_to(n);   }

   static void fix_up_pointers(index_iterator first, index_iterator last)
   {
      while(first != last){
         typedef typename index_type::reference node_base_ptr_ref;
         node_base_ptr_ref nbp = *first;
         nbp->up = index_traits::ptr_to_node_base_ptr(nbp);
         ++first;
      }
   }

   static index_iterator get_fix_up_end(index_type &index)
   {  return index.end() - (ExtraPointers - 1); }

   static void fix_up_pointers_from(index_type & index, index_iterator first)
   {  index_traits::fix_up_pointers(first, index_traits::get_fix_up_end(index));   }

   static void readjust_end_node(index_type &index, node_base_type &end_node)
   {
      if(!index.empty()){
         index_iterator end_node_it(index_traits::get_fix_up_end(index));
         node_base_ptr &end_node_idx_ref = *(--end_node_it);
         end_node_idx_ref = node_base_ptr_traits::pointer_to(end_node);
         end_node.up      = node_base_ptr_ptr_traits::pointer_to(end_node_idx_ref);
      }
      else{
         end_node.up = node_base_ptr_ptr();
      }
   }

   static void initialize_end_node(index_type &index, node_base_type &end_node, const size_type index_capacity_if_empty)
   {
      if(index.empty()){
         index.reserve(index_capacity_if_empty + ExtraPointers);
         index.resize(ExtraPointers);
         node_base_ptr &end_node_ref = *index.data();
         end_node_ref = node_base_ptr_traits::pointer_to(end_node);
         end_node.up = index_traits::ptr_to_node_base_ptr(end_node_ref);
      }
   }

   #ifdef STABLE_VECTOR_ENABLE_INVARIANT_CHECKING
   static bool invariants(index_type &index)
   {
      for( index_iterator it = index.begin()
         , it_end = index_traits::get_fix_up_end(index)
         ; it != it_end
         ; ++it){
         if((*it)->up != index_traits::ptr_to_node_base_ptr(*it)){
            return false;
         }
      }
      return true;
   }
   #endif   //STABLE_VECTOR_ENABLE_INVARIANT_CHECKING
};

} //namespace stable_vector_detail

template<typename Pointer, bool IsConst>
class stable_vector_iterator
{
   typedef boost::intrusive::pointer_traits<Pointer>                                non_const_ptr_traits;
   public:
	typedef std::random_access_iterator_tag                                          iterator_category;
   typedef typename non_const_ptr_traits::element_type                              value_type;
   typedef typename non_const_ptr_traits::difference_type                           difference_type;
   typedef typename ::boost::container::container_detail::if_c
      < IsConst
      , typename non_const_ptr_traits::template
         rebind_pointer<const value_type>::type
      , Pointer
      >::type                                                                       pointer;
   typedef boost::intrusive::pointer_traits<pointer>                                ptr_traits;
   typedef typename ptr_traits::reference                                           reference;

   private:
   typedef typename non_const_ptr_traits::template
         rebind_pointer<void>::type             void_ptr;
   typedef stable_vector_detail::node<Pointer>         node_type;
   typedef stable_vector_detail::node_base<void_ptr>   node_base_type;
   typedef typename non_const_ptr_traits::template
         rebind_pointer<node_type>::type        node_ptr;
   typedef boost::intrusive::
      pointer_traits<node_ptr>                  node_ptr_traits;
   typedef typename non_const_ptr_traits::template
         rebind_pointer<node_base_type>::type   node_base_ptr;
   typedef typename non_const_ptr_traits::template
         rebind_pointer<node_base_ptr>::type    node_base_ptr_ptr;

   node_base_ptr m_pn;

   public:

   explicit stable_vector_iterator(node_base_ptr p) BOOST_CONTAINER_NOEXCEPT
      : m_pn(p)
   {}

   stable_vector_iterator() BOOST_CONTAINER_NOEXCEPT
   {}

   stable_vector_iterator(stable_vector_iterator<Pointer, false> const& other) BOOST_CONTAINER_NOEXCEPT
      :  m_pn(other.node_pointer())
   {}

   node_ptr node_pointer() const BOOST_CONTAINER_NOEXCEPT
   {  return node_ptr_traits::static_cast_from(m_pn);  }

   public:
   //Pointer like operators
   reference operator*()  const BOOST_CONTAINER_NOEXCEPT
   {  return  node_pointer()->value;  }

   pointer   operator->() const BOOST_CONTAINER_NOEXCEPT
   {  return ptr_traits::pointer_to(this->operator*());  }

   //Increment / Decrement
   stable_vector_iterator& operator++() BOOST_CONTAINER_NOEXCEPT
   {
      node_base_ptr_ptr p(this->m_pn->up);
      this->m_pn = *(++p);
      return *this;
   }

   stable_vector_iterator operator++(int) BOOST_CONTAINER_NOEXCEPT
   {  stable_vector_iterator tmp(*this);  ++*this; return stable_vector_iterator(tmp); }

   stable_vector_iterator& operator--() BOOST_CONTAINER_NOEXCEPT
   {
      node_base_ptr_ptr p(this->m_pn->up);
      this->m_pn = *(--p);
      return *this;
   }

   stable_vector_iterator operator--(int) BOOST_CONTAINER_NOEXCEPT
   {  stable_vector_iterator tmp(*this);  --*this; return stable_vector_iterator(tmp);  }

   reference operator[](difference_type off) const BOOST_CONTAINER_NOEXCEPT
   {  return node_ptr_traits::static_cast_from(this->m_pn->up[off])->value;  }

   stable_vector_iterator& operator+=(difference_type off) BOOST_CONTAINER_NOEXCEPT
   {
      if(off) this->m_pn = this->m_pn->up[off];
      return *this;
   }

   friend stable_vector_iterator operator+(const stable_vector_iterator &left, difference_type off) BOOST_CONTAINER_NOEXCEPT
   {
      stable_vector_iterator tmp(left);
      tmp += off;
      return tmp;
   }

   friend stable_vector_iterator operator+(difference_type off, const stable_vector_iterator& right) BOOST_CONTAINER_NOEXCEPT
   {
      stable_vector_iterator tmp(right);
      tmp += off;
      return tmp;
   }

   stable_vector_iterator& operator-=(difference_type off) BOOST_CONTAINER_NOEXCEPT
   {  *this += -off; return *this;   }

   friend stable_vector_iterator operator-(const stable_vector_iterator &left, difference_type off) BOOST_CONTAINER_NOEXCEPT
   {
      stable_vector_iterator tmp(left);
      tmp -= off;
      return tmp;
   }

   friend difference_type operator-(const stable_vector_iterator& left, const stable_vector_iterator& right) BOOST_CONTAINER_NOEXCEPT
   {  return left.m_pn->up - right.m_pn->up;  }

   //Comparison operators
   friend bool operator==   (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_pn == r.m_pn;  }

   friend bool operator!=   (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_pn != r.m_pn;  }

   friend bool operator<    (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_pn->up < r.m_pn->up;  }

   friend bool operator<=   (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_pn->up <= r.m_pn->up;  }

   friend bool operator>    (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_pn->up > r.m_pn->up;  }

   friend bool operator>=   (const stable_vector_iterator& l, const stable_vector_iterator& r) BOOST_CONTAINER_NOEXCEPT
   {  return l.m_pn->up >= r.m_pn->up;  }
};

   #if defined(STABLE_VECTOR_ENABLE_INVARIANT_CHECKING)

      #define STABLE_VECTOR_CHECK_INVARIANT \
               invariant_checker BOOST_JOIN(check_invariant_,__LINE__)(*this); \
               BOOST_JOIN(check_invariant_,__LINE__).touch();

   #else //STABLE_VECTOR_ENABLE_INVARIANT_CHECKING

      #define STABLE_VECTOR_CHECK_INVARIANT

   #endif   //#if defined(STABLE_VECTOR_ENABLE_INVARIANT_CHECKING)

#endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

//! Originally developed by Joaquin M. Lopez Munoz, stable_vector is a std::vector
//! drop-in replacement implemented as a node container, offering iterator and reference
//! stability.
//!
//! Here are the details taken from the author's blog
//! (<a href="http://bannalia.blogspot.com/2008/09/introducing-stablevector.html" >
//! Introducing stable_vector</a>):
//!
//! We present stable_vector, a fully STL-compliant stable container that provides
//! most of the features of std::vector except element contiguity.
//!
//! General properties: stable_vector satisfies all the requirements of a container,
//! a reversible container and a sequence and provides all the optional operations
//! present in std::vector. Like std::vector, iterators are random access.
//! stable_vector does not provide element contiguity; in exchange for this absence,
//! the container is stable, i.e. references and iterators to an element of a stable_vector
//! remain valid as long as the element is not erased, and an iterator that has been
//! assigned the return value of end() always remain valid until the destruction of
//! the associated  stable_vector.
//!
//! Operation complexity: The big-O complexities of stable_vector operations match
//! exactly those of std::vector. In general, insertion/deletion is constant time at
//! the end of the sequence and linear elsewhere. Unlike std::vector, stable_vector
//! does not internally perform any value_type destruction, copy or assignment
//! operations other than those exactly corresponding to the insertion of new
//! elements or deletion of stored elements, which can sometimes compensate in terms
//! of performance for the extra burden of doing more pointer manipulation and an
//! additional allocation per element.
//!
//! Exception safety: As stable_vector does not internally copy elements around, some
//! operations provide stronger exception safety guarantees than in std::vector.
//!
//! \tparam T The type of object that is stored in the stable_vector
//! \tparam Allocator The allocator used for all internal memory management
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Allocator = std::allocator<T> >
#else
template <class T, class Allocator>
#endif
class stable_vector
{
   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
   typedef allocator_traits<Allocator>                allocator_traits_type;
   typedef boost::intrusive::
      pointer_traits
         <typename allocator_traits_type::pointer>    ptr_traits;
   typedef typename ptr_traits::
         template rebind_pointer<void>::type          void_ptr;
   typedef typename allocator_traits_type::
      template portable_rebind_alloc
         <void>::type                                 void_allocator_type;
   typedef stable_vector_detail::index_traits
      <void_ptr, void_allocator_type>                 index_traits_type;
   typedef typename index_traits_type::node_base_type node_base_type;
   typedef typename index_traits_type::node_base_ptr  node_base_ptr;
   typedef typename index_traits_type::
      node_base_ptr_ptr                               node_base_ptr_ptr;
   typedef typename index_traits_type::
      node_base_ptr_traits                            node_base_ptr_traits;
   typedef typename index_traits_type::
      node_base_ptr_ptr_traits                        node_base_ptr_ptr_traits;
   typedef typename index_traits_type::index_type     index_type;
   typedef typename index_traits_type::index_iterator index_iterator;
   typedef typename index_traits_type::
      const_index_iterator                            const_index_iterator;
   typedef stable_vector_detail::node
      <typename ptr_traits::pointer>                  node_type;
   typedef typename ptr_traits::template
      rebind_pointer<node_type>::type                 node_ptr;
   typedef boost::intrusive::
      pointer_traits<node_ptr>                        node_ptr_traits;
   typedef typename ptr_traits::template
      rebind_pointer<const node_type>::type           const_node_ptr;
   typedef boost::intrusive::
      pointer_traits<const_node_ptr>                  const_node_ptr_traits;
   typedef typename node_ptr_traits::reference        node_reference;
   typedef typename const_node_ptr_traits::reference  const_node_reference;

   typedef ::boost::container::container_detail::
      integral_constant<unsigned, 1>                  allocator_v1;
   typedef ::boost::container::container_detail::
      integral_constant<unsigned, 2>                  allocator_v2;
   typedef ::boost::container::container_detail::integral_constant
      <unsigned, boost::container::container_detail::
      version<Allocator>::value>                              alloc_version;
   typedef typename allocator_traits_type::
      template portable_rebind_alloc
         <node_type>::type                            node_allocator_type;

   typedef ::boost::container::container_detail::
      allocator_version_traits<node_allocator_type>                    allocator_version_traits_t;
   typedef typename allocator_version_traits_t::multiallocation_chain  multiallocation_chain;

   node_ptr allocate_one()
   {  return allocator_version_traits_t::allocate_one(this->priv_node_alloc());   }

   void deallocate_one(const node_ptr &p)
   {  allocator_version_traits_t::deallocate_one(this->priv_node_alloc(), p);   }

   void allocate_individual(typename allocator_traits_type::size_type n, multiallocation_chain &m)
   {  allocator_version_traits_t::allocate_individual(this->priv_node_alloc(), n, m);   }

   void deallocate_individual(multiallocation_chain &holder)
   {  allocator_version_traits_t::deallocate_individual(this->priv_node_alloc(), holder);   }

   friend class stable_vector_detail::clear_on_destroy<stable_vector>;
   typedef stable_vector_iterator
      < typename allocator_traits<Allocator>::pointer
      , false>                                           iterator_impl;
   typedef stable_vector_iterator
      < typename allocator_traits<Allocator>::pointer
      , false>                                           const_iterator_impl;
   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
   public:

   //////////////////////////////////////////////
   //
   //                    types
   //
   //////////////////////////////////////////////
   typedef T                                                                           value_type;
   typedef typename ::boost::container::allocator_traits<Allocator>::pointer           pointer;
   typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer     const_pointer;
   typedef typename ::boost::container::allocator_traits<Allocator>::reference         reference;
   typedef typename ::boost::container::allocator_traits<Allocator>::const_reference   const_reference;
   typedef typename ::boost::container::allocator_traits<Allocator>::size_type         size_type;
   typedef typename ::boost::container::allocator_traits<Allocator>::difference_type   difference_type;
   typedef Allocator                                                                   allocator_type;
   typedef node_allocator_type                                                         stored_allocator_type;
   typedef BOOST_CONTAINER_IMPDEF(iterator_impl)                                       iterator;
   typedef BOOST_CONTAINER_IMPDEF(const_iterator_impl)                                 const_iterator;
   typedef BOOST_CONTAINER_IMPDEF(std::reverse_iterator<iterator>)                     reverse_iterator;
   typedef BOOST_CONTAINER_IMPDEF(std::reverse_iterator<const_iterator>)               const_reverse_iterator;

   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
   private:
   BOOST_COPYABLE_AND_MOVABLE(stable_vector)
   static const size_type ExtraPointers = index_traits_type::ExtraPointers;

   class insert_rollback;
   friend class insert_rollback;

   class push_back_rollback;
   friend class push_back_rollback;
   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

   public:
   //////////////////////////////////////////////
   //
   //          construct/copy/destroy
   //
   //////////////////////////////////////////////

   //! <b>Effects</b>: Default constructs a stable_vector.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor throws.
   //!
   //! <b>Complexity</b>: Constant.
   stable_vector()
      : internal_data(), index()
   {
      STABLE_VECTOR_CHECK_INVARIANT;
   }

   //! <b>Effects</b>: Constructs a stable_vector taking the allocator as parameter.
   //!
   //! <b>Throws</b>: Nothing
   //!
   //! <b>Complexity</b>: Constant.
   explicit stable_vector(const allocator_type& al) BOOST_CONTAINER_NOEXCEPT
      : internal_data(al), index(al)
   {
      STABLE_VECTOR_CHECK_INVARIANT;
   }

   //! <b>Effects</b>: Constructs a stable_vector that will use a copy of allocator a
   //!   and inserts n value initialized values.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor
   //!   throws or T's default or copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   explicit stable_vector(size_type n)
      : internal_data(), index()
   {
      stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
      this->resize(n);
      STABLE_VECTOR_CHECK_INVARIANT;
      cod.release();
   }

   //! <b>Effects</b>: Constructs a stable_vector that will use a copy of allocator a
   //!   and inserts n default initialized values.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor
   //!   throws or T's default or copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   //!
   //! <b>Note</b>: Non-standard extension
   stable_vector(size_type n, default_init_t)
      : internal_data(), index()
   {
      stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
      this->resize(n, default_init);
      STABLE_VECTOR_CHECK_INVARIANT;
      cod.release();
   }

   //! <b>Effects</b>: Constructs a stable_vector that will use a copy of allocator a
   //!   and inserts n copies of value.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor
   //!   throws or T's default or copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   stable_vector(size_type n, const T& t, const allocator_type& al = allocator_type())
      : internal_data(al), index(al)
   {
      stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
      this->insert(this->cend(), n, t);
      STABLE_VECTOR_CHECK_INVARIANT;
      cod.release();
   }

   //! <b>Effects</b>: Constructs a stable_vector that will use a copy of allocator a
   //!   and inserts a copy of the range [first, last) in the stable_vector.
   //!
   //! <b>Throws</b>: If allocator_type's default constructor
   //!   throws or T's constructor taking a dereferenced InIt throws.
   //!
   //! <b>Complexity</b>: Linear to the range [first, last).
   template <class InputIterator>
   stable_vector(InputIterator first,InputIterator last, const allocator_type& al = allocator_type())
      : internal_data(al), index(al)
   {
      stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
      this->insert(this->cend(), first, last);
      STABLE_VECTOR_CHECK_INVARIANT;
      cod.release();
   }

   //! <b>Effects</b>: Copy constructs a stable_vector.
   //!
   //! <b>Postcondition</b>: x == *this.
   //!
   //! <b>Complexity</b>: Linear to the elements x contains.
   stable_vector(const stable_vector& x)
      : internal_data(allocator_traits<node_allocator_type>::
         select_on_container_copy_construction(x.priv_node_alloc()))
      , index(allocator_traits<allocator_type>::
         select_on_container_copy_construction(x.index.get_stored_allocator()))
   {
      stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
      this->insert(this->cend(), x.begin(), x.end());
      STABLE_VECTOR_CHECK_INVARIANT;
      cod.release();
   }

   //! <b>Effects</b>: Move constructor. Moves mx's resources to *this.
   //!
   //! <b>Throws</b>: If allocator_type's copy constructor throws.
   //!
   //! <b>Complexity</b>: Constant.
   stable_vector(BOOST_RV_REF(stable_vector) x)
      : internal_data(boost::move(x.priv_node_alloc())), index(boost::move(x.index))
   {
      this->priv_swap_members(x);
   }

   //! <b>Effects</b>: Copy constructs a stable_vector using the specified allocator.
   //!
   //! <b>Postcondition</b>: x == *this.
   //!
   //! <b>Complexity</b>: Linear to the elements x contains.
   stable_vector(const stable_vector& x, const allocator_type &a)
      : internal_data(a), index(a)
   {
      stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
      this->insert(this->cend(), x.begin(), x.end());
      STABLE_VECTOR_CHECK_INVARIANT;
      cod.release();
   }

   //! <b>Effects</b>: Move constructor using the specified allocator.
   //!                 Moves mx's resources to *this.
   //!
   //! <b>Throws</b>: If allocator_type's copy constructor throws.
   //!
   //! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise
   stable_vector(BOOST_RV_REF(stable_vector) x, const allocator_type &a)
      : internal_data(a), index(a)
   {
      if(this->priv_node_alloc() == x.priv_node_alloc()){
         this->priv_swap_members(x);
      }
      else{
         stable_vector_detail::clear_on_destroy<stable_vector> cod(*this);
         this->insert(this->cend(), x.begin(), x.end());
         STABLE_VECTOR_CHECK_INVARIANT;
         cod.release();
      }
   }

   //! <b>Effects</b>: Destroys the stable_vector. All stored values are destroyed
   //!   and used memory is deallocated.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of elements.
   ~stable_vector()
   {
      this->clear();
      this->priv_clear_pool();
   }

   //! <b>Effects</b>: Makes *this contain the same elements as x.
   //!
   //! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
   //! of each of x's elements.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the number of elements in x.
   stable_vector& operator=(BOOST_COPY_ASSIGN_REF(stable_vector) x)
   {
      STABLE_VECTOR_CHECK_INVARIANT;
      if (&x != this){
         node_allocator_type &this_alloc     = this->priv_node_alloc();
         const node_allocator_type &x_alloc  = x.priv_node_alloc();
         container_detail::bool_<allocator_traits_type::
            propagate_on_container_copy_assignment::value> flag;
         if(flag && this_alloc != x_alloc){
            this->clear();
            this->shrink_to_fit();
         }
         container_detail::assign_alloc(this->priv_node_alloc(), x.priv_node_alloc(), flag);
         container_detail::assign_alloc(this->index.get_stored_allocator(), x.index.get_stored_allocator(), flag);
         this->assign(x.begin(), x.end());
      }
      return *this;
   }

   //! <b>Effects</b>: Move assignment. All mx's values are transferred to *this.
   //!
   //! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
   //!   before the function.
   //!
   //! <b>Throws</b>: If allocator_traits_type::propagate_on_container_move_assignment
   //!   is false and (allocation throws or T's move constructor throws)
   //!
   //! <b>Complexity</b>: Constant if allocator_traits_type::
   //!   propagate_on_container_move_assignment is true or
   //!   this->get>allocator() == x.get_allocator(). Linear otherwise.
   stable_vector& operator=(BOOST_RV_REF(stable_vector) x)
      BOOST_CONTAINER_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value)
   {
      //for move constructor, no aliasing (&x != this) is assummed.
      BOOST_ASSERT(this != &x);
      node_allocator_type &this_alloc = this->priv_node_alloc();
      node_allocator_type &x_alloc    = x.priv_node_alloc();
      const bool propagate_alloc = allocator_traits_type::
            propagate_on_container_move_assignment::value;
      container_detail::bool_<propagate_alloc> flag;
      const bool allocators_equal = this_alloc == x_alloc; (void)allocators_equal;
      //Resources can be transferred if both allocators are
      //going to be equal after this function (either propagated or already equal)
      if(propagate_alloc || allocators_equal){
         //Destroy objects but retain memory in case x reuses it in the future
         this->clear();
         //Move allocator if needed
         container_detail::move_alloc(this_alloc, x_alloc, flag);
         //Take resources
         this->index = boost::move(x.index);
         this->priv_swap_members(x);
      }
      //Else do a one by one move
      else{
         this->assign( boost::make_move_iterator(x.begin())
                     , boost::make_move_iterator(x.end()));
      }
      return *this;
   }

   //! <b>Effects</b>: Assigns the n copies of val to *this.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   void assign(size_type n, const T& t)
   {
      typedef constant_iterator<value_type, difference_type> cvalue_iterator;
      this->assign(cvalue_iterator(t, n), cvalue_iterator());
   }

   //! <b>Effects</b>: Assigns the the range [first, last) to *this.
   //!
   //! <b>Throws</b>: If memory allocation throws or
   //!   T's constructor from dereferencing InpIt throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   template<typename InputIterator>
   void assign(InputIterator first,InputIterator last
      #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
      , typename container_detail::enable_if_c
         < !container_detail::is_convertible<InputIterator, size_type>::value
         >::type * = 0
      #endif
      )
   {
      STABLE_VECTOR_CHECK_INVARIANT;
      iterator first1   = this->begin();
      iterator last1    = this->end();
      for ( ; first1 != last1 && first != last; ++first1, ++first)
         *first1 = *first;
      if (first == last){
         this->erase(first1, last1);
      }
      else{
         this->insert(last1, first, last);
      }
   }

   //! <b>Effects</b>: Returns a copy of the internal allocator.
   //!
   //! <b>Throws</b>: If allocator's copy constructor throws.
   //!
   //! <b>Complexity</b>: Constant.
   allocator_type get_allocator() const
   {  return this->priv_node_alloc();  }

   //! <b>Effects</b>: Returns a reference to the internal allocator.
   //!
   //! <b>Throws</b>: Nothing
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Note</b>: Non-standard extension.
   const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT
   {  return this->priv_node_alloc(); }

   //! <b>Effects</b>: Returns a reference to the internal allocator.
   //!
   //! <b>Throws</b>: Nothing
   //!
   //! <b>Complexity</b>: Constant.
   //!
   //! <b>Note</b>: Non-standard extension.
   stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT
   {  return this->priv_node_alloc(); }

   //////////////////////////////////////////////
   //
   //                iterators
   //
   //////////////////////////////////////////////

   //! <b>Effects</b>: Returns an iterator to the first element contained in the stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   iterator  begin() BOOST_CONTAINER_NOEXCEPT
   {   return (this->index.empty()) ? this->end(): iterator(node_ptr_traits::static_cast_from(this->index.front())); }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator  begin() const BOOST_CONTAINER_NOEXCEPT
   {   return (this->index.empty()) ? this->cend() : const_iterator(node_ptr_traits::static_cast_from(this->index.front())) ;   }

   //! <b>Effects</b>: Returns an iterator to the end of the stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   iterator        end() BOOST_CONTAINER_NOEXCEPT
   {  return iterator(this->priv_get_end_node());  }

   //! <b>Effects</b>: Returns a const_iterator to the end of the stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator  end() const BOOST_CONTAINER_NOEXCEPT
   {  return const_iterator(this->priv_get_end_node());  }

   //! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
   //! of the reversed stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reverse_iterator       rbegin() BOOST_CONTAINER_NOEXCEPT
   {  return reverse_iterator(this->end());  }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
   //! of the reversed stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT
   {  return const_reverse_iterator(this->end());  }

   //! <b>Effects</b>: Returns a reverse_iterator pointing to the end
   //! of the reversed stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reverse_iterator       rend() BOOST_CONTAINER_NOEXCEPT
   {  return reverse_iterator(this->begin());   }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
   //! of the reversed stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT
   {  return const_reverse_iterator(this->begin());   }

   //! <b>Effects</b>: Returns a const_iterator to the first element contained in the stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator         cbegin() const BOOST_CONTAINER_NOEXCEPT
   {  return this->begin();   }

   //! <b>Effects</b>: Returns a const_iterator to the end of the stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_iterator         cend() const BOOST_CONTAINER_NOEXCEPT
   {  return this->end();  }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
   //! of the reversed stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT
   {  return this->rbegin();  }

   //! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
   //! of the reversed stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reverse_iterator crend()const BOOST_CONTAINER_NOEXCEPT
   {  return this->rend(); }

   //////////////////////////////////////////////
   //
   //                capacity
   //
   //////////////////////////////////////////////

   //! <b>Effects</b>: Returns true if the stable_vector contains no elements.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   bool empty() const BOOST_CONTAINER_NOEXCEPT
   {  return this->index.size() <= ExtraPointers;  }

   //! <b>Effects</b>: Returns the number of the elements contained in the stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type size() const BOOST_CONTAINER_NOEXCEPT
   {
      const size_type index_size = this->index.size();
      return (index_size - ExtraPointers) & (std::size_t(0u) -std::size_t(index_size != 0));
   }

   //! <b>Effects</b>: Returns the largest possible size of the stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type max_size() const BOOST_CONTAINER_NOEXCEPT
   {  return this->index.max_size() - ExtraPointers;  }

   //! <b>Effects</b>: Inserts or erases elements at the end such that
   //!   the size becomes n. New elements are value initialized.
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's value initialization throws.
   //!
   //! <b>Complexity</b>: Linear to the difference between size() and new_size.
   void resize(size_type n)
   {
      typedef value_init_construct_iterator<value_type, difference_type> value_init_iterator;
      STABLE_VECTOR_CHECK_INVARIANT;
      if(n > this->size())
         this->insert(this->cend(), value_init_iterator(n - this->size()), value_init_iterator());
      else if(n < this->size())
         this->erase(this->cbegin() + n, this->cend());
   }

   //! <b>Effects</b>: Inserts or erases elements at the end such that
   //!   the size becomes n. New elements are default initialized.
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's default initialization throws.
   //!
   //! <b>Complexity</b>: Linear to the difference between size() and new_size.
   //!
   //! <b>Note</b>: Non-standard extension
   void resize(size_type n, default_init_t)
   {
      typedef default_init_construct_iterator<value_type, difference_type> default_init_iterator;
      STABLE_VECTOR_CHECK_INVARIANT;
      if(n > this->size())
         this->insert(this->cend(), default_init_iterator(n - this->size()), default_init_iterator());
      else if(n < this->size())
         this->erase(this->cbegin() + n, this->cend());
   }

   //! <b>Effects</b>: Inserts or erases elements at the end such that
   //!   the size becomes n. New elements are copy constructed from x.
   //!
   //! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to the difference between size() and new_size.
   void resize(size_type n, const T& t)
   {
      STABLE_VECTOR_CHECK_INVARIANT;
      if(n > this->size())
         this->insert(this->cend(), n - this->size(), t);
      else if(n < this->size())
         this->erase(this->cbegin() + n, this->cend());
   }

   //! <b>Effects</b>: Number of elements for which memory has been allocated.
   //!   capacity() is always greater than or equal to size().
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   size_type capacity() const BOOST_CONTAINER_NOEXCEPT
   {
      const size_type index_size             = this->index.size();
      BOOST_ASSERT(!index_size || index_size >= ExtraPointers);
      const size_type bucket_extra_capacity = this->index.capacity()- index_size;
      const size_type node_extra_capacity   = this->internal_data.pool_size;
      const size_type extra_capacity        = (bucket_extra_capacity < node_extra_capacity)
         ? bucket_extra_capacity : node_extra_capacity;
      const size_type index_offset =
         (ExtraPointers + extra_capacity) & (size_type(0u) - size_type(index_size != 0));
      return index_size - index_offset;
   }

   //! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
   //!   effect. Otherwise, it is a request for allocation of additional memory.
   //!   If the request is successful, then capacity() is greater than or equal to
   //!   n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
   //!
   //! <b>Throws</b>: If memory allocation allocation throws.
   void reserve(size_type n)
   {
      STABLE_VECTOR_CHECK_INVARIANT;
      if(n > this->max_size()){
         throw_length_error("stable_vector::reserve max_size() exceeded");
      }

      size_type sz         = this->size();
      size_type old_capacity = this->capacity();
      if(n > old_capacity){
         index_traits_type::initialize_end_node(this->index, this->internal_data.end_node, n);
         const void * old_ptr = &index[0];
         this->index.reserve(n + ExtraPointers);
         bool realloced = &index[0] != old_ptr;
         //Fix the pointers for the newly allocated buffer
         if(realloced){
            index_traits_type::fix_up_pointers_from(this->index, this->index.begin());
         }
         //Now fill pool if data is not enough
         if((n - sz) > this->internal_data.pool_size){
            this->priv_increase_pool((n - sz) - this->internal_data.pool_size);
         }
      }
   }

   //! <b>Effects</b>: Tries to deallocate the excess of memory created
   //!   with previous allocations. The size of the stable_vector is unchanged
   //!
   //! <b>Throws</b>: If memory allocation throws.
   //!
   //! <b>Complexity</b>: Linear to size().
   void shrink_to_fit()
   {
      if(this->capacity()){
         //First empty allocated node pool
         this->priv_clear_pool();
         //If empty completely destroy the index, let's recover default-constructed state
         if(this->empty()){
            this->index.clear();
            this->index.shrink_to_fit();
            this->internal_data.end_node.up = node_base_ptr_ptr();
         }
         //Otherwise, try to shrink-to-fit the index and readjust pointers if necessary
         else{
            const void* old_ptr = &index[0];
            this->index.shrink_to_fit();
            bool realloced = &index[0] != old_ptr;
            //Fix the pointers for the newly allocated buffer
            if(realloced){
               index_traits_type::fix_up_pointers_from(this->index, this->index.begin());
            }
         }
      }
   }

   //////////////////////////////////////////////
   //
   //               element access
   //
   //////////////////////////////////////////////

   //! <b>Requires</b>: !empty()
   //!
   //! <b>Effects</b>: Returns a reference to the first
   //!   element of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reference front() BOOST_CONTAINER_NOEXCEPT
   {  return static_cast<node_reference>(*this->index.front()).value;  }

   //! <b>Requires</b>: !empty()
   //!
   //! <b>Effects</b>: Returns a const reference to the first
   //!   element of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reference front() const BOOST_CONTAINER_NOEXCEPT
   {  return static_cast<const_node_reference>(*this->index.front()).value;  }

   //! <b>Requires</b>: !empty()
   //!
   //! <b>Effects</b>: Returns a reference to the last
   //!   element of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reference back() BOOST_CONTAINER_NOEXCEPT
   {  return static_cast<node_reference>(*this->index[this->size()-1u]).value;  }

   //! <b>Requires</b>: !empty()
   //!
   //! <b>Effects</b>: Returns a const reference to the last
   //!   element of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reference back() const BOOST_CONTAINER_NOEXCEPT
   {  return static_cast<const_node_reference>(*this->index[this->size()-1u]).value;  }

   //! <b>Requires</b>: size() > n.
   //!
   //! <b>Effects</b>: Returns a reference to the nth element
   //!   from the beginning of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   reference operator[](size_type n) BOOST_CONTAINER_NOEXCEPT
   {
      BOOST_ASSERT(n < this->size());
      return static_cast<node_reference>(*this->index[n]).value;
   }

   //! <b>Requires</b>: size() > n.
   //!
   //! <b>Effects</b>: Returns a const reference to the nth element
   //!   from the beginning of the container.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   const_reference operator[](size_type n) const BOOST_CONTAINER_NOEXCEPT
   {
      BOOST_ASSERT(n < this->size());
      return static_cast<const_node_reference>(*this->index[n]).value;
   }

   //! <b>Requires</b>: size() > n.
   //!
   //! <b>Effects</b>: Returns a reference to the nth element
   //!   from the beginning of the container.
   //!
   //! <b>Throws</b>: std::range_error if n >= size()
   //!
   //! <b>Complexity</b>: Constant.
   reference at(size_type n)
   {
      if(n >= this->size()){
         throw_out_of_range("vector::at invalid subscript");
      }
      return operator[](n);
   }

   //! <b>Requires</b>: size() > n.
   //!
   //! <b>Effects</b>: Returns a const reference to the nth element
   //!   from the beginning of the container.
   //!
   //! <b>Throws</b>: std::range_error if n >= size()
   //!
   //! <b>Complexity</b>: Constant.
   const_reference at(size_type n)const
   {
      if(n >= this->size()){
         throw_out_of_range("vector::at invalid subscript");
      }
      return operator[](n);
   }

   //////////////////////////////////////////////
   //
   //                modifiers
   //
   //////////////////////////////////////////////

   #if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)

   //! <b>Effects</b>: Inserts an object of type T constructed with
   //!   std::forward<Args>(args)... in the end of the stable_vector.
   //!
   //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   template<class ...Args>
   void emplace_back(Args &&...args)
   {
      typedef emplace_functor<Args...>         EmplaceFunctor;
      typedef emplace_iterator<value_type, EmplaceFunctor, difference_type> EmplaceIterator;
      EmplaceFunctor &&ef = EmplaceFunctor(boost::forward<Args>(args)...);
      this->insert(this->cend(), EmplaceIterator(ef), EmplaceIterator());
   }

   //! <b>Requires</b>: position must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Inserts an object of type T constructed with
   //!   std::forward<Args>(args)... before position
   //!
   //! <b>Throws</b>: If memory allocation throws or the in-place constructor throws.
   //!
   //! <b>Complexity</b>: If position is end(), amortized constant time
   //!   Linear time otherwise.
   template<class ...Args>
   iterator emplace(const_iterator position, Args && ...args)
   {
      //Just call more general insert(pos, size, value) and return iterator
      size_type pos_n = position - cbegin();
      typedef emplace_functor<Args...>         EmplaceFunctor;
      typedef emplace_iterator<value_type, EmplaceFunctor, difference_type> EmplaceIterator;
      EmplaceFunctor &&ef = EmplaceFunctor(boost::forward<Args>(args)...);
      this->insert(position, EmplaceIterator(ef), EmplaceIterator());
      return iterator(this->begin() + pos_n);
   }

   #else

   #define BOOST_PP_LOCAL_MACRO(n)                                                              \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)       \
   void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                        \
   {                                                                                            \
      typedef BOOST_PP_CAT(BOOST_PP_CAT(emplace_functor, n), arg)                               \
         BOOST_PP_EXPR_IF(n, <) BOOST_PP_ENUM_PARAMS(n, P) BOOST_PP_EXPR_IF(n, >)               \
            EmplaceFunctor;                                                                     \
      typedef emplace_iterator<value_type, EmplaceFunctor, difference_type>  EmplaceIterator;   \
      EmplaceFunctor ef BOOST_PP_LPAREN_IF(n)                                                   \
                        BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)                   \
                        BOOST_PP_RPAREN_IF(n);                                                  \
      this->insert(this->cend() , EmplaceIterator(ef), EmplaceIterator());                      \
   }                                                                                            \
                                                                                                \
   BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >)       \
   iterator emplace(const_iterator pos                                                          \
           BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _))                         \
   {                                                                                            \
      typedef BOOST_PP_CAT(BOOST_PP_CAT(emplace_functor, n), arg)                               \
         BOOST_PP_EXPR_IF(n, <) BOOST_PP_ENUM_PARAMS(n, P) BOOST_PP_EXPR_IF(n, >)               \
            EmplaceFunctor;                                                                     \
      typedef emplace_iterator<value_type, EmplaceFunctor, difference_type>  EmplaceIterator;   \
      EmplaceFunctor ef BOOST_PP_LPAREN_IF(n)                                                   \
                        BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)                   \
                        BOOST_PP_RPAREN_IF(n);                                                  \
      size_type pos_n = pos - this->cbegin();                                                   \
      this->insert(pos, EmplaceIterator(ef), EmplaceIterator());                                \
      return iterator(this->begin() + pos_n);                                                   \
   }                                                                                            \
   //!
   #define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
   #include BOOST_PP_LOCAL_ITERATE()

   #endif   //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING

   #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   //! <b>Effects</b>: Inserts a copy of x at the end of the stable_vector.
   //!
   //! <b>Throws</b>: If memory allocation throws or
   //!   T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   void push_back(const T &x);

   //! <b>Effects</b>: Constructs a new element in the end of the stable_vector
   //!   and moves the resources of mx to this new element.
   //!
   //! <b>Throws</b>: If memory allocation throws.
   //!
   //! <b>Complexity</b>: Amortized constant time.
   void push_back(T &&x);
   #else
   BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)
   #endif

   #if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   //! <b>Requires</b>: position must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert a copy of x before position.
   //!
   //! <b>Returns</b>: An iterator to the inserted element.
   //!
   //! <b>Throws</b>: If memory allocation throws or x's copy constructor throws.
   //!
   //! <b>Complexity</b>: If position is end(), amortized constant time
   //!   Linear time otherwise.
   iterator insert(const_iterator position, const T &x);

   //! <b>Requires</b>: position must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert a new element before position with mx's resources.
   //!
   //! <b>Returns</b>: an iterator to the inserted element.
   //!
   //! <b>Throws</b>: If memory allocation throws.
   //!
   //! <b>Complexity</b>: If position is end(), amortized constant time
   //!   Linear time otherwise.
   iterator insert(const_iterator position, T &&x);
   #else
   BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator)
   #endif

   //! <b>Requires</b>: pos must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert n copies of x before position.
   //!
   //! <b>Returns</b>: an iterator to the first inserted element or position if n is 0.
   //!
   //! <b>Throws</b>: If memory allocation throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to n.
   iterator insert(const_iterator position, size_type n, const T& t)
   {
      STABLE_VECTOR_CHECK_INVARIANT;
      typedef constant_iterator<value_type, difference_type> cvalue_iterator;
      return this->insert(position, cvalue_iterator(t, n), cvalue_iterator());
   }

   //! <b>Requires</b>: pos must be a valid iterator of *this.
   //!
   //! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
   //!
   //! <b>Returns</b>: an iterator to the first inserted element or position if first == last.
   //!
   //! <b>Throws</b>: If memory allocation throws, T's constructor from a
   //!   dereferenced InpIt throws or T's copy constructor throws.
   //!
   //! <b>Complexity</b>: Linear to std::distance [first, last).
   template <class InputIterator>
   iterator insert(const_iterator position, InputIterator first, InputIterator last
      #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
      , typename container_detail::enable_if_c
         < !container_detail::is_convertible<InputIterator, size_type>::value
            && container_detail::is_input_iterator<InputIterator>::value
         >::type * = 0
      #endif
      )
   {
      STABLE_VECTOR_CHECK_INVARIANT;
      const size_type pos_n = position - this->cbegin();
      for(; first != last; ++first){
         this->emplace(position, *first);
      }
      return this->begin() + pos_n;
   }

   #if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
   template <class FwdIt>
   iterator insert(const_iterator position, FwdIt first, FwdIt last
      , typename container_detail::enable_if_c
         < !container_detail::is_convertible<FwdIt, size_type>::value
            && !container_detail::is_input_iterator<FwdIt>::value
         >::type * = 0
      )
   {
      const size_type num_new = static_cast<size_type>(std::distance(first, last));
      const size_type pos     = static_cast<size_type>(position - this->cbegin());
      if(num_new){
         //Fills the node pool and inserts num_new null pointers in pos.
         //If a new buffer was needed fixes up pointers up to pos so
         //past-new nodes are not aligned until the end of this function
         //or in a rollback in case of exception
         index_iterator it_past_newly_constructed(this->priv_insert_forward_non_templated(pos, num_new));
         const index_iterator it_past_new(it_past_newly_constructed + num_new);
         {
            //Prepare rollback
            insert_rollback rollback(*this, it_past_newly_constructed, it_past_new);
            while(first != last){
               const node_ptr p = this->priv_get_from_pool();
               BOOST_ASSERT(!!p);
               //Put it in the index so rollback can return it in pool if construct_in_place throws
               *it_past_newly_constructed = p;
               //Constructs and fixes up pointers This can throw
               this->priv_build_node_from_it(p, it_past_newly_constructed, first);
               ++first;
               ++it_past_newly_constructed;
            }
            //rollback.~insert_rollback() called in case of exception
         }
         //Fix up pointers for past-new nodes (new nodes were fixed during construction) and
         //nodes before insertion position in priv_insert_forward_non_templated(...)
         index_traits_type::fix_up_pointers_from(this->index, it_past_newly_constructed);
      }
      return this->begin() + pos;
   }
   #endif

   //! <b>Effects</b>: Removes the last element from the stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant time.
   void pop_back() BOOST_CONTAINER_NOEXCEPT
   {  this->erase(--this->cend());   }

   //! <b>Effects</b>: Erases the element at position pos.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the elements between pos and the
   //!   last element. Constant if pos is the last element.
   iterator erase(const_iterator position) BOOST_CONTAINER_NOEXCEPT
   {
      STABLE_VECTOR_CHECK_INVARIANT;
      const size_type d = position - this->cbegin();
      index_iterator it = this->index.begin() + d;
      this->priv_delete_node(position.node_pointer());
      it = this->index.erase(it);
      index_traits_type::fix_up_pointers_from(this->index, it);
      return iterator(node_ptr_traits::static_cast_from(*it));
   }

   //! <b>Effects</b>: Erases the elements pointed by [first, last).
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the distance between first and last
   //!   plus linear to the elements between pos and the last element.
   iterator erase(const_iterator first, const_iterator last) BOOST_CONTAINER_NOEXCEPT
   {
      STABLE_VECTOR_CHECK_INVARIANT;
      const const_iterator cbeg(this->cbegin());
      const size_type d1 = static_cast<size_type>(first - cbeg),
                      d2 = static_cast<size_type>(last  - cbeg);
      size_type d_dif = d2 - d1;
      if(d_dif){
         multiallocation_chain holder;
         const index_iterator it1(this->index.begin() + d1);
         const index_iterator it2(it1 + d_dif);
         index_iterator it(it1);
         while(d_dif--){
            node_base_ptr &nb = *it;
            ++it;
            node_type &n = *node_ptr_traits::static_cast_from(nb);
            this->priv_destroy_node(n);
            holder.push_back(node_ptr_traits::pointer_to(n));
         }
         this->priv_put_in_pool(holder);
         const index_iterator e = this->index.erase(it1, it2);
         index_traits_type::fix_up_pointers_from(this->index, e);
      }
      return iterator(last.node_pointer());
   }

   //! <b>Effects</b>: Swaps the contents of *this and x.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Constant.
   void swap(stable_vector & x)
   {
      STABLE_VECTOR_CHECK_INVARIANT;
      container_detail::bool_<allocator_traits_type::propagate_on_container_swap::value> flag;
      container_detail::swap_alloc(this->priv_node_alloc(), x.priv_node_alloc(), flag);
      //vector's allocator is swapped here
      this->index.swap(x.index);
      this->priv_swap_members(x);
   }

   //! <b>Effects</b>: Erases all the elements of the stable_vector.
   //!
   //! <b>Throws</b>: Nothing.
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the stable_vector.
   void clear() BOOST_CONTAINER_NOEXCEPT
   {   this->erase(this->cbegin(),this->cend()); }

   //! <b>Effects</b>: Returns true if x and y are equal
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator==(const stable_vector& x, const stable_vector& y)
   {  return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin());  }

   //! <b>Effects</b>: Returns true if x and y are unequal
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator!=(const stable_vector& x, const stable_vector& y)
   {  return !(x == y); }

   //! <b>Effects</b>: Returns true if x is less than y
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator<(const stable_vector& x, const stable_vector& y)
   {  return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());  }

   //! <b>Effects</b>: Returns true if x is greater than y
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator>(const stable_vector& x, const stable_vector& y)
   {  return y < x;  }

   //! <b>Effects</b>: Returns true if x is equal or less than y
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator<=(const stable_vector& x, const stable_vector& y)
   {  return !(y < x);  }

   //! <b>Effects</b>: Returns true if x is equal or greater than y
   //!
   //! <b>Complexity</b>: Linear to the number of elements in the container.
   friend bool operator>=(const stable_vector& x, const stable_vector& y)
   {  return !(x < y);  }

   //! <b>Effects</b>: x.swap(y)
   //!
   //! <b>Complexity</b>: Constant.
   friend void swap(stable_vector& x, stable_vector& y)
   {  x.swap(y);  }

   #ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
   private:

   class insert_rollback
   {
      public:

      insert_rollback(stable_vector &sv, index_iterator &it_past_constructed, const index_iterator &it_past_new)
         : m_sv(sv), m_it_past_constructed(it_past_constructed), m_it_past_new(it_past_new)
      {}

      ~insert_rollback()
      {
         if(m_it_past_constructed != m_it_past_new){
            m_sv.priv_put_in_pool(node_ptr_traits::static_cast_from(*m_it_past_constructed));
            index_iterator e = m_sv.index.erase(m_it_past_constructed, m_it_past_new);
            index_traits_type::fix_up_pointers_from(m_sv.index, e);
         }
      }

      private:
      stable_vector &m_sv;
      index_iterator &m_it_past_constructed;
      const index_iterator &m_it_past_new;
   };

   class push_back_rollback
   {
      public:
      push_back_rollback(stable_vector &sv, const node_ptr &p)
         : m_sv(sv), m_p(p)
      {}

      ~push_back_rollback()
      {
         if(m_p){
            m_sv.priv_put_in_pool(m_p);
         }
      }

      void release()
      {  m_p = node_ptr();  }

      private:
      stable_vector &m_sv;
      node_ptr m_p;
   };

   index_iterator priv_insert_forward_non_templated(size_type pos, size_type num_new)
   {
      index_traits_type::initialize_end_node(this->index, this->internal_data.end_node, num_new);

      //Now try to fill the pool with new data
      if(this->internal_data.pool_size < num_new){
         this->priv_increase_pool(num_new - this->internal_data.pool_size);
      }

      //Now try to make room in the vector
      const node_base_ptr_ptr old_buffer = this->index.data();
      this->index.insert(this->index.begin() + pos, num_new, node_ptr());
      bool new_buffer = this->index.data() != old_buffer;

      //Fix the pointers for the newly allocated buffer
      const index_iterator index_beg = this->index.begin();
      if(new_buffer){
         index_traits_type::fix_up_pointers(index_beg, index_beg + pos);
      }
      return index_beg + pos;
   }

   bool priv_capacity_bigger_than_size() const
   {
      return this->index.capacity() > this->index.size() &&
             this->internal_data.pool_size > 0;
   }

   template <class U>
   void priv_push_back(BOOST_MOVE_CATCH_FWD(U) x)
   {
      if(this->priv_capacity_bigger_than_size()){
         //Enough memory in the pool and in the index
         const node_ptr p = this->priv_get_from_pool();
         BOOST_ASSERT(!!p);
         {
            push_back_rollback rollback(*this, p);
            //This might throw
            this->priv_build_node_from_convertible(p, ::boost::forward<U>(x));
            rollback.release();
         }
         //This can't throw as there is room for a new elements in the index
         index_iterator new_index = this->index.insert(this->index.end() - ExtraPointers, p);
         index_traits_type::fix_up_pointers_from(this->index, new_index);
      }
      else{
         this->insert(this->cend(), ::boost::forward<U>(x));
      }
   }

   iterator priv_insert(const_iterator position, const value_type &t)
   {
      typedef constant_iterator<value_type, difference_type> cvalue_iterator;
      return this->insert(position, cvalue_iterator(t, 1), cvalue_iterator());
   }

   iterator priv_insert(const_iterator position, BOOST_RV_REF(T) x)
   {
      typedef repeat_iterator<T, difference_type>  repeat_it;
      typedef boost::move_iterator<repeat_it>      repeat_move_it;
      //Just call more general insert(pos, size, value) and return iterator
      return this->insert(position, repeat_move_it(repeat_it(x, 1)), repeat_move_it(repeat_it()));
   }

   void priv_clear_pool()
   {
      if(!this->index.empty() && this->index.back()){
         node_base_ptr &pool_first_ref = *(this->index.end() - 2);
         node_base_ptr &pool_last_ref  = this->index.back();

         multiallocation_chain holder;
         holder.incorporate_after( holder.before_begin()
                                 , node_ptr_traits::static_cast_from(pool_first_ref)
                                 , node_ptr_traits::static_cast_from(pool_last_ref)
                                 , internal_data.pool_size);
         this->deallocate_individual(holder);
         pool_first_ref = pool_last_ref = 0;
         this->internal_data.pool_size = 0;
      }
   }

   void priv_increase_pool(size_type n)
   {
      node_base_ptr &pool_first_ref = *(this->index.end() - 2);
      node_base_ptr &pool_last_ref  = this->index.back();
      multiallocation_chain holder;
      holder.incorporate_after( holder.before_begin()
                              , node_ptr_traits::static_cast_from(pool_first_ref)
                              , node_ptr_traits::static_cast_from(pool_last_ref)
                              , internal_data.pool_size);
      multiallocation_chain m;
      this->allocate_individual(n, m);
      holder.splice_after(holder.before_begin(), m, m.before_begin(), m.last(), n);
      this->internal_data.pool_size += n;
      std::pair<node_ptr, node_ptr> data(holder.extract_data());
      pool_first_ref = data.first;
      pool_last_ref = data.second;
   }

   void priv_put_in_pool(const node_ptr &p)
   {
      node_base_ptr &pool_first_ref = *(this->index.end()-2);
      node_base_ptr &pool_last_ref  = this->index.back();
      multiallocation_chain holder;
      holder.incorporate_after( holder.before_begin()
                              , node_ptr_traits::static_cast_from(pool_first_ref)
                              , node_ptr_traits::static_cast_from(pool_last_ref)
                              , internal_data.pool_size);
      holder.push_front(p);
      ++this->internal_data.pool_size;
      std::pair<node_ptr, node_ptr> ret(holder.extract_data());
      pool_first_ref = ret.first;
      pool_last_ref  = ret.second;
   }

   void priv_put_in_pool(multiallocation_chain &ch)
   {
      node_base_ptr &pool_first_ref = *(this->index.end()-(ExtraPointers-1));
      node_base_ptr &pool_last_ref  = this->index.back();
      ch.incorporate_after( ch.before_begin()
                          , node_ptr_traits::static_cast_from(pool_first_ref)
                          , node_ptr_traits::static_cast_from(pool_last_ref)
                          , internal_data.pool_size);
      this->internal_data.pool_size = ch.size();
      const std::pair<node_ptr, node_ptr> ret(ch.extract_data());
      pool_first_ref = ret.first;
      pool_last_ref  = ret.second;
   }

   node_ptr priv_get_from_pool()
   {
      //Precondition: index is not empty
      BOOST_ASSERT(!this->index.empty());
      node_base_ptr &pool_first_ref = *(this->index.end() - (ExtraPointers-1));
      node_base_ptr &pool_last_ref  = this->index.back();
      multiallocation_chain holder;
      holder.incorporate_after( holder.before_begin()
                              , node_ptr_traits::static_cast_from(pool_first_ref)
                              , node_ptr_traits::static_cast_from(pool_last_ref)
                              , internal_data.pool_size);
      node_ptr ret = holder.pop_front();
      --this->internal_data.pool_size;
      if(!internal_data.pool_size){
         pool_first_ref = pool_last_ref = node_ptr();
      }
      else{
         const std::pair<node_ptr, node_ptr> data(holder.extract_data());
         pool_first_ref = data.first;
         pool_last_ref  = data.second;
      }
      return ret;
   }

   node_base_ptr priv_get_end_node() const
   {  return node_base_ptr_traits::pointer_to(const_cast<node_base_type&>(this->internal_data.end_node));  }

   void priv_destroy_node(const node_type &n)
   {
      allocator_traits<node_allocator_type>::
         destroy(this->priv_node_alloc(), container_detail::addressof(n.value));
      static_cast<const node_base_type*>(&n)->~node_base_type();
   }

   void priv_delete_node(const node_ptr &n)
   {
      this->priv_destroy_node(*n);
      this->priv_put_in_pool(n);
   }

   template<class Iterator>
   void priv_build_node_from_it(const node_ptr &p, const index_iterator &up_index, const Iterator &it)
   {
      //This can throw
      boost::container::construct_in_place
         ( this->priv_node_alloc()
         , container_detail::addressof(p->value)
         , it);
      //This does not throw
      ::new(static_cast<node_base_type*>(container_detail::to_raw_pointer(p)))
         node_base_type(index_traits_type::ptr_to_node_base_ptr(*up_index));
   }

   template<class ValueConvertible>
   void priv_build_node_from_convertible(const node_ptr &p, BOOST_FWD_REF(ValueConvertible) value_convertible)
   {
      //This can throw
      boost::container::allocator_traits<node_allocator_type>::construct
         ( this->priv_node_alloc()
         , container_detail::addressof(p->value)
         , ::boost::forward<ValueConvertible>(value_convertible));
      //This does not throw
      ::new(static_cast<node_base_type*>(container_detail::to_raw_pointer(p))) node_base_type;
   }

   void priv_swap_members(stable_vector &x)
   {
      boost::container::swap_dispatch(this->internal_data.pool_size, x.internal_data.pool_size);
      index_traits_type::readjust_end_node(this->index, this->internal_data.end_node);
      index_traits_type::readjust_end_node(x.index, x.internal_data.end_node);
   }

   #if defined(STABLE_VECTOR_ENABLE_INVARIANT_CHECKING)
   bool priv_invariant()const
   {
      index_type & index_ref =  const_cast<index_type&>(this->index);

      if(index.empty())
         return !this->capacity() && !this->size();
      if(this->priv_get_end_node() != *(index.end() - ExtraPointers)){
         return false;
      }

      if(!index_traits_type::invariants(index_ref)){
         return false;
      }

      size_type n = this->capacity() - this->size();
      node_base_ptr &pool_first_ref = *(index_ref.end() - (ExtraPointers-1));
      node_base_ptr &pool_last_ref  = index_ref.back();
      multiallocation_chain holder;
      holder.incorporate_after( holder.before_begin()
                              , node_ptr_traits::static_cast_from(pool_first_ref)
                              , node_ptr_traits::static_cast_from(pool_last_ref)
                              , internal_data.pool_size);
      typename multiallocation_chain::iterator beg(holder.begin()), end(holder.end());
      size_type num_pool = 0;
      while(beg != end){
         ++num_pool;
         ++beg;
      }
      return n >= num_pool && num_pool == internal_data.pool_size;
   }

   class invariant_checker
   {
      invariant_checker(const invariant_checker &);
      invariant_checker & operator=(const invariant_checker &);
      const stable_vector* p;

      public:
      invariant_checker(const stable_vector& v):p(&v){}
      ~invariant_checker(){BOOST_ASSERT(p->priv_invariant());}
      void touch(){}
   };
   #endif

   class ebo_holder
      : public node_allocator_type
   {
      private:
      BOOST_MOVABLE_BUT_NOT_COPYABLE(ebo_holder)

      public:
      template<class AllocatorRLValue>
      explicit ebo_holder(BOOST_FWD_REF(AllocatorRLValue) a)
         : node_allocator_type(boost::forward<AllocatorRLValue>(a))
         , pool_size(0)
         , end_node()
      {}

      ebo_holder()
         : node_allocator_type()
         , pool_size(0)
         , end_node()
      {}

      size_type pool_size;
      node_base_type end_node;
   } internal_data;

   node_allocator_type &priv_node_alloc()              { return internal_data;  }
   const node_allocator_type &priv_node_alloc() const  { return internal_data;  }

   index_type                           index;
   #endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
};

#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

#undef STABLE_VECTOR_CHECK_INVARIANT

#endif   //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED

/*

//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class Allocator>
struct has_trivial_destructor_after_move<boost::container::stable_vector<T, Allocator> >
   : public has_trivial_destructor_after_move<Allocator>::value
{};

*/

}}

#include <boost/container/detail/config_end.hpp>

#endif   //BOOST_CONTAINER_STABLE_VECTOR_HPP