boost/container/vector.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2013. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP
#define BOOST_CONTAINER_CONTAINER_VECTOR_HPP
#if defined(_MSC_VER)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <cstddef>
#include <memory>
#include <algorithm>
#include <iterator>
#include <utility>
#include <boost/detail/no_exceptions_support.hpp>
#include <boost/type_traits/has_trivial_destructor.hpp>
#include <boost/type_traits/has_trivial_copy.hpp>
#include <boost/type_traits/has_trivial_assign.hpp>
#include <boost/type_traits/has_nothrow_copy.hpp>
#include <boost/type_traits/has_nothrow_assign.hpp>
#include <boost/type_traits/has_nothrow_constructor.hpp>
#include <boost/container/container_fwd.hpp>
#include <boost/container/detail/version_type.hpp>
#include <boost/container/detail/allocation_type.hpp>
#include <boost/container/detail/utilities.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/algorithms.hpp>
#include <boost/container/detail/destroyers.hpp>
#include <boost/container/allocator_traits.hpp>
#include <boost/container/detail/allocator_version_traits.hpp>
#include <boost/container/throw_exception.hpp>
#include <boost/move/utility.hpp>
#include <boost/move/iterator.hpp>
#include <boost/move/detail/move_helpers.hpp>
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/detail/type_traits.hpp>
#include <boost/container/detail/advanced_insert_int.hpp>
#include <boost/assert.hpp>
namespace boost {
namespace container {
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//#define BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
namespace container_detail {
#ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
template <class Pointer, bool IsConst>
class vec_iterator
{
public:
typedef std::random_access_iterator_tag iterator_category;
typedef typename boost::intrusive::pointer_traits<Pointer>::element_type value_type;
typedef typename boost::intrusive::pointer_traits<Pointer>::difference_type difference_type;
typedef typename if_c
< IsConst
, typename boost::intrusive::pointer_traits<Pointer>::template
rebind_pointer<const value_type>::type
, Pointer
>::type pointer;
typedef typename boost::intrusive::pointer_traits<Pointer> ptr_traits;
typedef typename ptr_traits::reference reference;
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
private:
Pointer m_ptr;
public:
const Pointer &get_ptr() const BOOST_CONTAINER_NOEXCEPT
{ return m_ptr; }
Pointer &get_ptr() BOOST_CONTAINER_NOEXCEPT
{ return m_ptr; }
explicit vec_iterator(Pointer ptr) BOOST_CONTAINER_NOEXCEPT
: m_ptr(ptr)
{}
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
//Constructors
vec_iterator() BOOST_CONTAINER_NOEXCEPT
#ifndef NDEBUG
: m_ptr()
#else
// No value initialization of m_ptr() to speed up things a bit:
#endif
{}
vec_iterator(vec_iterator<Pointer, false> const& other) BOOST_CONTAINER_NOEXCEPT
: m_ptr(other.get_ptr())
{}
//Pointer like operators
reference operator*() const BOOST_CONTAINER_NOEXCEPT
{ return *m_ptr; }
pointer operator->() const BOOST_CONTAINER_NOEXCEPT
{ return ::boost::intrusive::pointer_traits<pointer>::pointer_to(this->operator*()); }
reference operator[](difference_type off) const BOOST_CONTAINER_NOEXCEPT
{ return m_ptr[off]; }
//Increment / Decrement
vec_iterator& operator++() BOOST_CONTAINER_NOEXCEPT
{ ++m_ptr; return *this; }
vec_iterator operator++(int) BOOST_CONTAINER_NOEXCEPT
{ return vec_iterator(m_ptr++); }
vec_iterator& operator--() BOOST_CONTAINER_NOEXCEPT
{ --m_ptr; return *this; }
vec_iterator operator--(int) BOOST_CONTAINER_NOEXCEPT
{ return vec_iterator(m_ptr--); }
//Arithmetic
vec_iterator& operator+=(difference_type off) BOOST_CONTAINER_NOEXCEPT
{ m_ptr += off; return *this; }
vec_iterator& operator-=(difference_type off) BOOST_CONTAINER_NOEXCEPT
{ m_ptr -= off; return *this; }
friend vec_iterator operator+(const vec_iterator &x, difference_type off) BOOST_CONTAINER_NOEXCEPT
{ return vec_iterator(x.m_ptr+off); }
friend vec_iterator operator+(difference_type off, vec_iterator right) BOOST_CONTAINER_NOEXCEPT
{ right.m_ptr += off; return right; }
friend vec_iterator operator-(vec_iterator left, difference_type off) BOOST_CONTAINER_NOEXCEPT
{ left.m_ptr -= off; return left; }
friend difference_type operator-(const vec_iterator &left, const vec_iterator& right) BOOST_CONTAINER_NOEXCEPT
{ return left.m_ptr - right.m_ptr; }
//Comparison operators
friend bool operator== (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr == r.m_ptr; }
friend bool operator!= (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr != r.m_ptr; }
friend bool operator< (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr < r.m_ptr; }
friend bool operator<= (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr <= r.m_ptr; }
friend bool operator> (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr > r.m_ptr; }
friend bool operator>= (const vec_iterator& l, const vec_iterator& r) BOOST_CONTAINER_NOEXCEPT
{ return l.m_ptr >= r.m_ptr; }
};
} //namespace container_detail {
template<class Pointer, bool IsConst>
const Pointer &vector_iterator_get_ptr(const container_detail::vec_iterator<Pointer, IsConst> &it) BOOST_CONTAINER_NOEXCEPT
{ return it.get_ptr(); }
template<class Pointer, bool IsConst>
Pointer &get_ptr(container_detail::vec_iterator<Pointer, IsConst> &it) BOOST_CONTAINER_NOEXCEPT
{ return it.get_ptr(); }
namespace container_detail {
#else //ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
template< class MaybeConstPointer
, bool ElementTypeIsConst
= is_const< typename boost::intrusive::pointer_traits<MaybeConstPointer>::element_type>::value >
struct vector_get_ptr_pointer_to_non_const
{
typedef MaybeConstPointer const_pointer;
typedef boost::intrusive::pointer_traits<const_pointer> pointer_traits_t;
typedef typename pointer_traits_t::element_type element_type;
typedef typename remove_const<element_type>::type non_const_element_type;
typedef typename pointer_traits_t
::template rebind_pointer<non_const_element_type>::type return_type;
static return_type get_ptr(const const_pointer &ptr) BOOST_CONTAINER_NOEXCEPT
{ return boost::intrusive::pointer_traits<return_type>::const_cast_from(ptr); }
};
template<class Pointer>
struct vector_get_ptr_pointer_to_non_const<Pointer, false>
{
typedef const Pointer & return_type;
static return_type get_ptr(const Pointer &ptr) BOOST_CONTAINER_NOEXCEPT
{ return ptr; }
};
} //namespace container_detail {
template<class MaybeConstPointer>
typename container_detail::vector_get_ptr_pointer_to_non_const<MaybeConstPointer>::return_type
vector_iterator_get_ptr(const MaybeConstPointer &ptr) BOOST_CONTAINER_NOEXCEPT
{
return container_detail::vector_get_ptr_pointer_to_non_const<MaybeConstPointer>::get_ptr(ptr);
}
namespace container_detail {
#endif //#ifndef BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER
struct uninitialized_size_t {};
static const uninitialized_size_t uninitialized_size = uninitialized_size_t();
template <class T, class Allocator>
struct vector_value_traits
{
typedef T value_type;
typedef Allocator allocator_type;
static const bool trivial_dctr = boost::has_trivial_destructor<value_type>::value;
static const bool trivial_dctr_after_move = ::boost::has_trivial_destructor_after_move<value_type>::value;
static const bool trivial_copy = has_trivial_copy<value_type>::value;
static const bool nothrow_copy = has_nothrow_copy<value_type>::value || trivial_copy;
static const bool trivial_assign = has_trivial_assign<value_type>::value;
static const bool nothrow_assign = has_nothrow_assign<value_type>::value || trivial_assign;
//This is the anti-exception array destructor
//to deallocate values already constructed
typedef typename container_detail::if_c
<trivial_dctr
,container_detail::null_scoped_destructor_n<Allocator>
,container_detail::scoped_destructor_n<Allocator>
>::type ArrayDestructor;
//This is the anti-exception array deallocator
typedef typename container_detail::if_c
<false//nothrow_copy
,container_detail::null_scoped_array_deallocator<Allocator>
,container_detail::scoped_array_deallocator<Allocator>
>::type ArrayDeallocator;
};
//!This struct deallocates and allocated memory
template < class Allocator
, class AllocatorVersion = typename container_detail::version<Allocator>::type
>
struct vector_alloc_holder
: public Allocator
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)
public:
typedef boost::container::allocator_traits<Allocator> allocator_traits_type;
typedef typename allocator_traits_type::pointer pointer;
typedef typename allocator_traits_type::size_type size_type;
typedef typename allocator_traits_type::value_type value_type;
//Constructor, does not throw
vector_alloc_holder()
BOOST_CONTAINER_NOEXCEPT_IF(::boost::has_nothrow_default_constructor<Allocator>::value)
: Allocator(), m_start(), m_size(), m_capacity()
{}
//Constructor, does not throw
template<class AllocConvertible>
explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_CONTAINER_NOEXCEPT
: Allocator(boost::forward<AllocConvertible>(a)), m_start(), m_size(), m_capacity()
{}
//Constructor, does not throw
template<class AllocConvertible>
vector_alloc_holder(uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, size_type initial_size)
: Allocator(boost::forward<AllocConvertible>(a))
, m_start()
, m_size(initial_size) //Size is initialized here so vector should only call uninitialized_xxx after this
, m_capacity()
{
if(initial_size){
m_start = this->allocation_command(allocate_new, initial_size, initial_size, m_capacity, m_start).first;
}
}
//Constructor, does not throw
vector_alloc_holder(uninitialized_size_t, size_type initial_size)
: Allocator()
, m_start()
, m_size(initial_size) //Size is initialized here so vector should only call uninitialized_xxx after this
, m_capacity()
{
if(initial_size){
m_start = this->allocation_command
(allocate_new, initial_size, initial_size, m_capacity, m_start).first;
}
}
vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder) BOOST_CONTAINER_NOEXCEPT
: Allocator(boost::move(static_cast<Allocator&>(holder)))
, m_start(holder.m_start)
, m_size(holder.m_size)
, m_capacity(holder.m_capacity)
{
holder.m_start = pointer();
holder.m_size = holder.m_capacity = 0;
}
void first_allocation(size_type cap)
{
if(cap){
m_start = this->allocation_command
(allocate_new, cap, cap, m_capacity, m_start).first;
}
}
void first_allocation_same_allocator_type(size_type cap)
{ this->first_allocation(cap); }
~vector_alloc_holder() BOOST_CONTAINER_NOEXCEPT
{
if(this->m_capacity){
this->alloc().deallocate(this->m_start, this->m_capacity);
}
}
std::pair<pointer, bool>
allocation_command(boost::container::allocation_type command,
size_type limit_size,
size_type preferred_size,
size_type &received_size, const pointer &reuse = pointer())
{
return allocator_version_traits<Allocator>::allocation_command
(this->alloc(), command, limit_size, preferred_size, received_size, reuse);
}
size_type next_capacity(size_type additional_objects) const
{
return next_capacity_calculator
<size_type, NextCapacityDouble/*NextCapacity60Percent*/>::
get( allocator_traits_type::max_size(this->alloc())
, this->m_capacity, additional_objects );
}
pointer m_start;
size_type m_size;
size_type m_capacity;
void swap(vector_alloc_holder &x) BOOST_CONTAINER_NOEXCEPT
{
boost::container::swap_dispatch(this->m_start, x.m_start);
boost::container::swap_dispatch(this->m_size, x.m_size);
boost::container::swap_dispatch(this->m_capacity, x.m_capacity);
}
void move_from_empty(vector_alloc_holder &x) BOOST_CONTAINER_NOEXCEPT
{
//this->m_size was previously initialized
this->m_start = x.m_start;
this->m_capacity = x.m_capacity;
x.m_start = pointer();
x.m_size = x.m_capacity = 0;
}
Allocator &alloc() BOOST_CONTAINER_NOEXCEPT
{ return *this; }
const Allocator &alloc() const BOOST_CONTAINER_NOEXCEPT
{ return *this; }
const pointer &start() const BOOST_CONTAINER_NOEXCEPT { return m_start; }
const size_type &capacity() const BOOST_CONTAINER_NOEXCEPT { return m_capacity; }
void start(const pointer &p) BOOST_CONTAINER_NOEXCEPT { m_start = p; }
void capacity(const size_type &c) BOOST_CONTAINER_NOEXCEPT { m_capacity = c; }
};
//!This struct deallocates and allocated memory
template <class Allocator>
struct vector_alloc_holder<Allocator, container_detail::integral_constant<unsigned, 0> >
: public Allocator
{
private:
BOOST_MOVABLE_BUT_NOT_COPYABLE(vector_alloc_holder)
public:
typedef boost::container::allocator_traits<Allocator> allocator_traits_type;
typedef typename allocator_traits_type::pointer pointer;
typedef typename allocator_traits_type::size_type size_type;
typedef typename allocator_traits_type::value_type value_type;
template <class OtherAllocator, class OtherAllocatorVersion>
friend struct vector_alloc_holder;
//Constructor, does not throw
vector_alloc_holder()
BOOST_CONTAINER_NOEXCEPT_IF(::boost::has_nothrow_default_constructor<Allocator>::value)
: Allocator(), m_size()
{}
//Constructor, does not throw
template<class AllocConvertible>
explicit vector_alloc_holder(BOOST_FWD_REF(AllocConvertible) a) BOOST_CONTAINER_NOEXCEPT
: Allocator(boost::forward<AllocConvertible>(a)), m_size()
{}
//Constructor, does not throw
template<class AllocConvertible>
vector_alloc_holder(uninitialized_size_t, BOOST_FWD_REF(AllocConvertible) a, size_type initial_size)
: Allocator(boost::forward<AllocConvertible>(a))
, m_size(initial_size) //Size is initialized here...
{
//... and capacity here, so vector, must call uninitialized_xxx in the derived constructor
this->first_allocation(initial_size);
}
//Constructor, does not throw
vector_alloc_holder(uninitialized_size_t, size_type initial_size)
: Allocator()
, m_size(initial_size) //Size is initialized here...
{
//... and capacity here, so vector, must call uninitialized_xxx in the derived constructor
this->first_allocation(initial_size);
}
vector_alloc_holder(BOOST_RV_REF(vector_alloc_holder) holder)
: Allocator(boost::move(static_cast<Allocator&>(holder)))
, m_size(holder.m_size) //Size is initialized here so vector should only call uninitialized_xxx after this
{
::boost::container::uninitialized_move_alloc_n
(this->alloc(), container_detail::to_raw_pointer(holder.start()), m_size, container_detail::to_raw_pointer(this->start()));
}
template<class OtherAllocator, class OtherAllocatorVersion>
vector_alloc_holder(BOOST_RV_REF_BEG vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> BOOST_RV_REF_END holder)
: Allocator()
, m_size(holder.m_size) //Initialize it to m_size as first_allocation can only succeed or abort
{
//Different allocator type so we must check we have enough storage
const size_type n = holder.m_size;
this->first_allocation(n);
::boost::container::uninitialized_move_alloc_n
(this->alloc(), container_detail::to_raw_pointer(holder.start()), n, container_detail::to_raw_pointer(this->start()));
}
void first_allocation(size_type cap)
{
if(cap > Allocator::internal_capacity){
throw_bad_alloc();
}
}
void first_allocation_same_allocator_type(size_type) BOOST_CONTAINER_NOEXCEPT
{}
//Destructor
~vector_alloc_holder() BOOST_CONTAINER_NOEXCEPT
{}
void swap(vector_alloc_holder &x)
{
this->priv_swap_members_impl(x);
}
template<class OtherAllocator, class OtherAllocatorVersion>
void swap(vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> &x)
{
if(this->m_size > OtherAllocator::internal_capacity || x.m_size > Allocator::internal_capacity){
throw_bad_alloc();
}
this->priv_swap_members_impl(x);
}
void move_from_empty(vector_alloc_holder &)
{ //Containers with version 0 allocators can't be moved without move elements one by one
throw_bad_alloc();
}
Allocator &alloc() BOOST_CONTAINER_NOEXCEPT
{ return *this; }
const Allocator &alloc() const BOOST_CONTAINER_NOEXCEPT
{ return *this; }
pointer start() const BOOST_CONTAINER_NOEXCEPT { return Allocator::internal_storage(); }
size_type capacity() const BOOST_CONTAINER_NOEXCEPT { return Allocator::internal_capacity; }
size_type m_size;
private:
template<class OtherAllocator, class OtherAllocatorVersion>
void priv_swap_members_impl(vector_alloc_holder<OtherAllocator, OtherAllocatorVersion> &x)
{
const std::size_t MaxTmpStorage = sizeof(value_type)*Allocator::internal_capacity;
value_type *const first_this = container_detail::to_raw_pointer(this->start());
value_type *const first_x = container_detail::to_raw_pointer(x.start());
if(this->m_size < x.m_size){
boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_this, this->m_size, first_x, x.m_size);
}
else{
boost::container::deep_swap_alloc_n<MaxTmpStorage>(this->alloc(), first_x, x.m_size, first_this, this->m_size);
}
boost::container::swap_dispatch(this->m_size, x.m_size);
}
};
} //namespace container_detail {
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//! A vector is a sequence that supports random access to elements, constant
//! time insertion and removal of elements at the end, and linear time insertion
//! and removal of elements at the beginning or in the middle. The number of
//! elements in a vector may vary dynamically; memory management is automatic.
//!
//! \tparam T The type of object that is stored in the vector
//! \tparam Allocator The allocator used for all internal memory management
#ifdef BOOST_CONTAINER_DOXYGEN_INVOKED
template <class T, class Allocator = std::allocator<T> >
#else
template <class T, class Allocator>
#endif
class vector
{
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
typedef typename container_detail::version<Allocator>::type alloc_version;
boost::container::container_detail::vector_alloc_holder
<Allocator, alloc_version> m_holder;
typedef allocator_traits<Allocator> allocator_traits_type;
template <class U, class UAllocator>
friend class vector;
typedef typename ::boost::container::allocator_traits
<Allocator>::pointer pointer_impl;
typedef container_detail::vec_iterator<pointer_impl, false> iterator_impl;
typedef container_detail::vec_iterator<pointer_impl, true > const_iterator_impl;
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
//////////////////////////////////////////////
//
// types
//
//////////////////////////////////////////////
typedef T value_type;
typedef typename ::boost::container::allocator_traits<Allocator>::pointer pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::const_pointer const_pointer;
typedef typename ::boost::container::allocator_traits<Allocator>::reference reference;
typedef typename ::boost::container::allocator_traits<Allocator>::const_reference const_reference;
typedef typename ::boost::container::allocator_traits<Allocator>::size_type size_type;
typedef typename ::boost::container::allocator_traits<Allocator>::difference_type difference_type;
typedef Allocator allocator_type;
typedef Allocator stored_allocator_type;
#if defined BOOST_CONTAINER_VECTOR_ITERATOR_IS_POINTER && !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
typedef BOOST_CONTAINER_IMPDEF(pointer) iterator;
typedef BOOST_CONTAINER_IMPDEF(const_pointer) const_iterator;
#else
typedef BOOST_CONTAINER_IMPDEF(iterator_impl) iterator;
typedef BOOST_CONTAINER_IMPDEF(const_iterator_impl) const_iterator;
#endif
typedef BOOST_CONTAINER_IMPDEF(std::reverse_iterator<iterator>) reverse_iterator;
typedef BOOST_CONTAINER_IMPDEF(std::reverse_iterator<const_iterator>) const_reverse_iterator;
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
private:
BOOST_COPYABLE_AND_MOVABLE(vector)
typedef container_detail::vector_value_traits<value_type, Allocator> value_traits;
typedef container_detail::integral_constant<unsigned, 0> allocator_v0;
typedef container_detail::integral_constant<unsigned, 1> allocator_v1;
typedef container_detail::integral_constant<unsigned, 2> allocator_v2;
typedef constant_iterator<T, difference_type> cvalue_iterator;
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
public:
//////////////////////////////////////////////
//
// construct/copy/destroy
//
//////////////////////////////////////////////
//! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
//!
//! <b>Throws</b>: If allocator_type's default constructor throws.
//!
//! <b>Complexity</b>: Constant.
vector()
BOOST_CONTAINER_NOEXCEPT_IF(::boost::has_nothrow_default_constructor<Allocator>::value)
: m_holder()
{}
//! <b>Effects</b>: Constructs a vector taking the allocator as parameter.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
explicit vector(const Allocator& a) BOOST_CONTAINER_NOEXCEPT
: m_holder(a)
{}
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts n value initialized values.
//!
//! <b>Throws</b>: If allocator_type's default constructor or allocation
//! throws or T's value initialization throws.
//!
//! <b>Complexity</b>: Linear to n.
explicit vector(size_type n)
: m_holder(container_detail::uninitialized_size, n)
{
boost::container::uninitialized_value_init_alloc_n
(this->m_holder.alloc(), n, container_detail::to_raw_pointer(this->m_holder.start()));
}
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts n default initialized values.
//!
//! <b>Throws</b>: If allocator_type's default constructor or allocation
//! throws or T's default initialization throws.
//!
//! <b>Complexity</b>: Linear to n.
//!
//! <b>Note</b>: Non-standard extension
vector(size_type n, default_init_t)
: m_holder(container_detail::uninitialized_size, n)
{
boost::container::uninitialized_default_init_alloc_n
(this->m_holder.alloc(), n, container_detail::to_raw_pointer(this->m_holder.start()));
}
//! <b>Effects</b>: Constructs a vector
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocator_type's default constructor or allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
vector(size_type n, const T& value)
: m_holder(container_detail::uninitialized_size, n)
{
boost::container::uninitialized_fill_alloc_n
(this->m_holder.alloc(), value, n, container_detail::to_raw_pointer(this->m_holder.start()));
}
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts n copies of value.
//!
//! <b>Throws</b>: If allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
vector(size_type n, const T& value, const allocator_type& a)
: m_holder(container_detail::uninitialized_size, a, n)
{
boost::container::uninitialized_fill_alloc_n
(this->m_holder.alloc(), value, n, container_detail::to_raw_pointer(this->m_holder.start()));
}
//! <b>Effects</b>: Constructs a vector
//! and inserts a copy of the range [first, last) in the vector.
//!
//! <b>Throws</b>: If allocator_type's default constructor or allocation
//! throws or T's constructor taking a dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InIt>
vector(InIt first, InIt last)
: m_holder()
{ this->insert(this->cend(), first, last); }
//! <b>Effects</b>: Constructs a vector that will use a copy of allocator a
//! and inserts a copy of the range [first, last) in the vector.
//!
//! <b>Throws</b>: If allocator_type's default constructor or allocation
//! throws or T's constructor taking a dereferenced InIt throws.
//!
//! <b>Complexity</b>: Linear to the range [first, last).
template <class InIt>
vector(InIt first, InIt last, const allocator_type& a)
: m_holder(a)
{ this->insert(this->cend(), first, last); }
//! <b>Effects</b>: Copy constructs a vector.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Throws</b>: If allocator_type's default constructor or allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
vector(const vector &x)
: m_holder( container_detail::uninitialized_size
, allocator_traits_type::select_on_container_copy_construction(x.m_holder.alloc())
, x.size())
{
::boost::container::uninitialized_copy_alloc_n
( this->m_holder.alloc(), container_detail::to_raw_pointer(x.m_holder.start())
, x.size(), container_detail::to_raw_pointer(this->m_holder.start()));
}
//! <b>Effects</b>: Move constructor. Moves x's resources to *this.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
vector(BOOST_RV_REF(vector) x) BOOST_CONTAINER_NOEXCEPT
: m_holder(boost::move(x.m_holder))
{}
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Move constructor. Moves x's resources to *this.
//!
//! <b>Throws</b>: If T's move constructor or allocation throws
//!
//! <b>Complexity</b>: Linear.
//!
//! <b>Note</b>: Non-standard extension to support static_vector
template<class OtherAllocator>
vector(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
, typename container_detail::enable_if_c
< container_detail::is_version<OtherAllocator, 0>::value>::type * = 0
)
: m_holder(boost::move(x.m_holder))
{}
#endif //!defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Copy constructs a vector using the specified allocator.
//!
//! <b>Postcondition</b>: x == *this.
//!
//! <b>Throws</b>: If allocation
//! throws or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to the elements x contains.
vector(const vector &x, const allocator_type &a)
: m_holder(container_detail::uninitialized_size, a, x.size())
{
::boost::container::uninitialized_copy_alloc_n_source
( this->m_holder.alloc(), container_detail::to_raw_pointer(x.m_holder.start())
, x.size(), container_detail::to_raw_pointer(this->m_holder.start()));
}
//! <b>Effects</b>: Move constructor using the specified allocator.
//! Moves x's resources to *this if a == allocator_type().
//! Otherwise copies values from x to *this.
//!
//! <b>Throws</b>: If allocation or T's copy constructor throws.
//!
//! <b>Complexity</b>: Constant if a == x.get_allocator(), linear otherwise.
vector(BOOST_RV_REF(vector) x, const allocator_type &a)
: m_holder(container_detail::uninitialized_size, a, x.size())
{
if(x.m_holder.alloc() == a){
this->m_holder.move_from_empty(x.m_holder);
}
else{
const size_type n = x.size();
this->m_holder.first_allocation_same_allocator_type(n);
::boost::container::uninitialized_move_alloc_n_source
( this->m_holder.alloc(), container_detail::to_raw_pointer(x.m_holder.start())
, n, container_detail::to_raw_pointer(this->m_holder.start()));
}
}
//! <b>Effects</b>: Destroys the vector. All stored values are destroyed
//! and used memory is deallocated.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements.
~vector() BOOST_CONTAINER_NOEXCEPT
{
boost::container::destroy_alloc_n
(this->get_stored_allocator(), container_detail::to_raw_pointer(this->m_holder.start()), this->m_holder.m_size);
//vector_alloc_holder deallocates the data
}
//! <b>Effects</b>: Makes *this contain the same elements as x.
//!
//! <b>Postcondition</b>: this->size() == x.size(). *this contains a copy
//! of each of x's elements.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: Linear to the number of elements in x.
vector& operator=(BOOST_COPY_ASSIGN_REF(vector) x)
{
if (&x != this){
this->priv_copy_assign(x);
}
return *this;
}
//! <b>Effects</b>: Move assignment. All x's values are transferred to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: If allocator_traits_type::propagate_on_container_move_assignment
//! is false and (allocation throws or value_type's move constructor throws)
//!
//! <b>Complexity</b>: Constant if allocator_traits_type::
//! propagate_on_container_move_assignment is true or
//! this->get>allocator() == x.get_allocator(). Linear otherwise.
vector& operator=(BOOST_RV_REF(vector) x)
BOOST_CONTAINER_NOEXCEPT_IF(allocator_traits_type::propagate_on_container_move_assignment::value)
{
this->priv_move_assign(boost::move(x));
return *this;
}
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Move assignment. All x's values are transferred to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: If move constructor/assignment of T throws or allocation throws
//!
//! <b>Complexity</b>: Linear.
//!
//! <b>Note</b>: Non-standard extension to support static_vector
template<class OtherAllocator>
typename container_detail::enable_if_c
< container_detail::is_version<OtherAllocator, 0>::value &&
!container_detail::is_same<OtherAllocator, allocator_type>::value
, vector& >::type
operator=(BOOST_RV_REF_BEG vector<value_type, OtherAllocator> BOOST_RV_REF_END x)
{
this->priv_move_assign(boost::move(x));
return *this;
}
//! <b>Effects</b>: Copy assignment. All x's values are copied to *this.
//!
//! <b>Postcondition</b>: x.empty(). *this contains a the elements x had
//! before the function.
//!
//! <b>Throws</b>: If move constructor/assignment of T throws or allocation throws
//!
//! <b>Complexity</b>: Linear.
//!
//! <b>Note</b>: Non-standard extension to support static_vector
template<class OtherAllocator>
typename container_detail::enable_if_c
< container_detail::is_version<OtherAllocator, 0>::value &&
!container_detail::is_same<OtherAllocator, allocator_type>::value
, vector& >::type
operator=(const vector<value_type, OtherAllocator> &x)
{
this->priv_copy_assign(x);
return *this;
}
#endif
//! <b>Effects</b>: Assigns the the range [first, last) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment or
//! T's constructor/assignment from dereferencing InpIt throws.
//!
//! <b>Complexity</b>: Linear to n.
template <class InIt>
void assign(InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_convertible<InIt, size_type>::value &&
( container_detail::is_input_iterator<InIt>::value ||
container_detail::is_same<alloc_version, allocator_v0>::value )
>::type * = 0
#endif
)
{
//Overwrite all elements we can from [first, last)
iterator cur = this->begin();
const iterator end_it = this->end();
for ( ; first != last && cur != end_it; ++cur, ++first){
*cur = *first;
}
if (first == last){
//There are no more elements in the sequence, erase remaining
T* const end_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
size_type n = static_cast<size_type>(end_pos - container_detail::to_raw_pointer(vector_iterator_get_ptr(cur)));
this->priv_destroy_last_n(n);
}
else{
//There are more elements in the range, insert the remaining ones
this->insert(this->cend(), first, last);
}
}
//! <b>Effects</b>: Assigns the the range [first, last) to *this.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment or
//! T's constructor/assignment from dereferencing InpIt throws.
//!
//! <b>Complexity</b>: Linear to n.
template <class FwdIt>
void assign(FwdIt first, FwdIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_convertible<FwdIt, size_type>::value &&
( !container_detail::is_input_iterator<FwdIt>::value &&
!container_detail::is_same<alloc_version, allocator_v0>::value )
>::type * = 0
#endif
)
{
//For Fwd iterators the standard only requires EmplaceConstructible and assignable from *first
//so we can't do any backwards allocation
const size_type input_sz = static_cast<size_type>(std::distance(first, last));
const size_type old_capacity = this->capacity();
if(input_sz > old_capacity){ //If input range is too big, we need to reallocate
size_type real_cap = 0;
std::pair<pointer, bool> ret =
this->m_holder.allocation_command(allocate_new, input_sz, input_sz, real_cap, this->m_holder.start());
if(!ret.second){ //New allocation, just emplace new values
pointer const old_p = this->m_holder.start();
if(old_p){
this->priv_destroy_all();
this->m_holder.alloc().deallocate(old_p, old_capacity);
}
this->m_holder.start(ret.first);
this->m_holder.capacity(real_cap);
this->m_holder.m_size = 0;
this->priv_uninitialized_construct_at_end(first, last);
return;
}
else{
//Forward expansion, use assignment + back deletion/construction that comes later
}
}
//Overwrite all elements we can from [first, last)
iterator cur = this->begin();
const iterator end_it = this->end();
for ( ; first != last && cur != end_it; ++cur, ++first){
*cur = *first;
}
if (first == last){
//There are no more elements in the sequence, erase remaining
this->priv_destroy_last_n(this->size() - input_sz);
}
else{
//Uninitialized construct at end the remaining range
this->priv_uninitialized_construct_at_end(first, last);
}
}
//! <b>Effects</b>: Assigns the n copies of val to *this.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: Linear to n.
void assign(size_type n, const value_type& val)
{ this->assign(cvalue_iterator(val, n), cvalue_iterator()); }
//! <b>Effects</b>: Returns a copy of the internal allocator.
//!
//! <b>Throws</b>: If allocator's copy constructor throws.
//!
//! <b>Complexity</b>: Constant.
allocator_type get_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
stored_allocator_type &get_stored_allocator() BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.alloc(); }
//! <b>Effects</b>: Returns a reference to the internal allocator.
//!
//! <b>Throws</b>: Nothing
//!
//! <b>Complexity</b>: Constant.
//!
//! <b>Note</b>: Non-standard extension.
const stored_allocator_type &get_stored_allocator() const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.alloc(); }
//////////////////////////////////////////////
//
// iterators
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns an iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator begin() BOOST_CONTAINER_NOEXCEPT
{ return iterator(this->m_holder.start()); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator begin() const BOOST_CONTAINER_NOEXCEPT
{ return const_iterator(this->m_holder.start()); }
//! <b>Effects</b>: Returns an iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
iterator end() BOOST_CONTAINER_NOEXCEPT
{ return iterator(this->m_holder.start() + this->m_holder.m_size); }
//! <b>Effects</b>: Returns a const_iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator end() const BOOST_CONTAINER_NOEXCEPT
{ return this->cend(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rbegin() BOOST_CONTAINER_NOEXCEPT
{ return reverse_iterator(this->end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rbegin() const BOOST_CONTAINER_NOEXCEPT
{ return this->crbegin(); }
//! <b>Effects</b>: Returns a reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reverse_iterator rend() BOOST_CONTAINER_NOEXCEPT
{ return reverse_iterator(this->begin()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator rend() const BOOST_CONTAINER_NOEXCEPT
{ return this->crend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cbegin() const BOOST_CONTAINER_NOEXCEPT
{ return const_iterator(this->m_holder.start()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_iterator cend() const BOOST_CONTAINER_NOEXCEPT
{ return const_iterator(this->m_holder.start() + this->m_holder.m_size); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crbegin() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->end());}
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reverse_iterator crend() const BOOST_CONTAINER_NOEXCEPT
{ return const_reverse_iterator(this->begin()); }
//////////////////////////////////////////////
//
// capacity
//
//////////////////////////////////////////////
//! <b>Effects</b>: Returns true if the vector contains no elements.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
bool empty() const BOOST_CONTAINER_NOEXCEPT
{ return !this->m_holder.m_size; }
//! <b>Effects</b>: Returns the number of the elements contained in the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type size() const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.m_size; }
//! <b>Effects</b>: Returns the largest possible size of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type max_size() const BOOST_CONTAINER_NOEXCEPT
{ return allocator_traits_type::max_size(this->m_holder.alloc()); }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are value initialized.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy/move or value initialization throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size)
{ this->priv_resize(new_size, value_init); }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are default initialized.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy/move or default initialization throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
//!
//! <b>Note</b>: Non-standard extension
void resize(size_type new_size, default_init_t)
{ this->priv_resize(new_size, default_init); }
//! <b>Effects</b>: Inserts or erases elements at the end such that
//! the size becomes n. New elements are copy constructed from x.
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Linear to the difference between size() and new_size.
void resize(size_type new_size, const T& x)
{ this->priv_resize(new_size, x); }
//! <b>Effects</b>: Number of elements for which memory has been allocated.
//! capacity() is always greater than or equal to size().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
size_type capacity() const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.capacity(); }
//! <b>Effects</b>: If n is less than or equal to capacity(), this call has no
//! effect. Otherwise, it is a request for allocation of additional memory.
//! If the request is successful, then capacity() is greater than or equal to
//! n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
//!
//! <b>Throws</b>: If memory allocation allocation throws or T's copy/move constructor throws.
void reserve(size_type new_cap)
{
if (this->capacity() < new_cap){
this->priv_reserve(new_cap, alloc_version());
}
}
//! <b>Effects</b>: Tries to deallocate the excess of memory created
//! with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
void shrink_to_fit()
{ this->priv_shrink_to_fit(alloc_version()); }
//////////////////////////////////////////////
//
// element access
//
//////////////////////////////////////////////
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the first
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference front() BOOST_CONTAINER_NOEXCEPT
{ return *this->m_holder.start(); }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the first
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference front() const BOOST_CONTAINER_NOEXCEPT
{ return *this->m_holder.start(); }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference back() BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.start()[this->m_holder.m_size - 1]; }
//! <b>Requires</b>: !empty()
//!
//! <b>Effects</b>: Returns a const reference to the last
//! element of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference back() const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.start()[this->m_holder.m_size - 1]; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
reference operator[](size_type n) BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.start()[n]; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const_reference operator[](size_type n) const BOOST_CONTAINER_NOEXCEPT
{ return this->m_holder.start()[n]; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
reference at(size_type n)
{ this->priv_check_range(n); return this->m_holder.start()[n]; }
//! <b>Requires</b>: size() > n.
//!
//! <b>Effects</b>: Returns a const reference to the nth element
//! from the beginning of the container.
//!
//! <b>Throws</b>: std::range_error if n >= size()
//!
//! <b>Complexity</b>: Constant.
const_reference at(size_type n) const
{ this->priv_check_range(n); return this->m_holder.start()[n]; }
//////////////////////////////////////////////
//
// data access
//
//////////////////////////////////////////////
//! <b>Returns</b>: Allocator pointer such that [data(),data() + size()) is a valid range.
//! For a non-empty vector, data() == &front().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
T* data() BOOST_CONTAINER_NOEXCEPT
{ return container_detail::to_raw_pointer(this->m_holder.start()); }
//! <b>Returns</b>: Allocator pointer such that [data(),data() + size()) is a valid range.
//! For a non-empty vector, data() == &front().
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
const T * data() const BOOST_CONTAINER_NOEXCEPT
{ return container_detail::to_raw_pointer(this->m_holder.start()); }
//////////////////////////////////////////////
//
// modifiers
//
//////////////////////////////////////////////
#if defined(BOOST_CONTAINER_PERFECT_FORWARDING) || defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... in the end of the vector.
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or
//! T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
template<class ...Args>
void emplace_back(Args &&...args)
{
T* back_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
if (this->m_holder.m_size < this->m_holder.capacity()){
//There is more memory, just construct a new object at the end
allocator_traits_type::construct(this->m_holder.alloc(), back_pos, ::boost::forward<Args>(args)...);
++this->m_holder.m_size;
}
else{
typedef container_detail::insert_emplace_proxy<Allocator, T*, Args...> type;
this->priv_forward_range_insert_no_capacity
(vector_iterator_get_ptr(this->cend()), 1, type(::boost::forward<Args>(args)...), alloc_version());
}
}
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Inserts an object of type T constructed with
//! std::forward<Args>(args)... before position
//!
//! <b>Throws</b>: If memory allocation throws or the in-place constructor throws or
//! T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
template<class ...Args>
iterator emplace(const_iterator position, Args && ...args)
{
//Just call more general insert(pos, size, value) and return iterator
typedef container_detail::insert_emplace_proxy<Allocator, T*, Args...> type;
return this->priv_forward_range_insert( vector_iterator_get_ptr(position), 1
, type(::boost::forward<Args>(args)...), alloc_version());
}
#else
#define BOOST_PP_LOCAL_MACRO(n) \
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
void emplace_back(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
T* back_pos = container_detail::to_raw_pointer \
(this->m_holder.start()) + this->m_holder.m_size; \
if (this->m_holder.m_size < this->m_holder.capacity()){ \
allocator_traits_type::construct (this->m_holder.alloc() \
, back_pos BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _) ); \
++this->m_holder.m_size; \
} \
else{ \
typedef container_detail::BOOST_PP_CAT(insert_emplace_proxy_arg, n) \
<Allocator, T* BOOST_PP_ENUM_TRAILING_PARAMS(n, P)> type; \
this->priv_forward_range_insert_no_capacity \
( vector_iterator_get_ptr(this->cend()), 1 \
, type(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)), alloc_version()); \
} \
} \
\
BOOST_PP_EXPR_IF(n, template<) BOOST_PP_ENUM_PARAMS(n, class P) BOOST_PP_EXPR_IF(n, >) \
iterator emplace(const_iterator pos \
BOOST_PP_ENUM_TRAILING(n, BOOST_CONTAINER_PP_PARAM_LIST, _)) \
{ \
typedef container_detail::BOOST_PP_CAT(insert_emplace_proxy_arg, n) \
<Allocator, T* BOOST_PP_ENUM_TRAILING_PARAMS(n, P)> type; \
return this->priv_forward_range_insert \
( container_detail::to_raw_pointer(vector_iterator_get_ptr(pos)), 1 \
, type(BOOST_PP_ENUM(n, BOOST_CONTAINER_PP_PARAM_FORWARD, _)), alloc_version()); \
} \
//!
#define BOOST_PP_LOCAL_LIMITS (0, BOOST_CONTAINER_MAX_CONSTRUCTOR_PARAMETERS)
#include BOOST_PP_LOCAL_ITERATE()
#endif //#ifdef BOOST_CONTAINER_PERFECT_FORWARDING
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Effects</b>: Inserts a copy of x at the end of the vector.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(const T &x);
//! <b>Effects</b>: Constructs a new element in the end of the vector
//! and moves the resources of x to this new element.
//!
//! <b>Throws</b>: If memory allocation throws or
//! T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Amortized constant time.
void push_back(T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH(push_back, T, void, priv_push_back)
#endif
#if defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of x before position.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator position, const T &x);
//! <b>Requires</b>: position must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a new element before position with x's resources.
//!
//! <b>Throws</b>: If memory allocation throws.
//!
//! <b>Complexity</b>: If position is end(), amortized constant time
//! Linear time otherwise.
iterator insert(const_iterator position, T &&x);
#else
BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert, T, iterator, priv_insert, const_iterator, const_iterator)
#endif
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert n copies of x before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or p if n is 0.
//!
//! <b>Throws</b>: If memory allocation throws or T's copy/move constructor throws.
//!
//! <b>Complexity</b>: Linear to n.
iterator insert(const_iterator p, size_type n, const T& x)
{
container_detail::insert_n_copies_proxy<Allocator, T*> proxy(x);
return this->priv_forward_range_insert(vector_iterator_get_ptr(p), n, proxy, alloc_version());
}
//! <b>Requires</b>: p must be a valid iterator of *this.
//!
//! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InpIt throws or T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: Linear to std::distance [first, last).
template <class InIt>
iterator insert(const_iterator pos, InIt first, InIt last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename container_detail::enable_if_c
< !container_detail::is_convertible<InIt, size_type>::value
&& container_detail::is_input_iterator<InIt>::value
>::type * = 0
#endif
)
{
const size_type n_pos = pos - this->cbegin();
iterator it(vector_iterator_get_ptr(pos));
for(;first != last; ++first){
it = this->emplace(it, *first);
++it;
}
return iterator(this->m_holder.start() + n_pos);
}
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class FwdIt>
iterator insert(const_iterator pos, FwdIt first, FwdIt last
, typename container_detail::enable_if_c
< !container_detail::is_convertible<FwdIt, size_type>::value
&& !container_detail::is_input_iterator<FwdIt>::value
>::type * = 0
)
{
container_detail::insert_range_proxy<Allocator, FwdIt, T*> proxy(first);
return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), std::distance(first, last), proxy, alloc_version());
}
#endif
//! <b>Requires</b>: p must be a valid iterator of *this. num, must
//! be equal to std::distance(first, last)
//!
//! <b>Effects</b>: Insert a copy of the [first, last) range before pos.
//!
//! <b>Returns</b>: an iterator to the first inserted element or pos if first == last.
//!
//! <b>Throws</b>: If memory allocation throws, T's constructor from a
//! dereferenced InpIt throws or T's copy/move constructor/assignment throws.
//!
//! <b>Complexity</b>: Linear to std::distance [first, last).
//!
//! <b>Note</b>: This function avoids a linear operation to calculate std::distance[first, last)
//! for forward and bidirectional iterators, and a one by one insertion for input iterators. This is a
//! a non-standard extension.
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
template <class InIt>
iterator insert(const_iterator pos, size_type num, InIt first, InIt last)
{
BOOST_ASSERT(container_detail::is_input_iterator<InIt>::value ||
num == static_cast<size_type>(std::distance(first, last)));
container_detail::insert_range_proxy<Allocator, InIt, T*> proxy(first);
return this->priv_forward_range_insert(vector_iterator_get_ptr(pos), num, proxy, alloc_version());
}
#endif
//! <b>Effects</b>: Removes the last element from the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant time.
void pop_back() BOOST_CONTAINER_NOEXCEPT
{
//Destroy last element
--this->m_holder.m_size;
this->priv_destroy(container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size);
}
//! <b>Effects</b>: Erases the element at position pos.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the elements between pos and the
//! last element. Constant if pos is the last element.
iterator erase(const_iterator position)
{
T *const pos = container_detail::to_raw_pointer(vector_iterator_get_ptr(position));
T *const beg = container_detail::to_raw_pointer(this->m_holder.start());
//Move elements forward and destroy last
this->priv_destroy(::boost::move(pos + 1, beg + this->m_holder.m_size, pos));
--this->m_holder.m_size;
return iterator(vector_iterator_get_ptr(position));
}
//! <b>Effects</b>: Erases the elements pointed by [first, last).
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the distance between first and last
//! plus linear to the elements between pos and the last element.
iterator erase(const_iterator first, const_iterator last)
{
if (first != last){
T* const end_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
T* const ptr = container_detail::to_raw_pointer(boost::move
(container_detail::to_raw_pointer(vector_iterator_get_ptr(last))
,end_pos
,container_detail::to_raw_pointer(vector_iterator_get_ptr(first))
));
const size_type destroyed = (end_pos - ptr);
boost::container::destroy_alloc_n(this->get_stored_allocator(), ptr, destroyed);
this->m_holder.m_size -= destroyed;
}
return iterator(vector_iterator_get_ptr(first));
}
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
void swap(vector& x) BOOST_CONTAINER_NOEXCEPT_IF((!container_detail::is_version<Allocator, 0>::value))
{
//Just swap internals in case of !allocator_v0. Otherwise, deep swap
this->m_holder.swap(x.m_holder);
//And now the allocator
container_detail::bool_<allocator_traits_type::propagate_on_container_swap::value> flag;
container_detail::swap_alloc(this->m_holder.alloc(), x.m_holder.alloc(), flag);
}
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//! <b>Effects</b>: Swaps the contents of *this and x.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear
//!
//! <b>Note</b>: Non-standard extension to support static_vector
template<class OtherAllocator>
void swap(vector<T, OtherAllocator> & x
, typename container_detail::enable_if_c
< container_detail::is_version<OtherAllocator, 0>::value &&
!container_detail::is_same<OtherAllocator, allocator_type>::value >::type * = 0
)
{ this->m_holder.swap(x.m_holder); }
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//! <b>Effects</b>: Erases all the elements of the vector.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
void clear() BOOST_CONTAINER_NOEXCEPT
{ this->priv_destroy_all(); }
//! <b>Effects</b>: Returns true if x and y are equal
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator==(const vector& x, const vector& y)
{ return x.size() == y.size() && std::equal(x.begin(), x.end(), y.begin()); }
//! <b>Effects</b>: Returns true if x and y are unequal
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator!=(const vector& x, const vector& y)
{ return !(x == y); }
//! <b>Effects</b>: Returns true if x is less than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator<(const vector& x, const vector& y)
{ return std::lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
//! <b>Effects</b>: Returns true if x is greater than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator>(const vector& x, const vector& y)
{ return y < x; }
//! <b>Effects</b>: Returns true if x is equal or less than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator<=(const vector& x, const vector& y)
{ return !(y < x); }
//! <b>Effects</b>: Returns true if x is equal or greater than y
//!
//! <b>Complexity</b>: Linear to the number of elements in the container.
friend bool operator>=(const vector& x, const vector& y)
{ return !(x < y); }
//! <b>Effects</b>: x.swap(y)
//!
//! <b>Complexity</b>: Constant.
friend void swap(vector& x, vector& y)
{ x.swap(y); }
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
//Absolutely experimental. This function might change, disappear or simply crash!
template<class BiDirPosConstIt, class BiDirValueIt>
void insert_ordered_at(size_type element_count, BiDirPosConstIt last_position_it, BiDirValueIt last_value_it)
{
const size_type *dummy = 0;
this->priv_insert_ordered_at(element_count, last_position_it, false, dummy, last_value_it);
}
//Absolutely experimental. This function might change, disappear or simply crash!
template<class BiDirPosConstIt, class BiDirSkipConstIt, class BiDirValueIt>
void insert_ordered_at( size_type element_count, BiDirPosConstIt last_position_it
, BiDirSkipConstIt last_skip_it, BiDirValueIt last_value_it)
{
this->priv_insert_ordered_at(element_count, last_position_it, true, last_skip_it, last_value_it);
}
private:
template<class OtherAllocator>
void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
, typename container_detail::enable_if_c
< container_detail::is_version<OtherAllocator, 0>::value >::type * = 0)
{
if(!container_detail::is_same<OtherAllocator, allocator_type>::value &&
this->capacity() < x.size()){
throw_bad_alloc();
}
T* const this_start = container_detail::to_raw_pointer(m_holder.start());
T* const other_start = container_detail::to_raw_pointer(x.m_holder.start());
const size_type this_sz = m_holder.m_size;
const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);
boost::container::move_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);
this->m_holder.m_size = other_sz;
}
template<class OtherAllocator>
void priv_move_assign(BOOST_RV_REF_BEG vector<T, OtherAllocator> BOOST_RV_REF_END x
, typename container_detail::enable_if_c
< !container_detail::is_version<OtherAllocator, 0>::value &&
container_detail::is_same<OtherAllocator, allocator_type>::value>::type * = 0)
{
//for move constructor, no aliasing (&x != this) is assummed.
BOOST_ASSERT(this != &x);
allocator_type &this_alloc = this->m_holder.alloc();
allocator_type &x_alloc = x.m_holder.alloc();
const bool propagate_alloc = allocator_traits_type::
propagate_on_container_move_assignment::value;
container_detail::bool_<propagate_alloc> flag;
const bool allocators_equal = this_alloc == x_alloc; (void)allocators_equal;
//Resources can be transferred if both allocators are
//going to be equal after this function (either propagated or already equal)
if(propagate_alloc || allocators_equal){
//Destroy objects but retain memory in case x reuses it in the future
this->clear();
//Move allocator if needed
container_detail::move_alloc(this_alloc, x_alloc, flag);
//Nothrow swap
this->m_holder.swap(x.m_holder);
}
//Else do a one by one move
else{
this->assign( boost::make_move_iterator(x.begin())
, boost::make_move_iterator(x.end()));
}
}
template<class OtherAllocator>
void priv_copy_assign(const vector<T, OtherAllocator> &x
, typename container_detail::enable_if_c
< container_detail::is_version<OtherAllocator, 0>::value >::type * = 0)
{
if(!container_detail::is_same<OtherAllocator, allocator_type>::value &&
this->capacity() < x.size()){
throw_bad_alloc();
}
T* const this_start = container_detail::to_raw_pointer(m_holder.start());
T* const other_start = container_detail::to_raw_pointer(x.m_holder.start());
const size_type this_sz = m_holder.m_size;
const size_type other_sz = static_cast<size_type>(x.m_holder.m_size);
boost::container::copy_assign_range_alloc_n(this->m_holder.alloc(), other_start, other_sz, this_start, this_sz);
this->m_holder.m_size = other_sz;
}
template<class OtherAllocator>
void priv_copy_assign(const vector<T, OtherAllocator> &x
, typename container_detail::enable_if_c
< !container_detail::is_version<OtherAllocator, 0>::value &&
container_detail::is_same<OtherAllocator, allocator_type>::value >::type * = 0)
{
allocator_type &this_alloc = this->m_holder.alloc();
const allocator_type &x_alloc = x.m_holder.alloc();
container_detail::bool_<allocator_traits_type::
propagate_on_container_copy_assignment::value> flag;
if(flag && this_alloc != x_alloc){
this->clear();
this->shrink_to_fit();
}
container_detail::assign_alloc(this_alloc, x_alloc, flag);
this->assign( container_detail::to_raw_pointer(x.m_holder.start())
, container_detail::to_raw_pointer(x.m_holder.start() + x.m_holder.m_size));
}
void priv_reserve(size_type, allocator_v0)
{ throw_bad_alloc(); }
container_detail::insert_range_proxy<Allocator, boost::move_iterator<T*>, T*> priv_dummy_empty_proxy()
{
return container_detail::insert_range_proxy<Allocator, boost::move_iterator<T*>, T*>
(::boost::make_move_iterator((T *)0));
}
void priv_reserve(size_type new_cap, allocator_v1)
{
//There is not enough memory, allocate a new buffer
pointer p = this->m_holder.allocate(new_cap);
//We will reuse insert code, so create a dummy input iterator
this->priv_forward_range_insert_new_allocation
( container_detail::to_raw_pointer(p), new_cap
, container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size
, 0, this->priv_dummy_empty_proxy());
}
void priv_reserve(size_type new_cap, allocator_v2)
{
//There is not enough memory, allocate a new
//buffer or expand the old one.
bool same_buffer_start;
size_type real_cap = 0;
std::pair<pointer, bool> ret = this->m_holder.allocation_command
(allocate_new | expand_fwd | expand_bwd, new_cap, new_cap, real_cap, this->m_holder.start());
//Check for forward expansion
same_buffer_start = ret.second && this->m_holder.start() == ret.first;
if(same_buffer_start){
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_fwd;
#endif
this->m_holder.capacity(real_cap);
}
else{ //If there is no forward expansion, move objects, we will reuse insertion code
T * const new_mem = container_detail::to_raw_pointer(ret.first);
T * const ins_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
if(ret.second){ //Backwards (and possibly forward) expansion
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_bwd;
#endif
this->priv_forward_range_insert_expand_backwards
( new_mem , real_cap, ins_pos, 0, this->priv_dummy_empty_proxy());
}
else{ //New buffer
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_forward_range_insert_new_allocation
( new_mem, real_cap, ins_pos, 0, this->priv_dummy_empty_proxy());
}
}
}
void priv_destroy(value_type* p) BOOST_CONTAINER_NOEXCEPT
{
if(!value_traits::trivial_dctr)
allocator_traits_type::destroy(this->get_stored_allocator(), p);
}
void priv_destroy_last_n(size_type n) BOOST_CONTAINER_NOEXCEPT
{
T* const end_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
boost::container::destroy_alloc_n(this->get_stored_allocator(), end_pos-n, n);
this->m_holder.m_size -= n;
}
template<class InpIt>
void priv_uninitialized_construct_at_end(InpIt first, InpIt last)
{
T* end_pos = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
for(; first != last; ++first, ++end_pos, ++this->m_holder.m_size){
//There is more memory, just construct a new object at the end
allocator_traits_type::construct(this->m_holder.alloc(), end_pos, *first);
}
}
void priv_destroy_all() BOOST_CONTAINER_NOEXCEPT
{
boost::container::destroy_alloc_n
(this->get_stored_allocator(), container_detail::to_raw_pointer(this->m_holder.start()), this->m_holder.m_size);
this->m_holder.m_size = 0;
}
template<class U>
iterator priv_insert(const const_iterator &p, BOOST_FWD_REF(U) x)
{
return this->priv_forward_range_insert
( vector_iterator_get_ptr(p), 1, container_detail::get_insert_value_proxy<T*, Allocator>
(::boost::forward<U>(x)), alloc_version());
}
container_detail::insert_copy_proxy<Allocator, T*> priv_single_insert_proxy(const T &x)
{ return container_detail::insert_copy_proxy<Allocator, T*> (x); }
container_detail::insert_move_proxy<Allocator, T*> priv_single_insert_proxy(BOOST_RV_REF(T) x)
{ return container_detail::insert_move_proxy<Allocator, T*> (x); }
template <class U>
void priv_push_back(BOOST_FWD_REF(U) u)
{
if (this->m_holder.m_size < this->m_holder.capacity()){
//There is more memory, just construct a new object at the end
allocator_traits_type::construct
( this->m_holder.alloc()
, container_detail::to_raw_pointer(this->m_holder.start() + this->m_holder.m_size)
, ::boost::forward<U>(u) );
++this->m_holder.m_size;
}
else{
this->priv_forward_range_insert_no_capacity
( vector_iterator_get_ptr(this->cend()), 1
, this->priv_single_insert_proxy(::boost::forward<U>(u)), alloc_version());
}
}
container_detail::insert_n_copies_proxy<Allocator, T*> priv_resize_proxy(const T &x)
{ return container_detail::insert_n_copies_proxy<Allocator, T*>(x); }
container_detail::insert_default_initialized_n_proxy<Allocator, T*> priv_resize_proxy(default_init_t)
{ return container_detail::insert_default_initialized_n_proxy<Allocator, T*>(); }
container_detail::insert_value_initialized_n_proxy<Allocator, T*> priv_resize_proxy(value_init_t)
{ return container_detail::insert_value_initialized_n_proxy<Allocator, T*>(); }
template <class U>
void priv_resize(size_type new_size, const U& u)
{
const size_type sz = this->size();
if (new_size < sz){
//Destroy last elements
this->priv_destroy_last_n(sz - new_size);
}
else{
const size_type n = new_size - this->size();
this->priv_forward_range_insert_at_end(n, this->priv_resize_proxy(u), alloc_version());
}
}
void priv_shrink_to_fit(allocator_v0) BOOST_CONTAINER_NOEXCEPT
{}
void priv_shrink_to_fit(allocator_v1)
{
const size_type cp = this->m_holder.capacity();
if(cp){
const size_type sz = this->size();
if(!sz){
this->m_holder.alloc().deallocate(this->m_holder.m_start, cp);
this->m_holder.m_start = pointer();
this->m_holder.m_capacity = 0;
}
else if(sz < cp){
//Allocate a new buffer.
pointer p = this->m_holder.allocate(sz);
//We will reuse insert code, so create a dummy input iterator
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_forward_range_insert_new_allocation
( container_detail::to_raw_pointer(p), sz
, container_detail::to_raw_pointer(this->m_holder.start())
, 0, this->priv_dummy_empty_proxy());
}
}
}
void priv_shrink_to_fit(allocator_v2) BOOST_CONTAINER_NOEXCEPT
{
const size_type cp = this->m_holder.capacity();
if(cp){
const size_type sz = this->size();
if(!sz){
this->m_holder.alloc().deallocate(this->m_holder.m_start, cp);
this->m_holder.m_start = pointer();
this->m_holder.m_capacity = 0;
}
else{
size_type received_size;
if(this->m_holder.allocation_command
( shrink_in_place | nothrow_allocation
, cp, sz, received_size, this->m_holder.start()).first){
this->m_holder.capacity(received_size);
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_shrink;
#endif
}
}
}
}
template <class InsertionProxy>
iterator priv_forward_range_insert_no_capacity
(const pointer &pos, const size_type, const InsertionProxy , allocator_v0)
{
throw_bad_alloc();
return iterator(pos);
}
template <class InsertionProxy>
iterator priv_forward_range_insert_no_capacity
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v1)
{
//Check if we have enough memory or try to expand current memory
const size_type n_pos = pos - this->m_holder.start();
T *const raw_pos = container_detail::to_raw_pointer(pos);
const size_type new_cap = this->m_holder.next_capacity(n);
T * new_buf = container_detail::to_raw_pointer(this->m_holder.alloc().allocate(new_cap));
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_forward_range_insert_new_allocation
( new_buf, new_cap, raw_pos, n, insert_range_proxy);
return iterator(this->m_holder.start() + n_pos);
}
template <class InsertionProxy>
iterator priv_forward_range_insert_no_capacity
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v2)
{
//Check if we have enough memory or try to expand current memory
T *const raw_pos = container_detail::to_raw_pointer(pos);
const size_type n_pos = raw_pos - container_detail::to_raw_pointer(this->m_holder.start());
size_type real_cap = 0;
//There is not enough memory, allocate a new
//buffer or expand the old one.
std::pair<pointer, bool> ret = (this->m_holder.allocation_command
(allocate_new | expand_fwd | expand_bwd,
this->m_holder.m_size + n, this->m_holder.next_capacity(n), real_cap, this->m_holder.start()));
//Buffer reallocated
if(ret.second){
//Forward expansion, delay insertion
if(this->m_holder.start() == ret.first){
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_fwd;
#endif
this->m_holder.capacity(real_cap);
//Expand forward
this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
}
//Backwards (and possibly forward) expansion
else{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_expand_bwd;
#endif
this->priv_forward_range_insert_expand_backwards
( container_detail::to_raw_pointer(ret.first)
, real_cap, raw_pos, n, insert_range_proxy);
}
}
//New buffer
else{
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
++this->num_alloc;
#endif
this->priv_forward_range_insert_new_allocation
( container_detail::to_raw_pointer(ret.first)
, real_cap, raw_pos, n, insert_range_proxy);
}
return iterator(this->m_holder.start() + n_pos);
}
template <class InsertionProxy>
iterator priv_forward_range_insert
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v0)
{
//Check if we have enough memory or try to expand current memory
const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;
if (n > remaining){
//This will trigger an error
throw_bad_alloc();
}
const size_type n_pos = pos - this->m_holder.start();
T *const raw_pos = container_detail::to_raw_pointer(pos);
this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
return iterator(this->m_holder.start() + n_pos);
}
template <class InsertionProxy>
iterator priv_forward_range_insert
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v1)
{
//Check if we have enough memory or try to expand current memory
const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;
T *const raw_pos = container_detail::to_raw_pointer(pos);
if (n <= remaining){
const size_type n_pos = raw_pos - container_detail::to_raw_pointer(this->m_holder.start());
this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
return iterator(this->m_holder.start() + n_pos);
}
else{
return this->priv_forward_range_insert_no_capacity(pos, n, insert_range_proxy, alloc_version());
}
}
template <class InsertionProxy>
iterator priv_forward_range_insert
(const pointer &pos, const size_type n, const InsertionProxy insert_range_proxy, allocator_v2)
{
//Check if we have enough memory or try to expand current memory
const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;
bool same_buffer_start = n <= remaining;
if (!same_buffer_start){
return priv_forward_range_insert_no_capacity(pos, n, insert_range_proxy, alloc_version());
}
else{
//Expand forward
T *const raw_pos = container_detail::to_raw_pointer(pos);
const size_type n_pos = raw_pos - container_detail::to_raw_pointer(this->m_holder.start());
this->priv_forward_range_insert_expand_forward(raw_pos, n, insert_range_proxy);
return iterator(this->m_holder.start() + n_pos);
}
}
template <class InsertionProxy>
iterator priv_forward_range_insert_at_end
(const size_type n, const InsertionProxy insert_range_proxy, allocator_v0)
{
//Check if we have enough memory or try to expand current memory
const size_type remaining = this->m_holder.capacity() - this->m_holder.m_size;
if (n > remaining){
//This will trigger an error
throw_bad_alloc();
}
this->priv_forward_range_insert_at_end_expand_forward(n, insert_range_proxy);
return this->end();
}
template <class InsertionProxy>
iterator priv_forward_range_insert_at_end
(const size_type n, const InsertionProxy insert_range_proxy, allocator_v1)
{
return this->priv_forward_range_insert(vector_iterator_get_ptr(this->cend()), n, insert_range_proxy, allocator_v1());
}
template <class InsertionProxy>
iterator priv_forward_range_insert_at_end
(const size_type n, const InsertionProxy insert_range_proxy, allocator_v2)
{
return this->priv_forward_range_insert(vector_iterator_get_ptr(this->cend()), n, insert_range_proxy, allocator_v2());
}
//Absolutely experimental. This function might change, disappear or simply crash!
template<class BiDirPosConstIt, class BiDirSkipConstIt, class BiDirValueIt>
void priv_insert_ordered_at( size_type element_count, BiDirPosConstIt last_position_it
, bool do_skip, BiDirSkipConstIt last_skip_it, BiDirValueIt last_value_it)
{
const size_type old_size_pos = this->size();
this->reserve(old_size_pos + element_count);
T* const begin_ptr = container_detail::to_raw_pointer(this->m_holder.start());
size_type insertions_left = element_count;
size_type next_pos = old_size_pos;
size_type hole_size = element_count;
//Exception rollback. If any copy throws before the hole is filled, values
//already inserted/copied at the end of the buffer will be destroyed.
typename value_traits::ArrayDestructor past_hole_values_destroyer
(begin_ptr + old_size_pos + element_count, this->m_holder.alloc(), size_type(0u));
//Loop for each insertion backwards, first moving the elements after the insertion point,
//then inserting the element.
while(insertions_left){
if(do_skip){
size_type n = *(--last_skip_it);
std::advance(last_value_it, -difference_type(n));
}
const size_type pos = static_cast<size_type>(*(--last_position_it));
BOOST_ASSERT(pos <= old_size_pos);
//If needed shift the range after the insertion point and the previous insertion point.
//Function will take care if the shift crosses the size() boundary, using copy/move
//or uninitialized copy/move if necessary.
size_type new_hole_size = (pos != next_pos)
? priv_insert_ordered_at_shift_range(pos, next_pos, this->size(), insertions_left)
: hole_size
;
if(new_hole_size > 0){
//The hole was reduced by priv_insert_ordered_at_shift_range so expand exception rollback range backwards
past_hole_values_destroyer.increment_size_backwards(next_pos - pos);
//Insert the new value in the hole
allocator_traits_type::construct(this->m_holder.alloc(), begin_ptr + pos + insertions_left - 1, *(--last_value_it));
--new_hole_size;
if(new_hole_size == 0){
//Hole was just filled, disable exception rollback and change vector size
past_hole_values_destroyer.release();
this->m_holder.m_size += element_count;
}
else{
//The hole was reduced by the new insertion by one
past_hole_values_destroyer.increment_size_backwards(size_type(1u));
}
}
else{
if(hole_size){
//Hole was just filled by priv_insert_ordered_at_shift_range, disable exception rollback and change vector size
past_hole_values_destroyer.release();
this->m_holder.m_size += element_count;
}
//Insert the new value in the already constructed range
begin_ptr[pos + insertions_left - 1] = *(--last_value_it);
}
--insertions_left;
hole_size = new_hole_size;
next_pos = pos;
}
}
//Takes the range pointed by [first_pos, last_pos) and shifts it to the right
//by 'shift_count'. 'limit_pos' marks the end of constructed elements.
//
//Precondition: first_pos <= last_pos <= limit_pos
//
//The shift operation might cross limit_pos so elements to moved beyond limit_pos
//are uninitialized_moved with an allocator. Other elements are moved.
//
//The shift operation might left uninitialized elements after limit_pos
//and the number of uninitialized elements is returned by the function.
//
//Old situation:
// first_pos last_pos old_limit
// | | |
// ____________V_______V__________________V_____________
//| prefix | range | suffix |raw_mem ~
//|____________|_______|__________________|_____________~
//
//New situation in Case Allocator (hole_size == 0):
// range is moved through move assignments
//
// first_pos last_pos limit_pos
// | | |
// ____________V_______V__________________V_____________
//| prefix' | | | range |suffix'|raw_mem ~
//|________________+______|___^___|_______|_____________~
// | |
// |_>_>_>_>_>^
//
//
//New situation in Case B (hole_size > 0):
// range is moved through uninitialized moves
//
// first_pos last_pos limit_pos
// | | |
// ____________V_______V__________________V________________
//| prefix' | | | [hole] | range |
//|_______________________________________|________|___^___|
// | |
// |_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_>_^
//
//New situation in Case C (hole_size == 0):
// range is moved through move assignments and uninitialized moves
//
// first_pos last_pos limit_pos
// | | |
// ____________V_______V__________________V___
//| prefix' | | | range |
//|___________________________________|___^___|
// | |
// |_>_>_>_>_>_>_>_>_>_>_>^
size_type priv_insert_ordered_at_shift_range
(size_type first_pos, size_type last_pos, size_type limit_pos, size_type shift_count)
{
BOOST_ASSERT(first_pos <= last_pos);
BOOST_ASSERT(last_pos <= limit_pos);
//
T* const begin_ptr = container_detail::to_raw_pointer(this->m_holder.start());
T* const first_ptr = begin_ptr + first_pos;
T* const last_ptr = begin_ptr + last_pos;
size_type hole_size = 0;
//Case A:
if((last_pos + shift_count) <= limit_pos){
//All move assigned
boost::move_backward(first_ptr, last_ptr, last_ptr + shift_count);
}
//Case B:
else if((first_pos + shift_count) >= limit_pos){
//All uninitialized_moved
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), first_ptr, last_ptr, first_ptr + shift_count);
hole_size = last_pos + shift_count - limit_pos;
}
//Case C:
else{
//Some uninitialized_moved
T* const limit_ptr = begin_ptr + limit_pos;
T* const boundary_ptr = limit_ptr - shift_count;
::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), boundary_ptr, last_ptr, limit_ptr);
//The rest is move assigned
boost::move_backward(first_ptr, boundary_ptr, limit_ptr);
}
return hole_size;
}
private:
template <class InsertionProxy>
void priv_forward_range_insert_at_end_expand_forward(const size_type n, InsertionProxy insert_range_proxy)
{
T* const old_finish = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);
this->m_holder.m_size += n;
}
template <class InsertionProxy>
void priv_forward_range_insert_expand_forward(T* const pos, const size_type n, InsertionProxy insert_range_proxy)
{
//n can't be 0, because there is nothing to do in that case
if(!n) return;
//There is enough memory
T* const old_finish = container_detail::to_raw_pointer(this->m_holder.start()) + this->m_holder.m_size;
const size_type elems_after = old_finish - pos;
if (!elems_after){
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);
this->m_holder.m_size += n;
}
else if (elems_after >= n){
//New elements can be just copied.
//Move to uninitialized memory last objects
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), old_finish - n, old_finish, old_finish);
this->m_holder.m_size += n;
//Copy previous to last objects to the initialized end
boost::move_backward(pos, old_finish - n, old_finish);
//Insert new objects in the pos
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, n);
}
else {
//The new elements don't fit in the [pos, end()) range.
//Copy old [pos, end()) elements to the uninitialized memory (a gap is created)
::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), pos, old_finish, pos + n);
BOOST_TRY{
//Copy first new elements in pos (gap is still there)
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, elems_after);
//Copy to the beginning of the unallocated zone the last new elements (the gap is closed).
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n - elems_after);
this->m_holder.m_size += n;
}
BOOST_CATCH(...){
boost::container::destroy_alloc_n(this->get_stored_allocator(), pos + n, elems_after);
BOOST_RETHROW
}
BOOST_CATCH_END
}
}
template <class InsertionProxy>
void priv_forward_range_insert_new_allocation
(T* const new_start, size_type new_cap, T* const pos, const size_type n, InsertionProxy insert_range_proxy)
{
//n can be zero, if we want to reallocate!
T *new_finish = new_start;
T *old_finish;
//Anti-exception rollbacks
typename value_traits::ArrayDeallocator new_buffer_deallocator(new_start, this->m_holder.alloc(), new_cap);
typename value_traits::ArrayDestructor new_values_destroyer(new_start, this->m_holder.alloc(), 0u);
//Initialize with [begin(), pos) old buffer
//the start of the new buffer
T * const old_buffer = container_detail::to_raw_pointer(this->m_holder.start());
if(old_buffer){
new_finish = ::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), container_detail::to_raw_pointer(this->m_holder.start()), pos, old_finish = new_finish);
new_values_destroyer.increment_size(new_finish - old_finish);
}
//Initialize new objects, starting from previous point
old_finish = new_finish;
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, n);
new_finish += n;
new_values_destroyer.increment_size(new_finish - old_finish);
//Initialize from the rest of the old buffer,
//starting from previous point
if(old_buffer){
new_finish = ::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), pos, old_buffer + this->m_holder.m_size, new_finish);
//Destroy and deallocate old elements
//If there is allocated memory, destroy and deallocate
if(!value_traits::trivial_dctr_after_move)
boost::container::destroy_alloc_n(this->get_stored_allocator(), old_buffer, this->m_holder.m_size);
this->m_holder.alloc().deallocate(this->m_holder.start(), this->m_holder.capacity());
}
this->m_holder.start(new_start);
this->m_holder.m_size = new_finish - new_start;
this->m_holder.capacity(new_cap);
//All construction successful, disable rollbacks
new_values_destroyer.release();
new_buffer_deallocator.release();
}
template <class InsertionProxy>
void priv_forward_range_insert_expand_backwards
(T* const new_start, const size_type new_capacity,
T* const pos, const size_type n, InsertionProxy insert_range_proxy)
{
//n can be zero to just expand capacity
//Backup old data
T* const old_start = container_detail::to_raw_pointer(this->m_holder.start());
const size_type old_size = this->m_holder.m_size;
T* const old_finish = old_start + old_size;
//We can have 8 possibilities:
const size_type elemsbefore = static_cast<size_type>(pos - old_start);
const size_type s_before = static_cast<size_type>(old_start - new_start);
const size_type before_plus_new = elemsbefore + n;
//Update the vector buffer information to a safe state
this->m_holder.start(new_start);
this->m_holder.capacity(new_capacity);
this->m_holder.m_size = 0;
//If anything goes wrong, this object will destroy
//all the old objects to fulfill previous vector state
typename value_traits::ArrayDestructor old_values_destroyer(old_start, this->m_holder.alloc(), old_size);
//Check if s_before is big enough to hold the beginning of old data + new data
if(s_before >= before_plus_new){
//Copy first old values before pos, after that the new objects
T *const new_elem_pos =
::boost::container::uninitialized_move_alloc(this->m_holder.alloc(), old_start, pos, new_start);
this->m_holder.m_size = elemsbefore;
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), new_elem_pos, n);
this->m_holder.m_size = before_plus_new;
const size_type new_size = old_size + n;
//Check if s_before is so big that even copying the old data + new data
//there is a gap between the new data and the old data
if(s_before >= new_size){
//Old situation:
// _________________________________________________________
//| raw_mem | old_begin | old_end |
//| __________________________________|___________|_________|
//
//New situation:
// _________________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|__________|_________|________________________|
//
//Now initialize the rest of memory with the last old values
if(before_plus_new != new_size){ //Special case to avoid operations in back insertion
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), pos, old_finish, new_start + before_plus_new);
//All new elements correctly constructed, avoid new element destruction
this->m_holder.m_size = new_size;
}
//Old values destroyed automatically with "old_values_destroyer"
//when "old_values_destroyer" goes out of scope unless the have trivial
//destructor after move.
if(value_traits::trivial_dctr_after_move)
old_values_destroyer.release();
}
//s_before is so big that divides old_end
else{
//Old situation:
// __________________________________________________
//| raw_mem | old_begin | old_end |
//| ___________________________|___________|_________|
//
//New situation:
// __________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|__________|_________|_________________|
//
//Now initialize the rest of memory with the last old values
//All new elements correctly constructed, avoid new element destruction
const size_type raw_gap = s_before - before_plus_new;
if(!value_traits::trivial_dctr){
//Now initialize the rest of s_before memory with the
//first of elements after new values
::boost::container::uninitialized_move_alloc_n
(this->m_holder.alloc(), pos, raw_gap, new_start + before_plus_new);
//Now we have a contiguous buffer so program trailing element destruction
//and update size to the final size.
old_values_destroyer.shrink_forward(elemsbefore + raw_gap);
this->m_holder.m_size = new_size;
//Now move remaining last objects in the old buffer begin
::boost::move(pos + raw_gap, old_finish, old_start);
//Once moved, avoid calling the destructors if trivial after move
if(value_traits::trivial_dctr_after_move){
old_values_destroyer.release();
}
}
else{ //If trivial destructor, we can uninitialized copy + copy in a single uninitialized copy
::boost::container::uninitialized_move_alloc_n
(this->m_holder.alloc(), pos, old_finish - pos, new_start + before_plus_new);
this->m_holder.m_size = new_size;
old_values_destroyer.release();
}
}
}
else{
//Check if we have to do the insertion in two phases
//since maybe s_before is not big enough and
//the buffer was expanded both sides
//
//Old situation:
// _________________________________________________
//| raw_mem | old_begin + old_end | raw_mem |
//|_________|_____________________|_________________|
//
//New situation with do_after:
// _________________________________________________
//| old_begin + new + old_end | raw_mem |
//|___________________________________|_____________|
//
//New without do_after:
// _________________________________________________
//| old_begin + new + old_end | raw_mem |
//|____________________________|____________________|
//
const bool do_after = n > s_before;
//Now we can have two situations: the raw_mem of the
//beginning divides the old_begin, or the new elements:
if (s_before <= elemsbefore) {
//The raw memory divides the old_begin group:
//
//If we need two phase construction (do_after)
//new group is divided in new = new_beg + new_end groups
//In this phase only new_beg will be inserted
//
//Old situation:
// _________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|_________|___________|_________|_________________|
//
//New situation with do_after(1):
//This is not definitive situation, the second phase
//will include
// _________________________________________________
//| old_begin | new_beg | old_end | raw_mem |
//|___________|_________|_________|_________________|
//
//New situation without do_after:
// _________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|_____|_________|_____________________|
//
//Copy the first part of old_begin to raw_mem
::boost::container::uninitialized_move_alloc_n
(this->m_holder.alloc(), old_start, s_before, new_start);
//The buffer is all constructed until old_end
if(do_after){
//release destroyer and update size
old_values_destroyer.release();
this->m_holder.m_size = old_size + s_before;
//Now copy the second part of old_begin overwriting itself
T *const next = ::boost::move(old_start + s_before, pos, old_start);
//Now copy the new_beg elements
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), next, s_before);
}
else{
//The buffer is all constructed until old_end,
//so program trailing destruction and assign final size
this->m_holder.m_size = old_size + n;
const size_type n_destroy = s_before - n;
old_values_destroyer.shrink_forward(old_size - n_destroy);
//Now copy the second part of old_begin overwriting itself
T *const next = ::boost::move(old_start + s_before, pos, old_start);
//Now copy the all the new elements
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), next, n);
//Now displace old_end elements
::boost::move(pos, old_finish, next + n);
if(value_traits::trivial_dctr_after_move)
old_values_destroyer.release();
}
}
else {
//If we have to expand both sides,
//we will play if the first new values so
//calculate the upper bound of new values
//The raw memory divides the new elements
//
//If we need two phase construction (do_after)
//new group is divided in new = new_beg + new_end groups
//In this phase only new_beg will be inserted
//
//Old situation:
// _______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|_______________|___________|_________|_________________|
//
//New situation with do_after():
// ____________________________________________________
//| old_begin | new_beg | old_end | raw_mem |
//|___________|_______________|_________|______________|
//
//New situation without do_after:
// ______________________________________________________
//| old_begin | new | old_end | raw_mem |
//|___________|_____|_________|__________________________|
//
//First copy whole old_begin and part of new to raw_mem
T * const new_pos = ::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), old_start, pos, new_start);
this->m_holder.m_size = elemsbefore;
const size_type mid_n = s_before - elemsbefore;
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), new_pos, mid_n);
//The buffer is all constructed until old_end,
//release destroyer
this->m_holder.m_size = old_size + s_before;
old_values_destroyer.release();
if(do_after){
//Copy new_beg part
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), old_start, elemsbefore);
}
else{
//Copy all new elements
const size_type rest_new = n - mid_n;
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), old_start, rest_new);
T* const move_start = old_start + rest_new;
//Displace old_end
T* const move_end = ::boost::move(pos, old_finish, move_start);
//Destroy remaining moved elements from old_end except if they
//have trivial destructor after being moved
size_type n_destroy = s_before - n;
if(!value_traits::trivial_dctr_after_move)
boost::container::destroy_alloc_n(this->get_stored_allocator(), move_end, n_destroy);
this->m_holder.m_size -= n_destroy;
}
}
//This is only executed if two phase construction is needed
if(do_after){
//The raw memory divides the new elements
//
//Old situation:
// ______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|______________|
//
//New situation with do_after(1):
// _______________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_________|________|_________|
//
//New situation with do_after(2):
// ______________________________________________________
//| old_begin + new | old_end |raw |
//|_______________________________________|_________|____|
//
const size_type n_after = n - s_before;
const size_type elemsafter = old_size - elemsbefore;
//We can have two situations:
if (elemsafter >= n_after){
//The raw_mem from end will divide displaced old_end
//
//Old situation:
// ______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|______________|
//
//New situation with do_after(1):
// _______________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_________|________|_________|
//
//First copy the part of old_end raw_mem
T* finish_n = old_finish - n_after;
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), finish_n, old_finish, old_finish);
this->m_holder.m_size += n_after;
//Displace the rest of old_end to the new position
boost::move_backward(pos, finish_n, old_finish);
//Now overwrite with new_end
//The new_end part is [first + (n - n_after), last)
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, n_after);
}
else {
//The raw_mem from end will divide new_end part
//
//Old situation:
// _____________________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|_____________________|
//
//New situation with do_after(2):
// _____________________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_______________|________|_________|
//
const size_type mid_last_dist = n_after - elemsafter;
//First initialize data in raw memory
//Copy to the old_end part to the uninitialized zone leaving a gap.
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), pos, old_finish, old_finish + mid_last_dist);
BOOST_TRY{
//Copy the first part to the already constructed old_end zone
insert_range_proxy.copy_n_and_update(this->m_holder.alloc(), pos, elemsafter);
//Copy the rest to the uninitialized zone filling the gap
insert_range_proxy.uninitialized_copy_n_and_update(this->m_holder.alloc(), old_finish, mid_last_dist);
this->m_holder.m_size += n_after;
}
BOOST_CATCH(...){
boost::container::destroy_alloc_n(this->get_stored_allocator(), pos, mid_last_dist);
BOOST_RETHROW
}
BOOST_CATCH_END
/*
size_type mid_last_dist = n_after - elemsafter;
//First initialize data in raw memory
//The new_end part is [first + (n - n_after), last)
insert_range_proxy.uninitialized_copy_last_and_update(old_finish, elemsafter);
this->m_holder.m_size += mid_last_dist;
::boost::container::uninitialized_move_alloc
(this->m_holder.alloc(), pos, old_finish, old_finish + mid_last_dist);
this->m_holder.m_size += n_after - mid_last_dist;
//Now copy the part of new_end over constructed elements
insert_range_proxy.copy_remaining_to(pos);*/
}
}
}
}
void priv_check_range(size_type n) const
{
//If n is out of range, throw an out_of_range exception
if (n >= this->size()){
throw_out_of_range("vector::at out of range");
}
}
#ifdef BOOST_CONTAINER_VECTOR_ALLOC_STATS
public:
unsigned int num_expand_fwd;
unsigned int num_expand_bwd;
unsigned int num_shrink;
unsigned int num_alloc;
void reset_alloc_stats()
{ num_expand_fwd = num_expand_bwd = num_alloc = 0, num_shrink = 0; }
#endif
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
};
}}
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace boost {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class Allocator>
struct has_trivial_destructor_after_move<boost::container::vector<T, Allocator> >
: public ::boost::has_trivial_destructor_after_move<Allocator>
{};
}
//#define BOOST_CONTAINER_PUT_SWAP_OVERLOAD_IN_NAMESPACE_STD
#ifdef BOOST_CONTAINER_PUT_SWAP_OVERLOAD_IN_NAMESPACE_STD
namespace std {
template <class T, class Allocator>
inline void swap(boost::container::vector<T, Allocator>& x, boost::container::vector<T, Allocator>& y)
{ x.swap(y); }
} //namespace std {
#endif
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
#include <boost/container/detail/config_end.hpp>
#endif // #ifndef BOOST_CONTAINER_CONTAINER_VECTOR_HPP