Introduction
The C++ Standard Template Library STL as part of the C++ Standard Library provides a framework for processing algorithms on different kind of containers. However, ordinary arrays don’t provide the interface of STL containers (although, they provide the iterator interface of STL containers).
As replacement for ordinary arrays, the STL provides class std::vector
.
However, std::vector<>
provides the semantics of dynamic arrays.
Thus, it manages data to be able to change the number of elements.
This results in some overhead in case only arrays with static size are needed.
In his book, Generic Programming and the STL, Matthew H. Austern introduces a useful wrapper class for ordinary arrays with static size, called block
.
It is safer and has no worse performance than ordinary arrays.
In The C++ Programming Language, 3rd edition, Bjarne Stroustrup introduces a similar class, called c_array, which I (Nicolai Josuttis) present slightly modified in my book The C++ Standard Library - A Tutorial and Reference, called carray
.
This is the essence of these approaches spiced with many feedback from Boost.
After considering different names, we decided to name this class simply array
.
Note that this class is suggested to be part of the next Technical Report, which will extend the C++ Standard (see http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1548.htm).
Update: std::array
is (as of C++11) part of the C++ standard. The differences between boost::array
and std::array
are minimal. If you are using C++11, you should consider using std::array
instead of boost::array
.
Class array
fulfills most but not all of the requirements of "reversible containers" (see Section 23.1, [lib.container.requirements] of the C++ Standard). The reasons array is not an reversible STL container is because:
-
No constructors are provided.
-
Elements may have an undetermined initial value (see the section called "Design Rationale").
-
swap()
has no constant complexity. -
size()
is always constant, based on the second template argument of the type. -
The container provides no allocator support.
It doesn’t fulfill the requirements of a "sequence" (see Section 23.1.1, [lib.sequence.reqmts] of the C++ Standard), except that:
-
front()
andback()
are provided. -
operator[]
andat()
are provided.
Revision History
Changes in 1.88.0
-
Converted documentation to AsciiDoc (Christian Mazakas).
-
Added
noexcept
andconstexpr
as appropriate. -
Marked obsolete functions as deprecated.
-
Removed obsolete compiler workarounds.
-
Changed
array<T, 0>::begin()
,cbegin()
,end()
,cend()
to returnnullptr
, enablingconstexpr
. This matches the behavior ofstd::array
. -
Removed local
hash_value
overload;boost::hash
supports array-like types natively. -
array<T, 0>
can now be initialized with= {{}}
. -
Added
operator<=>
. -
Added
to_array
.
Reference
Header <boost/array.hpp>
namespace boost {
template<typename T, std::size_t N> class array;
template<typename T, std::size_t N>
void swap(array<T, N>&, array<T, N>&);
template<typename T, std::size_t N>
constexpr bool operator==(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
constexpr bool operator!=(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
constexpr bool operator<(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
constexpr bool operator>(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
constexpr bool operator<=(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
constexpr bool operator>=(const array<T, N>&, const array<T, N>&);
template<typename T, std::size_t N>
constexpr auto operator<=>(const array<T, N>&, const array<T, N>&);
template<std::size_t Idx, typename T, std::size_t N>
constexpr T& get(array<T, N>&) noexcept;
template<std::size_t Idx, typename T, std::size_t N>
constexpr const T& get(const array<T, N>&) noexcept;
template<class T, std::size_t N>
constexpr array<T, N> to_array( T const (&)[N] );
template<class T, std::size_t N>
constexpr array<T, N> to_array( T (&&)[N] );
template<class T, std::size_t N>
constexpr array<T, N> to_array( T const (&&)[N] );
}
Class template array
Synopsis
// In header: <boost/array.hpp>
template<typename T, std::size_t N>
class array {
public:
// types
typedef T value_type;
typedef T* iterator;
typedef const T* const_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef T& reference;
typedef const T& const_reference;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
// static constants
static const size_type static_size = N;
// construct/copy/destroy
template<typename U> array& operator=(const array<U, N>&);
// iterator support
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr const_iterator cbegin() const noexcept;
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr const_iterator cend() const noexcept;
// reverse iterator support
reverse_iterator rbegin() noexcept;
const_reverse_iterator rbegin() const noexcept;
const_reverse_iterator crbegin() const noexcept;
reverse_iterator rend() noexcept;
const_reverse_iterator rend() const noexcept;
const_reverse_iterator crend() const noexcept;
// capacity
static constexpr size_type size() noexcept;
static constexpr bool empty() noexcept;
static constexpr size_type max_size() noexcept;
// element access
constexpr reference operator[](size_type);
constexpr const_reference operator[](size_type) const;
constexpr reference at(size_type);
constexpr const_reference at(size_type) const;
constexpr reference front();
constexpr const_reference front() const;
constexpr reference back();
constexpr const_reference back() const;
constexpr T* data() noexcept;
constexpr const T* data() const noexcept;
T* c_array() noexcept; // deprecated
// modifiers
swap(array<T, N>&);
constexpr void fill(const T&);
void assign(const T&); // deprecated
// public data members
T elems[N];
};
Construct/Copy/Destroy
template<typename U> array& operator=(const array<U, N>& other);
Effects: |
For each |
Iterator Support
constexpr iterator begin() noexcept;
constexpr const_iterator begin() const noexcept;
constexpr const_iterator cbegin() const noexcept;
Returns: |
|
constexpr iterator end() noexcept;
constexpr const_iterator end() const noexcept;
constexpr const_iterator cend() const noexcept;
Returns: |
|
Reverse Iterator Support
reverse_iterator rbegin() noexcept;
Returns: |
|
const_reverse_iterator rbegin() const noexcept;
const_reverse_iterator crbegin() const noexcept;
Returns: |
|
reverse_iterator rend() noexcept;
Returns: |
|
const_reverse_iterator rend() const noexcept;
const_reverse_iterator crend() const noexcept;
Returns: |
|
Capacity
static constexpr size_type size() noexcept;
Returns: |
|
static constexpr bool empty() noexcept;
Returns: |
|
static constexpr size_type max_size() noexcept;
Returns: |
|
Element Access
constexpr reference operator[](size_type i);
constexpr const_reference operator[](size_type i) const;
Requires: |
|
Returns: |
|
Throws: |
Nothing. |
constexpr reference at(size_type i);
constexpr const_reference at(size_type i) const;
Returns: |
|
Throws: |
|
constexpr reference front();
constexpr const_reference front() const;
Requires: |
|
Returns: |
|
Throws: |
Nothing. |
constexpr reference back();
constexpr const_reference back() const;
Requires: |
|
Returns: |
|
Throws: |
Nothing. |
constexpr T* data() noexcept;
constexpr const T* data() const noexcept;
Returns: |
|
T* c_array() noexcept; // deprecated
Returns: |
|
Remarks: |
This function is deprecated. Use |
Modifiers
void swap(array<T, N>& other);
Effects: |
|
Complexity: |
linear in |
void fill(const T& value);
Effects: |
For each |
void assign(const T& value); // deprecated
Effects: |
|
Remarks: |
An obsolete and deprecated spelling of |
Specialized Algorithms
template<typename T, std::size_t N>
void swap(array<T, N>& x, array<T, N>& y);
Effects: |
|
Comparisons
template<typename T, std::size_t N>
constexpr bool operator==(const array<T, N>& x, const array<T, N>& y);
Returns: |
|
template<typename T, std::size_t N>
constexpr bool operator!=(const array<T, N>& x, const array<T, N>& y);
Returns: |
|
template<typename T, std::size_t N>
constexpr bool operator<(const array<T, N>& x, const array<T, N>& y);
Returns: |
|
template<typename T, std::size_t N>
constexpr bool operator>(const array<T, N>& x, const array<T, N>& y);
Returns: |
|
template<typename T, std::size_t N>
constexpr bool operator<=(const array<T, N>& x, const array<T, N>& y);
Returns: |
|
template<typename T, std::size_t N>
constexpr bool operator>=(const array<T, N>& x, const array<T, N>& y);
Returns: |
|
template<typename T, std::size_t N>
constexpr auto operator<=>(const array<T, N>& x, const array<T, N>& y)
-> decltype(x[0] <=> y[0]);
Effects: |
For each |
Remarks: |
When |
Specializations
template<std::size_t Idx, typename T, std::size_t N>
constexpr T& get(array<T, N>& arr) noexcept;
Mandates: |
|
Returns: |
|
template<std::size_t Idx, typename T, std::size_t N>
constexpr const T& get(const array<T, N>& arr) noexcept;
Mandates: |
|
Returns: |
|
Creation
template<class T, std::size_t N>
constexpr array<T, N> to_array( T const (&a)[N] );
Returns: |
an |
template<class T, std::size_t N>
constexpr array<T, N> to_array( T (&&a)[N] );
Returns: |
an |
template<class T, std::size_t N>
constexpr array<T, N> to_array( T const (&&a)[N] );
Returns: |
an |
Design Rationale
There was an important design tradeoff regarding the constructors: We could implement array as an "aggregate" (see Section 8.5.1, [dcl.init.aggr], of the C++ Standard). This would mean:
-
An array can be initialized with a brace-enclosing, comma-separated list of initializers for the elements of the container, written in increasing subscript order:
boost::array<int,4> a = { { 1, 2, 3 } };
Note that if there are fewer elements in the initializer list, then each remaining element gets default-initialized (thus, it has a defined value).
However, this approach has its drawbacks: passing no initializer list means that the elements have an indetermined initial value, because the rule says that aggregates may have:
-
No user-declared constructors.
-
No private or protected non-static data members.
-
No base classes.
-
No virtual functions.
Nevertheless, the current implementation uses this approach.
Note that for standard conforming compilers it is possible to use fewer braces (according to 8.5.1 (11) of the Standard). That is, you can initialize an array as follows:
boost::array<int,4> a = { 1, 2, 3 };
For more information…
To find more details about using ordinary arrays in C++ and the framework of the STL, see e.g.
The C++ Standard Library - A Tutorial and Reference
by Nicolai M. Josuttis
Addison Wesley Longman, 1999
ISBN 0-201-37926-0
Copyright and License
Copyright © 2001-2004 Nicolai M. Josuttis
Copyright © 2012 Marshall Clow
Distributed under the Boost Software License, Version 1.0.