boost/multiprecision/complex_adaptor.hpp
///////////////////////////////////////////////////////////////////////////////
// Copyright 2018 John Maddock. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MP_COMPLEX_ADAPTOR_HPP
#define BOOST_MP_COMPLEX_ADAPTOR_HPP
#include <boost/multiprecision/number.hpp>
#include <cstdint>
#include <boost/multiprecision/detail/digits.hpp>
#include <boost/multiprecision/detail/hash.hpp>
#include <boost/multiprecision/detail/no_exceptions_support.hpp>
#include <cmath>
#include <algorithm>
#include <complex>
namespace boost {
namespace multiprecision {
namespace backends {
template <class Backend>
struct complex_adaptor
{
protected:
Backend m_real, m_imag;
public:
Backend& real_data()
{
return m_real;
}
const Backend& real_data() const
{
return m_real;
}
Backend& imag_data()
{
return m_imag;
}
const Backend& imag_data() const
{
return m_imag;
}
using signed_types = typename Backend::signed_types ;
using unsigned_types = typename Backend::unsigned_types;
using float_types = typename Backend::float_types ;
using exponent_type = typename Backend::exponent_type ;
complex_adaptor() {}
complex_adaptor(const complex_adaptor& o) : m_real(o.real_data()), m_imag(o.imag_data()) {}
// Rvalue construct:
complex_adaptor(complex_adaptor&& o) : m_real(std::move(o.real_data())), m_imag(std::move(o.imag_data()))
{}
complex_adaptor(const Backend& val)
: m_real(val)
{}
template <class T>
complex_adaptor(const T& val, const typename std::enable_if<std::is_convertible<T, Backend>::value>::type* = nullptr)
: m_real(val)
{}
complex_adaptor(const std::complex<float>& val)
{
m_real = (long double)val.real();
m_imag = (long double)val.imag();
}
complex_adaptor(const std::complex<double>& val)
{
m_real = (long double)val.real();
m_imag = (long double)val.imag();
}
complex_adaptor(const std::complex<long double>& val)
{
m_real = val.real();
m_imag = val.imag();
}
template <class T, class U>
complex_adaptor(const T& a, const U& b, typename std::enable_if<std::is_constructible<Backend, T const&>::value&& std::is_constructible<Backend, U const&>::value>::type const* = nullptr)
: m_real(a), m_imag(b) {}
template <class T, class U>
complex_adaptor(T&& a, const U& b, typename std::enable_if<std::is_constructible<Backend, T>::value&& std::is_constructible<Backend, U>::value>::type const* = nullptr)
: m_real(static_cast<T&&>(a)), m_imag(b) {}
template <class T, class U>
complex_adaptor(T&& a, U&& b, typename std::enable_if<std::is_constructible<Backend, T>::value&& std::is_constructible<Backend, U>::value>::type const* = nullptr)
: m_real(static_cast<T&&>(a)), m_imag(static_cast<U&&>(b)) {}
template <class T, class U>
complex_adaptor(const T& a, U&& b, typename std::enable_if<std::is_constructible<Backend, T>::value&& std::is_constructible<Backend, U>::value>::type const* = nullptr)
: m_real(a), m_imag(static_cast<U&&>(b)) {}
complex_adaptor& operator=(const complex_adaptor& o)
{
m_real = o.real_data();
m_imag = o.imag_data();
return *this;
}
// rvalue assign:
complex_adaptor& operator=(complex_adaptor&& o) noexcept
{
m_real = std::move(o.real_data());
m_imag = std::move(o.imag_data());
return *this;
}
template <class V>
typename std::enable_if<std::is_assignable<Backend, V>::value, complex_adaptor&>::type operator=(const V& v)
{
using ui_type = typename std::tuple_element<0, unsigned_types>::type;
m_real = v;
m_imag = ui_type(0u);
return *this;
}
template <class T>
complex_adaptor& operator=(const std::complex<T>& val)
{
m_real = (long double)val.real();
m_imag = (long double)val.imag();
return *this;
}
complex_adaptor& operator=(const char* s)
{
using ui_type = typename std::tuple_element<0, unsigned_types>::type;
ui_type zero = 0u;
using default_ops::eval_fpclassify;
if (s && (*s == '('))
{
std::string part;
const char* p = ++s;
while (*p && (*p != ',') && (*p != ')'))
++p;
part.assign(s, p);
if (part.size())
real_data() = part.c_str();
else
real_data() = zero;
s = p;
if (*p && (*p != ')'))
{
++p;
while (*p && (*p != ')'))
++p;
part.assign(s + 1, p);
}
else
part.erase();
if (part.size())
imag_data() = part.c_str();
else
imag_data() = zero;
if (eval_fpclassify(imag_data()) == static_cast<int>(FP_NAN))
{
real_data() = imag_data();
}
}
else
{
real_data() = s;
imag_data() = zero;
}
return *this;
}
int compare(const complex_adaptor& o) const
{
// They are either equal or not:
return (m_real.compare(o.real_data()) == 0) && (m_imag.compare(o.imag_data()) == 0) ? 0 : 1;
}
template <class T>
int compare(const T& val) const
{
using default_ops::eval_is_zero;
return (m_real.compare(val) == 0) && eval_is_zero(m_imag) ? 0 : 1;
}
void swap(complex_adaptor& o)
{
real_data().swap(o.real_data());
imag_data().swap(o.imag_data());
}
std::string str(std::streamsize dig, std::ios_base::fmtflags f) const
{
using default_ops::eval_is_zero;
if (eval_is_zero(imag_data()))
return m_real.str(dig, f);
return "(" + m_real.str(dig, f) + "," + m_imag.str(dig, f) + ")";
}
void negate()
{
m_real.negate();
m_imag.negate();
}
//
// Default precision:
//
static BOOST_MP_CXX14_CONSTEXPR unsigned default_precision() noexcept
{
return Backend::default_precision();
}
static BOOST_MP_CXX14_CONSTEXPR void default_precision(unsigned digits10)
{
Backend::default_precision(digits10);
Backend::thread_default_precision(digits10);
}
static BOOST_MP_CXX14_CONSTEXPR unsigned thread_default_precision() noexcept
{
return Backend::thread_default_precision();
}
static BOOST_MP_CXX14_CONSTEXPR void thread_default_precision(unsigned digits10)
{
Backend::thread_default_precision(digits10);
}
BOOST_MP_CXX14_CONSTEXPR unsigned precision() const noexcept
{
return m_real.precision();
}
BOOST_MP_CXX14_CONSTEXPR void precision(unsigned digits10)
{
m_real.precision(digits10);
m_imag.precision(digits10);
}
//
// Variable precision options:
//
static constexpr variable_precision_options default_variable_precision_options()noexcept
{
return Backend::default_variable_precision_options();
}
static constexpr variable_precision_options thread_default_variable_precision_options()noexcept
{
return Backend::thread_default_variable_precision_options();
}
static BOOST_MP_CXX14_CONSTEXPR void default_variable_precision_options(variable_precision_options opts)
{
Backend::default_variable_precision_options(opts);
Backend::thread_default_variable_precision_options(opts);
}
static BOOST_MP_CXX14_CONSTEXPR void thread_default_variable_precision_options(variable_precision_options opts)
{
Backend::thread_default_variable_precision_options(opts);
}
};
template <class Backend, class T>
inline typename std::enable_if<boost::multiprecision::detail::is_arithmetic<T>::value, bool>::type eval_eq(const complex_adaptor<Backend>& a, const T& b) noexcept
{
return a.compare(b) == 0;
}
template <class Backend>
inline void eval_add(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& o)
{
eval_add(result.real_data(), o.real_data());
eval_add(result.imag_data(), o.imag_data());
}
template <class Backend>
inline void eval_subtract(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& o)
{
eval_subtract(result.real_data(), o.real_data());
eval_subtract(result.imag_data(), o.imag_data());
}
template <class Backend>
inline void eval_multiply(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& o)
{
Backend t1, t2, t3;
eval_multiply(t1, result.real_data(), o.real_data());
eval_multiply(t2, result.imag_data(), o.imag_data());
eval_subtract(t3, t1, t2);
eval_multiply(t1, result.real_data(), o.imag_data());
eval_multiply(t2, result.imag_data(), o.real_data());
eval_add(t1, t2);
result.real_data() = std::move(t3);
result.imag_data() = std::move(t1);
}
template <class Backend>
inline void eval_divide(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& z)
{
// (a+bi) / (c + di)
using default_ops::eval_add;
using default_ops::eval_divide;
using default_ops::eval_fabs;
using default_ops::eval_is_zero;
using default_ops::eval_multiply;
using default_ops::eval_subtract;
Backend t1, t2;
//
// Backup sign bits for later, so we can fix up
// signed zeros at the end:
//
int a_sign = eval_signbit(result.real_data());
int b_sign = eval_signbit(result.imag_data());
int c_sign = eval_signbit(z.real_data());
int d_sign = eval_signbit(z.imag_data());
if (eval_is_zero(z.imag_data()))
{
eval_divide(result.real_data(), z.real_data());
eval_divide(result.imag_data(), z.real_data());
}
else
{
eval_fabs(t1, z.real_data());
eval_fabs(t2, z.imag_data());
if (t1.compare(t2) < 0)
{
eval_divide(t1, z.real_data(), z.imag_data()); // t1 = c/d
eval_multiply(t2, z.real_data(), t1);
eval_add(t2, z.imag_data()); // denom = c * (c/d) + d
Backend t_real(result.real_data());
// real = (a * (c/d) + b) / (denom)
eval_multiply(result.real_data(), t1);
eval_add(result.real_data(), result.imag_data());
eval_divide(result.real_data(), t2);
// imag = (b * c/d - a) / denom
eval_multiply(result.imag_data(), t1);
eval_subtract(result.imag_data(), t_real);
eval_divide(result.imag_data(), t2);
}
else
{
eval_divide(t1, z.imag_data(), z.real_data()); // t1 = d/c
eval_multiply(t2, z.imag_data(), t1);
eval_add(t2, z.real_data()); // denom = d * d/c + c
Backend r_t(result.real_data());
Backend i_t(result.imag_data());
// real = (b * d/c + a) / denom
eval_multiply(result.real_data(), result.imag_data(), t1);
eval_add(result.real_data(), r_t);
eval_divide(result.real_data(), t2);
// imag = (-a * d/c + b) / denom
eval_multiply(result.imag_data(), r_t, t1);
result.imag_data().negate();
eval_add(result.imag_data(), i_t);
eval_divide(result.imag_data(), t2);
}
}
//
// Finish off by fixing up signed zeros.
//
// This sets the signs "as if" we had evaluated the result using:
//
// real = (ac + bd) / (c^2 + d^2)
// imag = (bc - ad) / (c^2 + d^2)
//
// ie a zero is negative only if the two parts of the numerator
// are both negative and zero.
//
if (eval_is_zero(result.real_data()))
{
int r_sign = eval_signbit(result.real_data());
int r_required = (a_sign != c_sign) && (b_sign != d_sign);
if (r_required != r_sign)
result.real_data().negate();
}
if (eval_is_zero(result.imag_data()))
{
int i_sign = eval_signbit(result.imag_data());
int i_required = (b_sign != c_sign) && (a_sign == d_sign);
if (i_required != i_sign)
result.imag_data().negate();
}
}
template <class Backend, class T>
inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_add(complex_adaptor<Backend>& result, const T& scalar)
{
using default_ops::eval_add;
eval_add(result.real_data(), scalar);
}
template <class Backend, class T>
inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_subtract(complex_adaptor<Backend>& result, const T& scalar)
{
using default_ops::eval_subtract;
eval_subtract(result.real_data(), scalar);
}
template <class Backend, class T>
inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_multiply(complex_adaptor<Backend>& result, const T& scalar)
{
using default_ops::eval_multiply;
eval_multiply(result.real_data(), scalar);
eval_multiply(result.imag_data(), scalar);
}
template <class Backend, class T>
inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_divide(complex_adaptor<Backend>& result, const T& scalar)
{
using default_ops::eval_divide;
eval_divide(result.real_data(), scalar);
eval_divide(result.imag_data(), scalar);
}
// Optimised 3 arg versions:
template <class Backend, class T>
inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_add(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar)
{
using default_ops::eval_add;
eval_add(result.real_data(), a.real_data(), scalar);
result.imag_data() = a.imag_data();
}
template <class Backend, class T>
inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_subtract(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar)
{
using default_ops::eval_subtract;
eval_subtract(result.real_data(), a.real_data(), scalar);
result.imag_data() = a.imag_data();
}
template <class Backend, class T>
inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_multiply(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar)
{
using default_ops::eval_multiply;
eval_multiply(result.real_data(), a.real_data(), scalar);
eval_multiply(result.imag_data(), a.imag_data(), scalar);
}
template <class Backend, class T>
inline typename std::enable_if< !std::is_same<complex_adaptor<Backend>, T>::value>::type eval_divide(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& a, const T& scalar)
{
using default_ops::eval_divide;
eval_divide(result.real_data(), a.real_data(), scalar);
eval_divide(result.imag_data(), a.imag_data(), scalar);
}
template <class Backend>
inline bool eval_is_zero(const complex_adaptor<Backend>& val) noexcept
{
using default_ops::eval_is_zero;
return eval_is_zero(val.real_data()) && eval_is_zero(val.imag_data());
}
template <class Backend>
inline int eval_get_sign(const complex_adaptor<Backend>&)
{
static_assert(sizeof(Backend) == UINT_MAX, "Complex numbers have no sign bit."); // designed to always fail
return 0;
}
template <class Result, class Backend>
inline typename std::enable_if< !boost::multiprecision::detail::is_complex<Result>::value>::type eval_convert_to(Result* result, const complex_adaptor<Backend>& val)
{
using default_ops::eval_convert_to;
using default_ops::eval_is_zero;
if (!eval_is_zero(val.imag_data()))
{
BOOST_MP_THROW_EXCEPTION(std::runtime_error("Could not convert imaginary number to scalar."));
}
eval_convert_to(result, val.real_data());
}
template <class Backend, class T>
inline void assign_components(complex_adaptor<Backend>& result, const T& a, const T& b)
{
result.real_data() = a;
result.imag_data() = b;
}
//
// Native non-member operations:
//
template <class Backend>
inline void eval_sqrt(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& val)
{
// Use the following:
// sqrt(z) = (s, zi / 2s) for zr >= 0
// (|zi| / 2s, +-s) for zr < 0
// where s = sqrt{ [ |zr| + sqrt(zr^2 + zi^2) ] / 2 },
// and the +- sign is the same as the sign of zi.
using default_ops::eval_abs;
using default_ops::eval_add;
using default_ops::eval_divide;
using default_ops::eval_get_sign;
using default_ops::eval_is_zero;
if (eval_is_zero(val.imag_data()) && (eval_get_sign(val.real_data()) >= 0))
{
constexpr typename std::tuple_element<0, typename Backend::unsigned_types>::type zero = 0u;
eval_sqrt(result.real_data(), val.real_data());
result.imag_data() = zero;
return;
}
const bool __my_real_part_is_neg(eval_get_sign(val.real_data()) < 0);
Backend __my_real_part_fabs(val.real_data());
if (__my_real_part_is_neg)
__my_real_part_fabs.negate();
Backend t, __my_sqrt_part;
eval_abs(__my_sqrt_part, val);
eval_add(__my_sqrt_part, __my_real_part_fabs);
eval_ldexp(t, __my_sqrt_part, -1);
eval_sqrt(__my_sqrt_part, t);
if (__my_real_part_is_neg == false)
{
eval_ldexp(t, __my_sqrt_part, 1);
eval_divide(result.imag_data(), val.imag_data(), t);
result.real_data() = __my_sqrt_part;
}
else
{
const bool __my_imag_part_is_neg(eval_get_sign(val.imag_data()) < 0);
Backend __my_imag_part_fabs(val.imag_data());
if (__my_imag_part_is_neg)
__my_imag_part_fabs.negate();
eval_ldexp(t, __my_sqrt_part, 1);
eval_divide(result.real_data(), __my_imag_part_fabs, t);
if (__my_imag_part_is_neg)
__my_sqrt_part.negate();
result.imag_data() = __my_sqrt_part;
}
}
template <class Backend>
inline void eval_abs(Backend& result, const complex_adaptor<Backend>& val)
{
Backend t1, t2;
eval_multiply(t1, val.real_data(), val.real_data());
eval_multiply(t2, val.imag_data(), val.imag_data());
eval_add(t1, t2);
eval_sqrt(result, t1);
}
template <class Backend>
inline void eval_pow(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& b, const complex_adaptor<Backend>& e)
{
using default_ops::eval_acos;
using default_ops::eval_cos;
using default_ops::eval_exp;
using default_ops::eval_get_sign;
using default_ops::eval_is_zero;
using default_ops::eval_multiply;
using default_ops::eval_sin;
if (eval_is_zero(e))
{
typename std::tuple_element<0, typename Backend::unsigned_types>::type one(1);
result = one;
return;
}
else if (eval_is_zero(b))
{
if (eval_is_zero(e.real_data()))
{
Backend n = std::numeric_limits<number<Backend> >::quiet_NaN().backend();
result.real_data() = n;
result.imag_data() = n;
}
else if (eval_get_sign(e.real_data()) < 0)
{
Backend n = std::numeric_limits<number<Backend> >::infinity().backend();
result.real_data() = n;
typename std::tuple_element<0, typename Backend::unsigned_types>::type zero(0);
if (eval_is_zero(e.imag_data()))
result.imag_data() = zero;
else
result.imag_data() = n;
}
else
{
typename std::tuple_element<0, typename Backend::unsigned_types>::type zero(0);
result = zero;
}
return;
}
complex_adaptor<Backend> t;
eval_log(t, b);
eval_multiply(t, e);
eval_exp(result, t);
}
template <class Backend>
inline void eval_exp(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_cos;
using default_ops::eval_exp;
using default_ops::eval_is_zero;
using default_ops::eval_multiply;
using default_ops::eval_sin;
if (eval_is_zero(arg.imag_data()))
{
eval_exp(result.real_data(), arg.real_data());
typename std::tuple_element<0, typename Backend::unsigned_types>::type zero(0);
result.imag_data() = zero;
return;
}
eval_cos(result.real_data(), arg.imag_data());
eval_sin(result.imag_data(), arg.imag_data());
Backend e;
eval_exp(e, arg.real_data());
if (eval_is_zero(result.real_data()))
eval_multiply(result.imag_data(), e);
else if (eval_is_zero(result.imag_data()))
eval_multiply(result.real_data(), e);
else
eval_multiply(result, e);
}
template <class Backend>
inline void eval_log(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_add;
using default_ops::eval_atan2;
using default_ops::eval_get_sign;
using default_ops::eval_is_zero;
using default_ops::eval_log;
using default_ops::eval_multiply;
if (eval_is_zero(arg.imag_data()) && (eval_get_sign(arg.real_data()) >= 0))
{
eval_log(result.real_data(), arg.real_data());
typename std::tuple_element<0, typename Backend::unsigned_types>::type zero(0);
result.imag_data() = zero;
return;
}
Backend t1, t2;
eval_multiply(t1, arg.real_data(), arg.real_data());
eval_multiply(t2, arg.imag_data(), arg.imag_data());
eval_add(t1, t2);
eval_log(t2, t1);
eval_ldexp(result.real_data(), t2, -1);
eval_atan2(result.imag_data(), arg.imag_data(), arg.real_data());
}
template <class Backend>
inline void eval_log10(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_divide;
using default_ops::eval_log;
using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;
Backend ten;
ten = ui_type(10);
Backend l_ten;
eval_log(l_ten, ten);
eval_log(result, arg);
eval_divide(result, l_ten);
}
template <class Backend>
inline void eval_sin(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_cos;
using default_ops::eval_cosh;
using default_ops::eval_sin;
using default_ops::eval_sinh;
Backend t1, t2, t3;
eval_sin(t1, arg.real_data());
eval_cosh(t2, arg.imag_data());
eval_multiply(t3, t1, t2);
eval_cos(t1, arg.real_data());
eval_sinh(t2, arg.imag_data());
eval_multiply(result.imag_data(), t1, t2);
result.real_data() = t3;
}
template <class Backend>
inline void eval_cos(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_cos;
using default_ops::eval_cosh;
using default_ops::eval_sin;
using default_ops::eval_sinh;
Backend t1, t2, t3;
eval_cos(t1, arg.real_data());
eval_cosh(t2, arg.imag_data());
eval_multiply(t3, t1, t2);
eval_sin(t1, arg.real_data());
eval_sinh(t2, arg.imag_data());
eval_multiply(result.imag_data(), t1, t2);
result.imag_data().negate();
result.real_data() = t3;
}
template <class T>
void tanh_imp(const T& r, const T& i, T& r_result, T& i_result)
{
using default_ops::eval_tan;
using default_ops::eval_sinh;
using default_ops::eval_add;
using default_ops::eval_fpclassify;
using default_ops::eval_get_sign;
using ui_type = typename std::tuple_element<0, typename T::unsigned_types>::type;
ui_type one(1);
//
// Set:
// t = tan(i);
// s = sinh(r);
// b = s * (1 + t^2);
// d = 1 + b * s;
//
T t, s, b, d;
eval_tan(t, i);
eval_sinh(s, r);
eval_multiply(d, t, t);
eval_add(d, one);
eval_multiply(b, d, s);
eval_multiply(d, b, s);
eval_add(d, one);
if (eval_fpclassify(d) == FP_INFINITE)
{
r_result = one;
if (eval_get_sign(s) < 0)
r_result.negate();
//
// Imaginary part is a signed zero:
//
ui_type zero(0);
i_result = zero;
if (eval_get_sign(t) < 0)
i_result.negate();
}
//
// Real part is sqrt(1 + s^2) * b / d;
// Imaginary part is t / d;
//
eval_divide(i_result, t, d);
//
// variable t is now spare, as is r_result.
//
eval_multiply(t, s, s);
eval_add(t, one);
eval_sqrt(r_result, t);
eval_multiply(t, r_result, b);
eval_divide(r_result, t, d);
}
template <class Backend>
inline void eval_tanh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
tanh_imp(arg.real_data(), arg.imag_data(), result.real_data(), result.imag_data());
}
template <class Backend>
inline void eval_tan(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
Backend t(arg.imag_data());
t.negate();
tanh_imp(t, arg.real_data(), result.imag_data(), result.real_data());
result.imag_data().negate();
}
template <class Backend>
inline void eval_asin(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_add;
using default_ops::eval_multiply;
if (eval_is_zero(arg))
{
result = arg;
return;
}
complex_adaptor<Backend> t1, t2;
assign_components(t1, arg.imag_data(), arg.real_data());
t1.real_data().negate();
eval_asinh(t2, t1);
assign_components(result, t2.imag_data(), t2.real_data());
result.imag_data().negate();
}
template <class Backend>
inline void eval_acos(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;
using default_ops::eval_asin;
Backend half_pi, t1;
t1 = static_cast<ui_type>(1u);
eval_asin(half_pi, t1);
eval_asin(result, arg);
result.negate();
eval_add(result.real_data(), half_pi);
}
template <class Backend>
inline void eval_atan(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;
ui_type one = (ui_type)1u;
using default_ops::eval_add;
using default_ops::eval_is_zero;
using default_ops::eval_log;
using default_ops::eval_subtract;
complex_adaptor<Backend> __my_z_times_i, t1, t2, t3;
assign_components(__my_z_times_i, arg.imag_data(), arg.real_data());
__my_z_times_i.real_data().negate();
eval_add(t1, __my_z_times_i, one);
eval_log(t2, t1);
eval_subtract(t1, one, __my_z_times_i);
eval_log(t3, t1);
eval_subtract(t1, t3, t2);
eval_ldexp(result.real_data(), t1.imag_data(), -1);
eval_ldexp(result.imag_data(), t1.real_data(), -1);
if (!eval_is_zero(result.real_data()))
result.real_data().negate();
}
template <class Backend>
inline void eval_sinh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_cos;
using default_ops::eval_cosh;
using default_ops::eval_sin;
using default_ops::eval_sinh;
Backend t1, t2, t3;
eval_cos(t1, arg.imag_data());
eval_sinh(t2, arg.real_data());
eval_multiply(t3, t1, t2);
eval_cosh(t1, arg.real_data());
eval_sin(t2, arg.imag_data());
eval_multiply(result.imag_data(), t1, t2);
result.real_data() = t3;
}
template <class Backend>
inline void eval_cosh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_cos;
using default_ops::eval_cosh;
using default_ops::eval_sin;
using default_ops::eval_sinh;
Backend t1, t2, t3;
eval_cos(t1, arg.imag_data());
eval_cosh(t2, arg.real_data());
eval_multiply(t3, t1, t2);
eval_sin(t1, arg.imag_data());
eval_sinh(t2, arg.real_data());
eval_multiply(result.imag_data(), t1, t2);
result.real_data() = t3;
}
template <class Backend>
inline void eval_asinh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;
ui_type one = (ui_type)1u;
using default_ops::eval_add;
using default_ops::eval_log;
using default_ops::eval_multiply;
complex_adaptor<Backend> t1, t2;
eval_multiply(t1, arg, arg);
eval_add(t1, one);
eval_sqrt(t2, t1);
eval_add(t2, arg);
eval_log(result, t2);
}
template <class Backend>
inline void eval_acosh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;
ui_type one = (ui_type)1u;
using default_ops::eval_add;
using default_ops::eval_divide;
using default_ops::eval_log;
using default_ops::eval_multiply;
using default_ops::eval_subtract;
complex_adaptor<Backend> __my_zp(arg);
eval_add(__my_zp.real_data(), one);
complex_adaptor<Backend> __my_zm(arg);
eval_subtract(__my_zm.real_data(), one);
complex_adaptor<Backend> t1, t2;
eval_divide(t1, __my_zm, __my_zp);
eval_sqrt(t2, t1);
eval_multiply(t2, __my_zp);
eval_add(t2, arg);
eval_log(result, t2);
}
template <class Backend>
inline void eval_atanh(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;
ui_type one = (ui_type)1u;
using default_ops::eval_add;
using default_ops::eval_divide;
using default_ops::eval_log;
using default_ops::eval_multiply;
using default_ops::eval_subtract;
complex_adaptor<Backend> t1, t2, t3;
eval_add(t1, arg, one);
eval_log(t2, t1);
eval_subtract(t1, one, arg);
eval_log(t3, t1);
eval_subtract(t2, t3);
eval_ldexp(result.real_data(), t2.real_data(), -1);
eval_ldexp(result.imag_data(), t2.imag_data(), -1);
}
template <class Backend>
inline void eval_conj(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
result = arg;
result.imag_data().negate();
}
template <class Backend>
inline void eval_proj(complex_adaptor<Backend>& result, const complex_adaptor<Backend>& arg)
{
using default_ops::eval_get_sign;
using ui_type = typename std::tuple_element<0, typename Backend::unsigned_types>::type;
ui_type zero = (ui_type)0u;
int c1 = eval_fpclassify(arg.real_data());
int c2 = eval_fpclassify(arg.imag_data());
if (c1 == FP_INFINITE)
{
result.real_data() = arg.real_data();
if (eval_get_sign(result.real_data()) < 0)
result.real_data().negate();
result.imag_data() = zero;
if (eval_get_sign(arg.imag_data()) < 0)
result.imag_data().negate();
}
else if (c2 == FP_INFINITE)
{
result.real_data() = arg.imag_data();
if (eval_get_sign(result.real_data()) < 0)
result.real_data().negate();
result.imag_data() = zero;
if (eval_get_sign(arg.imag_data()) < 0)
result.imag_data().negate();
}
else
result = arg;
}
template <class Backend>
inline void eval_real(Backend& result, const complex_adaptor<Backend>& arg)
{
result = arg.real_data();
}
template <class Backend>
inline void eval_imag(Backend& result, const complex_adaptor<Backend>& arg)
{
result = arg.imag_data();
}
template <class Backend, class T>
inline void eval_set_imag(complex_adaptor<Backend>& result, const T& arg)
{
result.imag_data() = arg;
}
template <class Backend, class T>
inline void eval_set_real(complex_adaptor<Backend>& result, const T& arg)
{
result.real_data() = arg;
}
template <class Backend>
inline std::size_t hash_value(const complex_adaptor<Backend>& val)
{
std::size_t result = hash_value(val.real_data());
std::size_t result2 = hash_value(val.imag_data());
boost::multiprecision::detail::hash_combine(result, result2);
return result;
}
} // namespace backends
template <class Backend>
struct number_category<complex_adaptor<Backend> > : public std::integral_constant<int, boost::multiprecision::number_kind_complex>
{};
template <class Backend, expression_template_option ExpressionTemplates>
struct component_type<number<complex_adaptor<Backend>, ExpressionTemplates> >
{
using type = number<Backend, ExpressionTemplates>;
};
template <class Backend, expression_template_option ExpressionTemplates>
struct complex_result_from_scalar<number<Backend, ExpressionTemplates> >
{
using type = number<complex_adaptor<Backend>, ExpressionTemplates>;
};
namespace detail {
template <class Backend>
struct is_variable_precision<complex_adaptor<Backend> > : public is_variable_precision<Backend>
{};
#ifdef BOOST_HAS_INT128
template <class Backend>
struct is_convertible_arithmetic<int128_type, complex_adaptor<Backend> > : is_convertible_arithmetic<int128_type, Backend>
{};
template <class Backend>
struct is_convertible_arithmetic<uint128_type, complex_adaptor<Backend> > : is_convertible_arithmetic<uint128_type, Backend>
{};
#endif
#ifdef BOOST_HAS_FLOAT128
template <class Backend>
struct is_convertible_arithmetic<float128_type, complex_adaptor<Backend> > : is_convertible_arithmetic<float128_type, Backend>
{};
#endif
} // namespace detail
template <class Backend, expression_template_option ExpressionTemplates>
struct complex_result_from_scalar<number<backends::debug_adaptor<Backend>, ExpressionTemplates> >
{
using type = number<backends::debug_adaptor<complex_adaptor<Backend> >, ExpressionTemplates>;
};
template <class Backend, expression_template_option ExpressionTemplates>
struct complex_result_from_scalar<number<backends::logged_adaptor<Backend>, ExpressionTemplates> >
{
using type = number<backends::logged_adaptor<complex_adaptor<Backend> >, ExpressionTemplates>;
};
}
} // namespace boost::multiprecision
#endif