boost/numeric/odeint/stepper/adams_bashforth.hpp
/*
[auto_generated]
boost/numeric/odeint/stepper/adams_bashforth.hpp
[begin_description]
Implementaton of the Adam-Bashforth method a multistep method used for the predictor step in the
Adams-Bashforth-Moulton method.
[end_description]
Copyright 2011-2013 Karsten Ahnert
Copyright 2011-2013 Mario Mulansky
Copyright 2012 Christoph Koke
Copyright 2013 Pascal Germroth
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_STEPPER_ADAMS_BASHFORTH_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_STEPPER_ADAMS_BASHFORTH_HPP_INCLUDED
#include <boost/static_assert.hpp>
#include <boost/numeric/odeint/util/unwrap_reference.hpp>
#include <boost/numeric/odeint/algebra/range_algebra.hpp>
#include <boost/numeric/odeint/algebra/default_operations.hpp>
#include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
#include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
#include <boost/numeric/odeint/util/state_wrapper.hpp>
#include <boost/numeric/odeint/util/is_resizeable.hpp>
#include <boost/numeric/odeint/util/resizer.hpp>
#include <boost/numeric/odeint/stepper/stepper_categories.hpp>
#include <boost/numeric/odeint/stepper/runge_kutta4.hpp>
#include <boost/numeric/odeint/stepper/extrapolation_stepper.hpp>
#include <boost/numeric/odeint/stepper/base/algebra_stepper_base.hpp>
#include <boost/numeric/odeint/stepper/detail/adams_bashforth_coefficients.hpp>
#include <boost/numeric/odeint/stepper/detail/adams_bashforth_call_algebra.hpp>
#include <boost/numeric/odeint/stepper/detail/rotating_buffer.hpp>
#include <boost/mpl/arithmetic.hpp>
#include <boost/mpl/min_max.hpp>
#include <boost/mpl/equal_to.hpp>
namespace mpl = boost::mpl;
namespace boost {
namespace numeric {
namespace odeint {
using mpl::int_;
/* if N >= 4, returns the smallest even number > N, otherwise returns 4 */
template < int N >
struct order_helper
: mpl::max< typename mpl::eval_if<
mpl::equal_to< mpl::modulus< int_< N >, int_< 2 > >,
int_< 0 > >,
int_< N >, int_< N + 1 > >::type,
int_< 4 > >::type
{ };
template<
size_t Steps ,
class State ,
class Value = double ,
class Deriv = State ,
class Time = Value ,
class Algebra = typename algebra_dispatcher< State >::algebra_type ,
class Operations = typename operations_dispatcher< State >::operations_type ,
class Resizer = initially_resizer ,
class InitializingStepper = extrapolation_stepper< order_helper<Steps>::value,
State, Value, Deriv, Time,
Algebra, Operations, Resizer >
>
class adams_bashforth : public algebra_stepper_base< Algebra , Operations >
{
#ifndef DOXYGEN_SKIP
static_assert(( Steps > 0 && Steps < 9 ), "Must have between 1 and 8 steps inclusive");
#endif
public :
typedef State state_type;
typedef state_wrapper< state_type > wrapped_state_type;
typedef Value value_type;
typedef Deriv deriv_type;
typedef state_wrapper< deriv_type > wrapped_deriv_type;
typedef Time time_type;
typedef Resizer resizer_type;
typedef stepper_tag stepper_category;
typedef InitializingStepper initializing_stepper_type;
typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type;
typedef typename algebra_stepper_base_type::algebra_type algebra_type;
typedef typename algebra_stepper_base_type::operations_type operations_type;
#ifndef DOXYGEN_SKIP
typedef adams_bashforth< Steps , State , Value , Deriv , Time , Algebra , Operations , Resizer , InitializingStepper > stepper_type;
#endif
static const size_t steps = Steps;
typedef unsigned short order_type;
static const order_type order_value = steps;
typedef detail::rotating_buffer< wrapped_deriv_type , steps > step_storage_type;
order_type order( void ) const { return order_value; }
adams_bashforth( const algebra_type &algebra = algebra_type() )
: algebra_stepper_base_type( algebra ) ,
m_step_storage() , m_resizer() , m_coefficients() ,
m_steps_initialized( 0 ) , m_initializing_stepper()
{ }
/*
* Version 1 : do_step( system , x , t , dt );
*
* solves the forwarding problem
*/
template< class System , class StateInOut >
void do_step( System system , StateInOut &x , time_type t , time_type dt )
{
do_step( system , x , t , x , dt );
}
/**
* \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
*/
template< class System , class StateInOut >
void do_step( System system , const StateInOut &x , time_type t , time_type dt )
{
do_step( system , x , t , x , dt );
}
/*
* Version 2 : do_step( system , in , t , out , dt );
*
* solves the forwarding problem
*/
template< class System , class StateIn , class StateOut >
void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
{
do_step_impl( system , in , t , out , dt );
}
/**
* \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateOut.
*/
template< class System , class StateIn , class StateOut >
void do_step( System system , const StateIn &in , time_type t , const StateOut &out , time_type dt )
{
do_step_impl( system , in , t , out , dt );
}
template< class StateType >
void adjust_size( const StateType &x )
{
resize_impl( x );
}
const step_storage_type& step_storage( void ) const
{
return m_step_storage;
}
step_storage_type& step_storage( void )
{
return m_step_storage;
}
template< class ExplicitStepper , class System , class StateIn >
void initialize( ExplicitStepper explicit_stepper , System system , StateIn &x , time_type &t , time_type dt )
{
typename odeint::unwrap_reference< ExplicitStepper >::type &stepper = explicit_stepper;
typename odeint::unwrap_reference< System >::type &sys = system;
m_resizer.adjust_size(x, [this](auto&& arg) { return this->resize_impl<StateIn>(std::forward<decltype(arg)>(arg)); });
for( size_t i=0 ; i+1<steps ; ++i )
{
if( i != 0 ) m_step_storage.rotate();
sys( x , m_step_storage[0].m_v , t );
stepper.do_step_dxdt_impl( system, x, m_step_storage[0].m_v, t,
dt );
t += dt;
}
m_steps_initialized = steps;
}
template< class System , class StateIn >
void initialize( System system , StateIn &x , time_type &t , time_type dt )
{
initialize( std::ref( m_initializing_stepper ) , system , x , t , dt );
}
void reset( void )
{
m_steps_initialized = 0;
}
bool is_initialized( void ) const
{
return m_steps_initialized >= ( steps - 1 );
}
const initializing_stepper_type& initializing_stepper( void ) const { return m_initializing_stepper; }
initializing_stepper_type& initializing_stepper( void ) { return m_initializing_stepper; }
private:
template< class System , class StateIn , class StateOut >
void do_step_impl( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
{
typename odeint::unwrap_reference< System >::type &sys = system;
if( m_resizer.adjust_size(in, [this](auto&& arg) { return this->resize_impl<StateIn>(std::forward<decltype(arg)>(arg)); } ) )
{
m_steps_initialized = 0;
}
if( m_steps_initialized + 1 < steps )
{
if( m_steps_initialized != 0 ) m_step_storage.rotate();
sys( in , m_step_storage[0].m_v , t );
m_initializing_stepper.do_step_dxdt_impl(
system, in, m_step_storage[0].m_v, t, out, dt );
++m_steps_initialized;
}
else
{
m_step_storage.rotate();
sys( in , m_step_storage[0].m_v , t );
detail::adams_bashforth_call_algebra< steps , algebra_type , operations_type >()( this->m_algebra , in , out , m_step_storage , m_coefficients , dt );
}
}
template< class StateIn >
bool resize_impl( const StateIn &x )
{
bool resized( false );
for( size_t i=0 ; i<steps ; ++i )
{
resized |= adjust_size_by_resizeability( m_step_storage[i] , x , typename is_resizeable<deriv_type>::type() );
}
return resized;
}
step_storage_type m_step_storage;
resizer_type m_resizer;
detail::adams_bashforth_coefficients< value_type , steps > m_coefficients;
size_t m_steps_initialized;
initializing_stepper_type m_initializing_stepper;
};
/***** DOXYGEN *****/
/**
* \class adams_bashforth
* \brief The Adams-Bashforth multistep algorithm.
*
* The Adams-Bashforth method is a multi-step algorithm with configurable step
* number. The step number is specified as template parameter Steps and it
* then uses the result from the previous Steps steps. See also
* <a href="http://en.wikipedia.org/wiki/Linear_multistep_method">en.wikipedia.org/wiki/Linear_multistep_method</a>.
* Currently, a maximum of Steps=8 is supported.
* The method is explicit and fulfills the Stepper concept. Step size control
* or continuous output are not provided.
*
* This class derives from algebra_base and inherits its interface via
* CRTP (current recurring template pattern). For more details see
* algebra_stepper_base.
*
* \tparam Steps The number of steps (maximal 8).
* \tparam State The state type.
* \tparam Value The value type.
* \tparam Deriv The type representing the time derivative of the state.
* \tparam Time The time representing the independent variable - the time.
* \tparam Algebra The algebra type.
* \tparam Operations The operations type.
* \tparam Resizer The resizer policy type.
* \tparam InitializingStepper The stepper for the first two steps.
*/
/**
* \fn adams_bashforth::adams_bashforth( const algebra_type &algebra )
* \brief Constructs the adams_bashforth class. This constructor can be used as a default
* constructor if the algebra has a default constructor.
* \param algebra A copy of algebra is made and stored.
*/
/**
* \fn order_type adams_bashforth::order( void ) const
* \brief Returns the order of the algorithm, which is equal to the number of steps.
* \return order of the method.
*/
/**
* \fn void adams_bashforth::do_step( System system , StateInOut &x , time_type t , time_type dt )
* \brief This method performs one step. It transforms the result in-place.
*
* \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
* Simple System concept.
* \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
* \param t The value of the time, at which the step should be performed.
* \param dt The step size.
*/
/**
* \fn void adams_bashforth::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
* \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param in The state of the ODE which should be solved. in is not modified in this method
* \param t The value of the time, at which the step should be performed.
* \param out The result of the step is written in out.
* \param dt The step size.
*/
/**
* \fn void adams_bashforth::adjust_size( const StateType &x )
* \brief Adjust the size of all temporaries in the stepper manually.
* \param x A state from which the size of the temporaries to be resized is deduced.
*/
/**
* \fn const step_storage_type& adams_bashforth::step_storage( void ) const
* \brief Returns the storage of intermediate results.
* \return The storage of intermediate results.
*/
/**
* \fn step_storage_type& adams_bashforth::step_storage( void )
* \brief Returns the storage of intermediate results.
* \return The storage of intermediate results.
*/
/**
* \fn void adams_bashforth::initialize( ExplicitStepper explicit_stepper , System system , StateIn &x , time_type &t , time_type dt )
* \brief Initialized the stepper. Does Steps-1 steps with the explicit_stepper to fill the buffer.
* \param explicit_stepper the stepper used to fill the buffer of previous step results
* \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
* Simple System concept.
* \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
* \param t The value of the time, at which the step should be performed.
* \param dt The step size.
*/
/**
* \fn void adams_bashforth::initialize( System system , StateIn &x , time_type &t , time_type dt )
* \brief Initialized the stepper. Does Steps-1 steps with an internal instance of InitializingStepper to fill the buffer.
* \note The state x and time t are updated to the values after Steps-1 initial steps.
* \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
* Simple System concept.
* \param x The initial state of the ODE which should be solved, updated in this method.
* \param t The initial value of the time, updated in this method.
* \param dt The step size.
*/
/**
* \fn void adams_bashforth::reset( void )
* \brief Resets the internal buffer of the stepper.
*/
/**
* \fn bool adams_bashforth::is_initialized( void ) const
* \brief Returns true if the stepper has been initialized.
* \return bool true if stepper is initialized, false otherwise
*/
/**
* \fn const initializing_stepper_type& adams_bashforth::initializing_stepper( void ) const
* \brief Returns the internal initializing stepper instance.
* \return initializing_stepper
*/
/**
* \fn const initializing_stepper_type& adams_bashforth::initializing_stepper( void ) const
* \brief Returns the internal initializing stepper instance.
* \return initializing_stepper
*/
/**
* \fn initializing_stepper_type& adams_bashforth::initializing_stepper( void )
* \brief Returns the internal initializing stepper instance.
* \return initializing_stepper
*/
} // odeint
} // numeric
} // boost
#endif // BOOST_NUMERIC_ODEINT_STEPPER_ADAMS_BASHFORTH_HPP_INCLUDED