boost/container/detail/flat_tree.hpp
////////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2015. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
////////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_FLAT_TREE_HPP
#define BOOST_CONTAINER_FLAT_TREE_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
#include <boost/container/container_fwd.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/container/vector.hpp>
#include <boost/container/allocator_traits.hpp>
#include <boost/container/detail/value_init.hpp>
#include <boost/container/detail/destroyers.hpp>
#include <boost/container/detail/algorithm.hpp> //algo_equal(), algo_lexicographical_compare
#include <boost/container/detail/iterator.hpp>
#include <boost/container/detail/is_sorted.hpp>
#include <boost/container/detail/type_traits.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/detail/is_contiguous_container.hpp>
#include <boost/container/detail/is_container.hpp>
#include <boost/intrusive/detail/minimal_pair_header.hpp> //pair
#include <boost/move/iterator.hpp>
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/detail/iterator_to_raw_pointer.hpp>
#include <boost/move/detail/to_raw_pointer.hpp>
#include <boost/move/detail/force_ptr.hpp>
#include <boost/move/detail/launder.hpp>
#include <boost/move/algo/adaptive_sort.hpp>
#include <boost/move/algo/detail/pdqsort.hpp>
#if defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#include <boost/move/detail/fwd_macros.hpp>
#endif
#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
#if defined(BOOST_GCC) && (BOOST_GCC >= 40600)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-result"
#endif
//merge_unique
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME merge_unique
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl {
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}}
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 3
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 3
#include <boost/intrusive/detail/has_member_function_callable_with.hpp>
//merge_equal
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME merge
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl {
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}}
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 3
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 3
#include <boost/intrusive/detail/has_member_function_callable_with.hpp>
//index_of
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME index_of
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl {
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}}
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 1
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 1
#include <boost/intrusive/detail/has_member_function_callable_with.hpp>
//nth
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME nth
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl {
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}}
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 1
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 1
#include <boost/intrusive/detail/has_member_function_callable_with.hpp>
//reserve
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME reserve
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl {
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}}
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 1
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 1
#include <boost/intrusive/detail/has_member_function_callable_with.hpp>
//capacity
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_FUNCNAME capacity
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_BEG namespace boost { namespace container { namespace dtl {
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_NS_END }}}
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MIN 0
#define BOOST_INTRUSIVE_HAS_MEMBER_FUNCTION_CALLABLE_WITH_MAX 0
#include <boost/intrusive/detail/has_member_function_callable_with.hpp>
#if defined(BOOST_GCC) && (BOOST_GCC >= 40600)
#pragma GCC diagnostic pop
#endif
#endif //#ifndef BOOST_CONTAINER_DOXYGEN_INVOKED
namespace boost {
namespace container {
namespace dtl {
///////////////////////////////////////
//
// Helper functions to merge elements
//
///////////////////////////////////////
BOOST_INTRUSIVE_INSTANTIATE_DEFAULT_TYPE_TMPLT(stored_allocator_type)
///////////////////////////////////////
//
// flat_tree_container_inplace_merge
//
///////////////////////////////////////
template<class SequenceContainer, class Compare>
inline void flat_tree_container_inplace_merge //is_contiguous_container == true
(SequenceContainer& dest, typename SequenceContainer::iterator it, Compare comp , dtl::true_)
{
typedef typename SequenceContainer::value_type value_type;
typedef typename SequenceContainer::size_type size_type;
value_type *const braw = boost::movelib::to_raw_pointer(dest.data());
value_type *const iraw = boost::movelib::iterator_to_raw_pointer(it);
//Don't use iterator_to_raw_pointer for end as debug iterators can assert when
//"operator ->" is used with the end iterator
value_type *const eraw = braw + dest.size();
size_type dest_unused_storage_size = 0;
value_type *const dest_unused_storage_addr =
unused_storage<SequenceContainer>::get(dest, dest_unused_storage_size);
boost::movelib::adaptive_merge
(braw, iraw, eraw, comp, dest_unused_storage_addr, dest_unused_storage_size);
}
template<class SequenceContainer, class Compare>
inline void flat_tree_container_inplace_merge //is_contiguous_container == false
(SequenceContainer& dest, typename SequenceContainer::iterator it, Compare comp, dtl::false_)
{
boost::movelib::adaptive_merge(dest.begin(), it, dest.end(), comp);
}
///////////////////////////////////////
//
// flat_tree_container_inplace_sort_ending
//
///////////////////////////////////////
template<class SequenceContainer, class Compare>
inline void flat_tree_container_inplace_sort_ending //is_contiguous_container == true
(SequenceContainer& dest, typename SequenceContainer::iterator it, Compare comp, dtl::true_)
{
typedef typename SequenceContainer::value_type value_type;
typedef typename SequenceContainer::size_type size_type;
value_type *const iraw = boost::movelib::iterator_to_raw_pointer(it);
//Don't use iterator_to_raw_pointer for end as debug iterators can assert when
//"operator ->" is used with the end iterator
value_type* const eraw = boost::movelib::to_raw_pointer(dest.data()) + dest.size();
size_type dest_unused_storage_size;
value_type* const dest_unused_storage_addr =
unused_storage<SequenceContainer>::get(dest, dest_unused_storage_size);
boost::movelib::adaptive_sort
(iraw, eraw, comp, dest_unused_storage_addr, dest_unused_storage_size);
}
template<class SequenceContainer, class Compare>
inline void flat_tree_container_inplace_sort_ending //is_contiguous_container == false
(SequenceContainer& dest, typename SequenceContainer::iterator it, Compare comp , dtl::false_)
{
boost::movelib::adaptive_sort(it, dest.end(), comp);
}
///////////////////////////////////////
//
// flat_tree_merge
//
///////////////////////////////////////
template<class SequenceContainer, class Iterator, class Compare>
inline void flat_tree_merge_equal
(SequenceContainer& dest, Iterator first, Iterator last, Compare comp, dtl::true_)
{
dest.merge(first, last, comp);
}
template<class SequenceContainer, class Iterator, class Compare>
inline void flat_tree_merge_equal //has_merge_unique == false
(SequenceContainer& dest, Iterator first, Iterator last, Compare comp, dtl::false_)
{
if(first != last) {
typedef typename SequenceContainer::iterator iterator;
iterator const it = dest.insert( dest.end(), first, last);
BOOST_ASSERT((is_sorted)(it, dest.end(), comp));
dtl::bool_<is_contiguous_container<SequenceContainer>::value> contiguous_tag;
(flat_tree_container_inplace_merge)(dest, it, comp, contiguous_tag);
}
}
///////////////////////////////////////
//
// flat_tree_merge_unique
//
///////////////////////////////////////
template<class SequenceContainer, class Iterator, class Compare>
inline void flat_tree_merge_unique //has_merge_unique == true
(SequenceContainer& dest, Iterator first, Iterator last, Compare comp, dtl::true_)
{
dest.merge_unique(first, last, comp);
}
template<class SequenceContainer, class Iterator, class Compare>
inline void flat_tree_merge_unique //has_merge_unique == false
(SequenceContainer& dest, Iterator first, Iterator last, Compare comp, dtl::false_)
{
if (first != last) {
typedef typename SequenceContainer::iterator iterator;
typedef typename SequenceContainer::size_type size_type;
typedef typename SequenceContainer::difference_type difference_type;
size_type const old_sz = dest.size();
iterator const first_new = dest.insert(dest.cend(), first, last);
//We can't assert "is_sorted_and_unique" because the sequence can come from a multiset
BOOST_ASSERT((is_sorted)(first_new, dest.end(), comp));
iterator e = boost::movelib::inplace_set_unique_difference(first_new, dest.end(), dest.begin(), first_new, comp);
dest.erase(e, dest.end());
dtl::bool_<is_contiguous_container<SequenceContainer>::value> contiguous_tag;
(flat_tree_container_inplace_merge)(dest, dest.begin() + difference_type(old_sz), comp, contiguous_tag);
}
}
///////////////////////////////////////
//
// flat_tree_index_of
//
///////////////////////////////////////
template<class SequenceContainer, class Iterator>
inline typename SequenceContainer::size_type
flat_tree_index_of // has_index_of == true
(SequenceContainer& cont, Iterator p, dtl::true_)
{
return cont.index_of(p);
}
template<class SequenceContainer, class Iterator>
inline typename SequenceContainer::size_type
flat_tree_index_of // has_index_of == false
(SequenceContainer& cont, Iterator p, dtl::false_)
{
typedef typename SequenceContainer::size_type size_type;
return static_cast<size_type>(p - cont.begin());
}
///////////////////////////////////////
//
// flat_tree_nth
//
///////////////////////////////////////
template<class Iterator, class SequenceContainer>
inline Iterator
flat_tree_nth // has_nth == true
(SequenceContainer& cont, typename SequenceContainer::size_type n, dtl::true_)
{
return cont.nth(n);
}
template<class Iterator, class SequenceContainer>
inline Iterator
flat_tree_nth // has_nth == false
(SequenceContainer& cont, typename SequenceContainer::size_type n, dtl::false_)
{
return cont.begin()+ typename SequenceContainer::difference_type(n);
}
///////////////////////////////////////
//
// flat_tree_get_stored_allocator
//
///////////////////////////////////////
template<class SequenceContainer>
inline typename SequenceContainer::stored_allocator_type &
flat_tree_get_stored_allocator // has_get_stored_allocator == true
(SequenceContainer& cont, dtl::true_)
{
return cont.get_stored_allocator();
}
template<class SequenceContainer>
inline const typename SequenceContainer::stored_allocator_type &
flat_tree_get_stored_allocator // has_get_stored_allocator == true
(const SequenceContainer& cont, dtl::true_)
{
return cont.get_stored_allocator();
}
template<class SequenceContainer>
inline typename SequenceContainer::allocator_type
flat_tree_get_stored_allocator // has_get_stored_allocator == false
(SequenceContainer& cont, dtl::false_)
{
return cont.get_allocator();
}
///////////////////////////////////////
//
// flat_tree_adopt_sequence_equal
//
///////////////////////////////////////
template<class SequenceContainer, class Compare>
void flat_tree_sort_contiguous_to_adopt // is_contiguous_container == true
(SequenceContainer &tseq, BOOST_RV_REF(SequenceContainer) seq, Compare comp)
{
typedef typename SequenceContainer::value_type value_type;
typedef typename SequenceContainer::size_type size_type;
size_type tseq_unused_storage_size, seq_unused_storage_size;
value_type* const tseq_unused_storage_addr =
unused_storage<SequenceContainer>::get(tseq, tseq_unused_storage_size);
value_type* const seq_unused_storage_addr =
unused_storage<SequenceContainer>::get(seq, seq_unused_storage_size);
tseq.clear();
const bool use_tseq_storage = tseq_unused_storage_size > seq_unused_storage_size;
value_type * const seq_beg = boost::movelib::iterator_to_raw_pointer(seq.data());
boost::movelib::adaptive_sort
( seq_beg
, seq_beg + seq.size()
, comp
, use_tseq_storage ? tseq_unused_storage_addr : seq_unused_storage_addr
, use_tseq_storage ? tseq_unused_storage_size : seq_unused_storage_size);
}
template<class SequenceContainer, class Compare>
inline void flat_tree_adopt_sequence_equal // is_contiguous_container == true
(SequenceContainer &tseq, BOOST_RV_REF(SequenceContainer) seq, Compare comp, dtl::true_)
{
flat_tree_sort_contiguous_to_adopt(tseq, boost::move(seq), comp);
tseq = boost::move(seq);
}
template<class SequenceContainer, class Compare>
inline void flat_tree_adopt_sequence_equal // is_contiguous_container == false
(SequenceContainer &tseq, BOOST_RV_REF(SequenceContainer) seq, Compare comp, dtl::false_)
{
boost::movelib::adaptive_sort(seq.begin(), seq.end(), comp);
tseq = boost::move(seq);
}
///////////////////////////////////////
//
// flat_tree_adopt_sequence_unique
//
///////////////////////////////////////
template<class SequenceContainer, class Compare>
void flat_tree_adopt_sequence_unique// is_contiguous_container == true
(SequenceContainer &tseq, BOOST_RV_REF(SequenceContainer) seq, Compare comp, dtl::true_)
{
typedef typename SequenceContainer::value_type value_type;
value_type * const seq_beg = boost::movelib::iterator_to_raw_pointer(seq.data());
boost::movelib::pdqsort
( seq_beg
, seq_beg + seq.size()
, comp);
seq.erase(boost::movelib::unique
(seq.begin(), seq.end(), boost::movelib::negate<Compare>(comp)), seq.cend());
tseq = boost::move(seq);
}
template<class SequenceContainer, class Compare>
void flat_tree_adopt_sequence_unique// is_contiguous_container == false
(SequenceContainer &tseq, BOOST_RV_REF(SequenceContainer) seq, Compare comp, dtl::false_)
{
boost::movelib::pdqsort(seq.begin(), seq.end(), comp);
seq.erase(boost::movelib::unique
(seq.begin(), seq.end(), boost::movelib::negate<Compare>(comp)), seq.cend());
tseq = boost::move(seq);
}
///////////////////////////////////////
//
// flat_tree_reserve
//
///////////////////////////////////////
template<class SequenceContainer>
inline void // has_reserve == true
flat_tree_reserve(SequenceContainer &tseq, typename SequenceContainer::size_type cap, dtl::true_)
{
tseq.reserve(cap);
}
template<class SequenceContainer>
inline void // has_reserve == false
flat_tree_reserve(SequenceContainer &, typename SequenceContainer::size_type, dtl::false_)
{
}
///////////////////////////////////////
//
// flat_tree_capacity
//
///////////////////////////////////////
template<class SequenceContainer> // has_capacity == true
inline typename SequenceContainer::size_type
flat_tree_capacity(const SequenceContainer &tseq, dtl::true_)
{
return tseq.capacity();
}
template<class SequenceContainer> // has_capacity == false
inline typename SequenceContainer::size_type
flat_tree_capacity(const SequenceContainer &tseq, dtl::false_)
{
return tseq.size();
}
///////////////////////////////////////
//
// flat_tree_value_compare
//
///////////////////////////////////////
template<class Compare, class Value, class KeyOfValue>
class flat_tree_value_compare
: private Compare
{
typedef Value first_argument_type;
typedef Value second_argument_type;
typedef bool return_type;
public:
inline flat_tree_value_compare()
: Compare()
{}
inline flat_tree_value_compare(const Compare &pred)
: Compare(pred)
{}
inline bool operator()(const Value& lhs, const Value& rhs) const
{
KeyOfValue key_extract;
return Compare::operator()(key_extract(lhs), key_extract(rhs));
}
inline const Compare &get_comp() const
{ return *this; }
inline Compare &get_comp()
{ return *this; }
};
///////////////////////////////////////
//
// select_flat_tree_container_type
//
///////////////////////////////////////
template < class Value, class AllocatorOrContainer
, bool = boost::container::dtl::is_container<AllocatorOrContainer>::value
>
struct select_flat_tree_container_type
{
typedef AllocatorOrContainer type;
};
template <class Value, class AllocatorOrVoid>
struct select_flat_tree_container_type<Value, AllocatorOrVoid, false>
{
typedef boost::container::vector<Value, AllocatorOrVoid> type;
};
///////////////////////////////////////
//
// flat_tree
//
///////////////////////////////////////
template <class Value, class KeyOfValue,
class Compare, class AllocatorOrContainer>
class flat_tree
{
public:
typedef typename select_flat_tree_container_type<Value, AllocatorOrContainer>::type container_type;
typedef container_type sequence_type; //For backwards compatibility
private:
typedef typename container_type::allocator_type allocator_t;
typedef allocator_traits<allocator_t> allocator_traits_type;
public:
typedef flat_tree_value_compare<Compare, Value, KeyOfValue> value_compare;
private:
struct Data
//Inherit from value_compare to do EBO
: public value_compare
{
BOOST_COPYABLE_AND_MOVABLE(Data)
public:
inline Data()
: value_compare(), m_seq()
{}
inline explicit Data(const allocator_t &alloc)
: value_compare(), m_seq(alloc)
{}
inline explicit Data(const Compare &comp)
: value_compare(comp), m_seq()
{}
inline Data(const Compare &comp, const allocator_t &alloc)
: value_compare(comp), m_seq(alloc)
{}
inline explicit Data(const Data &d)
: value_compare(static_cast<const value_compare&>(d)), m_seq(d.m_seq)
{}
inline Data(BOOST_RV_REF(Data) d)
: value_compare(boost::move(static_cast<value_compare&>(d))), m_seq(boost::move(d.m_seq))
{}
inline Data(const Data &d, const allocator_t &a)
: value_compare(static_cast<const value_compare&>(d)), m_seq(d.m_seq, a)
{}
inline Data(BOOST_RV_REF(Data) d, const allocator_t &a)
: value_compare(boost::move(static_cast<value_compare&>(d))), m_seq(boost::move(d.m_seq), a)
{}
Data& operator=(BOOST_COPY_ASSIGN_REF(Data) d)
{
this->value_compare::operator=(d);
m_seq = d.m_seq;
return *this;
}
Data& operator=(BOOST_RV_REF(Data) d)
{
this->value_compare::operator=(boost::move(static_cast<value_compare &>(d)));
m_seq = boost::move(d.m_seq);
return *this;
}
void swap(Data &d)
{
value_compare& mycomp = *this, & othercomp = d;
boost::adl_move_swap(mycomp, othercomp);
this->m_seq.swap(d.m_seq);
}
container_type m_seq;
};
Data m_data;
BOOST_COPYABLE_AND_MOVABLE(flat_tree)
public:
typedef typename container_type::value_type value_type;
typedef typename container_type::pointer pointer;
typedef typename container_type::const_pointer const_pointer;
typedef typename container_type::reference reference;
typedef typename container_type::const_reference const_reference;
typedef typename KeyOfValue::type key_type;
typedef Compare key_compare;
typedef typename container_type::allocator_type allocator_type;
typedef typename container_type::size_type size_type;
typedef typename container_type::difference_type difference_type;
typedef typename container_type::iterator iterator;
typedef typename container_type::const_iterator const_iterator;
typedef typename container_type::reverse_iterator reverse_iterator;
typedef typename container_type::const_reverse_iterator const_reverse_iterator;
//`allocator_type::value_type` must match container's `value type`. If this
//assertion fails, please review your allocator definition.
BOOST_CONTAINER_STATIC_ASSERT((is_same<value_type, typename allocator_traits_type::value_type>::value));
//!Standard extension
typedef BOOST_INTRUSIVE_OBTAIN_TYPE_WITH_DEFAULT
(boost::container::dtl::, container_type
,stored_allocator_type, allocator_type) stored_allocator_type;
BOOST_STATIC_CONSTEXPR bool has_stored_allocator_type =
BOOST_INTRUSIVE_HAS_TYPE(boost::container::dtl::, container_type, stored_allocator_type);
private:
typedef allocator_traits<stored_allocator_type> stored_allocator_traits;
public:
typedef typename dtl::if_c
<has_stored_allocator_type, const stored_allocator_type &, allocator_type>::type get_stored_allocator_const_return_t;
typedef typename dtl::if_c
<has_stored_allocator_type, stored_allocator_type &, allocator_type>::type get_stored_allocator_noconst_return_t;
inline flat_tree()
: m_data()
{ }
inline explicit flat_tree(const Compare& comp)
: m_data(comp)
{ }
inline explicit flat_tree(const allocator_type& a)
: m_data(a)
{ }
inline flat_tree(const Compare& comp, const allocator_type& a)
: m_data(comp, a)
{ }
inline flat_tree(const flat_tree& x)
: m_data(x.m_data)
{ }
inline flat_tree(BOOST_RV_REF(flat_tree) x)
BOOST_NOEXCEPT_IF(boost::container::dtl::is_nothrow_move_constructible<Compare>::value)
: m_data(boost::move(x.m_data))
{ }
inline flat_tree(const flat_tree& x, const allocator_type &a)
: m_data(x.m_data, a)
{ }
inline flat_tree(BOOST_RV_REF(flat_tree) x, const allocator_type &a)
: m_data(boost::move(x.m_data), a)
{ }
template <class InputIterator>
inline
flat_tree( ordered_range_t, InputIterator first, InputIterator last)
: m_data()
{
this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last);
BOOST_ASSERT((is_sorted)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp()));
}
template <class InputIterator>
inline
flat_tree( ordered_range_t, InputIterator first, InputIterator last, const Compare& comp)
: m_data(comp)
{
this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last);
BOOST_ASSERT((is_sorted)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp()));
}
template <class InputIterator>
inline
flat_tree( ordered_range_t, InputIterator first, InputIterator last, const Compare& comp, const allocator_type& a)
: m_data(comp, a)
{
this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last);
BOOST_ASSERT((is_sorted)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp()));
}
template <class InputIterator>
inline
flat_tree( ordered_unique_range_t, InputIterator first, InputIterator last)
: m_data()
{
this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last);
BOOST_ASSERT((is_sorted_and_unique)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp()));
}
template <class InputIterator>
inline
flat_tree( ordered_unique_range_t, InputIterator first, InputIterator last, const Compare& comp)
: m_data(comp)
{
this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last);
BOOST_ASSERT((is_sorted_and_unique)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp()));
}
template <class InputIterator>
inline
flat_tree( ordered_unique_range_t, InputIterator first, InputIterator last, const Compare& comp, const allocator_type& a)
: m_data(comp, a)
{
this->m_data.m_seq.insert(this->m_data.m_seq.end(), first, last);
BOOST_ASSERT((is_sorted_and_unique)(this->m_data.m_seq.cbegin(), this->m_data.m_seq.cend(), this->priv_value_comp()));
}
template <class InputIterator>
inline
flat_tree( bool unique_insertion, InputIterator first, InputIterator last)
: m_data()
{
this->priv_range_insertion_construct(unique_insertion, first, last);
}
template <class InputIterator>
inline
flat_tree( bool unique_insertion, InputIterator first, InputIterator last
, const Compare& comp)
: m_data(comp)
{
this->priv_range_insertion_construct(unique_insertion, first, last);
}
template <class InputIterator>
inline
flat_tree( bool unique_insertion, InputIterator first, InputIterator last
, const allocator_type& a)
: m_data(a)
{
this->priv_range_insertion_construct(unique_insertion, first, last);
}
template <class InputIterator>
inline
flat_tree( bool unique_insertion, InputIterator first, InputIterator last
, const Compare& comp, const allocator_type& a)
: m_data(comp, a)
{
this->priv_range_insertion_construct(unique_insertion, first, last);
}
inline ~flat_tree()
{
}
inline flat_tree& operator=(BOOST_COPY_ASSIGN_REF(flat_tree) x)
{ m_data = x.m_data; return *this; }
inline flat_tree& operator=(BOOST_RV_REF(flat_tree) x)
BOOST_NOEXCEPT_IF( (allocator_traits_type::propagate_on_container_move_assignment::value ||
allocator_traits_type::is_always_equal::value) &&
boost::container::dtl::is_nothrow_move_assignable<Compare>::value)
{ m_data = boost::move(x.m_data); return *this; }
inline const value_compare &priv_value_comp() const
{ return static_cast<const value_compare &>(this->m_data); }
inline value_compare &priv_value_comp()
{ return static_cast<value_compare &>(this->m_data); }
inline const key_compare &priv_key_comp() const
{ return this->priv_value_comp().get_comp(); }
inline key_compare &priv_key_comp()
{ return this->priv_value_comp().get_comp(); }
struct insert_commit_data
{
const_iterator position;
};
public:
// accessors:
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
Compare key_comp() const
{ return this->m_data.get_comp(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
value_compare value_comp() const
{ return this->m_data; }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
allocator_type get_allocator() const
{ return this->m_data.m_seq.get_allocator(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
get_stored_allocator_const_return_t get_stored_allocator() const
{
return flat_tree_get_stored_allocator(this->m_data.m_seq, dtl::bool_<has_stored_allocator_type>());
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
get_stored_allocator_noconst_return_t get_stored_allocator()
{
return flat_tree_get_stored_allocator(this->m_data.m_seq, dtl::bool_<has_stored_allocator_type>());
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
iterator begin()
{ return this->m_data.m_seq.begin(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const_iterator begin() const
{ return this->cbegin(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const_iterator cbegin() const
{ return this->m_data.m_seq.begin(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
iterator end()
{ return this->m_data.m_seq.end(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const_iterator end() const
{ return this->cend(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const_iterator cend() const
{ return this->m_data.m_seq.end(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
reverse_iterator rbegin()
{ return reverse_iterator(this->end()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const_reverse_iterator rbegin() const
{ return this->crbegin(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const_reverse_iterator crbegin() const
{ return const_reverse_iterator(this->cend()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
reverse_iterator rend()
{ return reverse_iterator(this->begin()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const_reverse_iterator rend() const
{ return this->crend(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const_reverse_iterator crend() const
{ return const_reverse_iterator(this->cbegin()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
bool empty() const
{ return this->m_data.m_seq.empty(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
size_type size() const
{ return this->m_data.m_seq.size(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
size_type max_size() const
{ return this->m_data.m_seq.max_size(); }
inline void swap(flat_tree& other)
BOOST_NOEXCEPT_IF( allocator_traits_type::is_always_equal::value
&& boost::container::dtl::is_nothrow_swappable<Compare>::value )
{ this->m_data.swap(other.m_data); }
public:
// insert/erase
std::pair<iterator,bool> insert_unique(const value_type& val)
{
std::pair<iterator,bool> ret;
insert_commit_data data;
ret.second = this->priv_insert_unique_prepare(KeyOfValue()(val), data);
ret.first = ret.second ? this->priv_insert_commit(data, val)
: this->begin() + (data.position - this->cbegin());
//: iterator(vector_iterator_get_ptr(data.position));
return ret;
}
std::pair<iterator,bool> insert_unique(BOOST_RV_REF(value_type) val)
{
std::pair<iterator,bool> ret;
insert_commit_data data;
ret.second = this->priv_insert_unique_prepare(KeyOfValue()(val), data);
ret.first = ret.second ? this->priv_insert_commit(data, boost::move(val))
: this->begin() + (data.position - this->cbegin());
//: iterator(vector_iterator_get_ptr(data.position));
return ret;
}
iterator insert_equal(const value_type& val)
{
iterator i = this->upper_bound(KeyOfValue()(val));
i = this->m_data.m_seq.insert(i, val);
return i;
}
iterator insert_equal(BOOST_RV_REF(value_type) mval)
{
iterator i = this->upper_bound(KeyOfValue()(mval));
i = this->m_data.m_seq.insert(i, boost::move(mval));
return i;
}
iterator insert_unique(const_iterator hint, const value_type& val)
{
BOOST_ASSERT(this->priv_in_range_or_end(hint));
insert_commit_data data;
return this->priv_insert_unique_prepare(hint, KeyOfValue()(val), data)
? this->priv_insert_commit(data, val)
: this->begin() + (data.position - this->cbegin());
//: iterator(vector_iterator_get_ptr(data.position));
}
iterator insert_unique(const_iterator hint, BOOST_RV_REF(value_type) val)
{
BOOST_ASSERT(this->priv_in_range_or_end(hint));
insert_commit_data data;
return this->priv_insert_unique_prepare(hint, KeyOfValue()(val), data)
? this->priv_insert_commit(data, boost::move(val))
: this->begin() + (data.position - this->cbegin());
//: iterator(vector_iterator_get_ptr(data.position));
}
iterator insert_equal(const_iterator hint, const value_type& val)
{
BOOST_ASSERT(this->priv_in_range_or_end(hint));
insert_commit_data data;
this->priv_insert_equal_prepare(hint, val, data);
return this->priv_insert_commit(data, val);
}
iterator insert_equal(const_iterator hint, BOOST_RV_REF(value_type) mval)
{
BOOST_ASSERT(this->priv_in_range_or_end(hint));
insert_commit_data data;
this->priv_insert_equal_prepare(hint, mval, data);
return this->priv_insert_commit(data, boost::move(mval));
}
template <class InIt>
void insert_unique(InIt first, InIt last)
{
dtl::bool_<is_contiguous_container<container_type>::value> contiguous_tag;
container_type &seq = this->m_data.m_seq;
value_compare &val_cmp = this->priv_value_comp();
//Step 1: put new elements in the back
typename container_type::iterator const it = seq.insert(seq.cend(), first, last);
//Step 2: sort them
boost::movelib::pdqsort(it, seq.end(), val_cmp);
//Step 3: only left unique values from the back not already present in the original range
typename container_type::iterator const e = boost::movelib::inplace_set_unique_difference
(it, seq.end(), seq.begin(), it, val_cmp);
//it might be invalidated by erasing [e, seq.end) if e == it, so check it before
const bool remaining = e != it;
seq.erase(e, seq.cend());
if (remaining)
{
//Step 4: merge both ranges
(flat_tree_container_inplace_merge)(seq, it, this->priv_value_comp(), contiguous_tag);
}
}
template <class InIt>
void insert_equal(InIt first, InIt last)
{
if (first != last) {
dtl::bool_<is_contiguous_container<container_type>::value> contiguous_tag;
container_type &seq = this->m_data.m_seq;
typename container_type::iterator const it = seq.insert(seq.cend(), first, last);
(flat_tree_container_inplace_sort_ending)(seq, it, this->priv_value_comp(), contiguous_tag);
(flat_tree_container_inplace_merge) (seq, it, this->priv_value_comp(), contiguous_tag);
}
}
//Ordered
template <class InIt>
void insert_equal(ordered_range_t, InIt first, InIt last)
{
const bool value = boost::container::dtl::
has_member_function_callable_with_merge_unique<container_type, InIt, InIt, value_compare>::value;
(flat_tree_merge_equal)(this->m_data.m_seq, first, last, this->priv_value_comp(), dtl::bool_<value>());
}
template <class InIt>
void insert_unique(ordered_unique_range_t, InIt first, InIt last)
{
const bool value = boost::container::dtl::
has_member_function_callable_with_merge_unique<container_type, InIt, InIt, value_compare>::value;
(flat_tree_merge_unique)(this->m_data.m_seq, first, last, this->priv_value_comp(), dtl::bool_<value>());
}
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args>
std::pair<iterator, bool> emplace_unique(BOOST_FWD_REF(Args)... args)
{
typename dtl::aligned_storage<sizeof(value_type), dtl::alignment_of<value_type>::value>::type v;
get_stored_allocator_noconst_return_t a = this->get_stored_allocator();
stored_allocator_traits::construct(a, (value_type *)(&v), ::boost::forward<Args>(args)... );
value_type *pval = move_detail::launder_cast<value_type *>(&v);
value_destructor<stored_allocator_type, value_type> d(a, *pval);
return this->insert_unique(::boost::move(*pval));
}
template <class... Args>
iterator emplace_hint_unique(const_iterator hint, BOOST_FWD_REF(Args)... args)
{
//hint checked in insert_unique
typename dtl::aligned_storage<sizeof(value_type), dtl::alignment_of<value_type>::value>::type v;
get_stored_allocator_noconst_return_t a = this->get_stored_allocator();
stored_allocator_traits::construct(a, (value_type*)(&v), ::boost::forward<Args>(args)... );
value_type *pval = move_detail::launder_cast<value_type *>(&v);
value_destructor<stored_allocator_type, value_type> d(a, *pval);
return this->insert_unique(hint, ::boost::move(*pval));
}
template <class... Args>
iterator emplace_equal(BOOST_FWD_REF(Args)... args)
{
typename dtl::aligned_storage<sizeof(value_type), dtl::alignment_of<value_type>::value>::type v;
get_stored_allocator_noconst_return_t a = this->get_stored_allocator();
stored_allocator_traits::construct(a, (value_type*)(&v), ::boost::forward<Args>(args)... );
value_type *pval = move_detail::launder_cast<value_type *>(&v);
value_destructor<stored_allocator_type, value_type> d(a, *pval);
return this->insert_equal(::boost::move(*pval));
}
template <class... Args>
iterator emplace_hint_equal(const_iterator hint, BOOST_FWD_REF(Args)... args)
{
//hint checked in insert_equal
typename dtl::aligned_storage<sizeof(value_type), dtl::alignment_of<value_type>::value>::type v;
get_stored_allocator_noconst_return_t a = this->get_stored_allocator();
stored_allocator_traits::construct(a, (value_type*)(&v), ::boost::forward<Args>(args)... );
value_type *pval = move_detail::launder_cast<value_type *>(&v);
value_destructor<stored_allocator_type, value_type> d(a, *pval);
return this->insert_equal(hint, ::boost::move(*pval));
}
template <class KeyType, class... Args>
inline std::pair<iterator, bool> try_emplace
(const_iterator hint, BOOST_FWD_REF(KeyType) key, BOOST_FWD_REF(Args)... args)
{
std::pair<iterator,bool> ret;
insert_commit_data data;
const key_type & k = key;
ret.second = hint == const_iterator()
? this->priv_insert_unique_prepare(k, data)
: this->priv_insert_unique_prepare(hint, k, data);
if(!ret.second){
ret.first = this->nth(size_type(data.position - this->cbegin()));
}
else{
ret.first = this->m_data.m_seq.emplace(data.position, try_emplace_t(), ::boost::forward<KeyType>(key), ::boost::forward<Args>(args)...);
}
return ret;
}
#else // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#define BOOST_CONTAINER_FLAT_TREE_EMPLACE_CODE(N) \
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
std::pair<iterator, bool> emplace_unique(BOOST_MOVE_UREF##N)\
{\
typename dtl::aligned_storage<sizeof(value_type), dtl::alignment_of<value_type>::value>::type v;\
get_stored_allocator_noconst_return_t a = this->get_stored_allocator();\
stored_allocator_traits::construct(a, (value_type *)(&v) BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
value_type *pval = move_detail::launder_cast<value_type *>(&v);\
value_destructor<stored_allocator_type, value_type> d(a, *pval);\
return this->insert_unique(::boost::move(*pval));\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
iterator emplace_hint_unique(const_iterator hint BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
typename dtl::aligned_storage<sizeof(value_type), dtl::alignment_of<value_type>::value>::type v;\
get_stored_allocator_noconst_return_t a = this->get_stored_allocator();\
stored_allocator_traits::construct(a, (value_type *)(&v) BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
value_type *pval = move_detail::launder_cast<value_type *>(&v);\
value_destructor<stored_allocator_type, value_type> d(a, *pval);\
return this->insert_unique(hint, ::boost::move(*pval));\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
iterator emplace_equal(BOOST_MOVE_UREF##N)\
{\
typename dtl::aligned_storage<sizeof(value_type), dtl::alignment_of<value_type>::value>::type v;\
get_stored_allocator_noconst_return_t a = this->get_stored_allocator();\
stored_allocator_traits::construct(a, (value_type *)(&v) BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
value_type *pval = move_detail::launder_cast<value_type *>(&v);\
value_destructor<stored_allocator_type, value_type> d(a, *pval);\
return this->insert_equal(::boost::move(*pval));\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
iterator emplace_hint_equal(const_iterator hint BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
typename dtl::aligned_storage <sizeof(value_type), dtl::alignment_of<value_type>::value>::type v;\
get_stored_allocator_noconst_return_t a = this->get_stored_allocator();\
stored_allocator_traits::construct(a, (value_type *)(&v) BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
value_type *pval = move_detail::launder_cast<value_type *>(&v);\
value_destructor<stored_allocator_type, value_type> d(a, *pval);\
return this->insert_equal(hint, ::boost::move(*pval));\
}\
template <class KeyType BOOST_MOVE_I##N BOOST_MOVE_CLASS##N>\
inline std::pair<iterator, bool>\
try_emplace(const_iterator hint, BOOST_FWD_REF(KeyType) key BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
std::pair<iterator,bool> ret;\
insert_commit_data data;\
const key_type & k = key;\
ret.second = hint == const_iterator()\
? this->priv_insert_unique_prepare(k, data)\
: this->priv_insert_unique_prepare(hint, k, data);\
\
if(!ret.second){\
ret.first = this->nth(size_type(data.position - this->cbegin()));\
}\
else{\
ret.first = this->m_data.m_seq.emplace(data.position, try_emplace_t(), ::boost::forward<KeyType>(key) BOOST_MOVE_I##N BOOST_MOVE_FWD##N);\
}\
return ret;\
}\
//
BOOST_MOVE_ITERATE_0TO7(BOOST_CONTAINER_FLAT_TREE_EMPLACE_CODE)
#undef BOOST_CONTAINER_FLAT_TREE_EMPLACE_CODE
#endif // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template<class KeyType, class M>
std::pair<iterator, bool> insert_or_assign(const_iterator hint, BOOST_FWD_REF(KeyType) key, BOOST_FWD_REF(M) obj)
{
const key_type& k = key;
std::pair<iterator,bool> ret;
insert_commit_data data;
ret.second = hint == const_iterator()
? this->priv_insert_unique_prepare(k, data)
: this->priv_insert_unique_prepare(hint, k, data);
if(!ret.second){
ret.first = this->nth(size_type(data.position - this->cbegin()));
ret.first->second = boost::forward<M>(obj);
}
else{
ret.first = this->m_data.m_seq.emplace(data.position, boost::forward<KeyType>(key), boost::forward<M>(obj));
}
return ret;
}
size_type erase(const key_type& k)
{
std::pair<iterator,iterator > itp = this->equal_range(k);
size_type ret = static_cast<size_type>(itp.second-itp.first);
if (ret){
this->m_data.m_seq.erase(itp.first, itp.second);
}
return ret;
}
size_type erase_unique(const key_type& k)
{
const_iterator i = static_cast<const flat_tree &>(*this).find(k);
size_type ret = static_cast<size_type>(i != this->cend());
if (ret)
this->erase(i);
return ret;
}
template <class K>
inline typename dtl::enable_if_c<
dtl::is_transparent<key_compare>::value && //transparent
!dtl::is_convertible<K, iterator>::value && //not convertible to iterator
!dtl::is_convertible<K, const_iterator>::value //not convertible to const_iterator
, size_type>::type
erase(const K& k)
{
std::pair<iterator, iterator > itp = this->equal_range(k);
size_type ret = static_cast<size_type>(itp.second - itp.first);
if (ret) {
this->m_data.m_seq.erase(itp.first, itp.second);
}
return ret;
}
template <class K>
inline typename dtl::enable_if_c<
dtl::is_transparent<key_compare>::value && //transparent
!dtl::is_convertible<K, iterator>::value && //not convertible to iterator
!dtl::is_convertible<K, const_iterator>::value //not convertible to const_iterator
, size_type>::type
erase_unique(const K& k)
{
const_iterator i = static_cast<const flat_tree&>(*this).find(k);
size_type ret = static_cast<size_type>(i != this->cend());
if (ret)
this->erase(i);
return ret;
}
inline iterator erase(const_iterator position)
{ return this->m_data.m_seq.erase(position); }
inline iterator erase(const_iterator first, const_iterator last)
{ return this->m_data.m_seq.erase(first, last); }
inline void clear()
{ this->m_data.m_seq.clear(); }
//! <b>Effects</b>: Tries to deallocate the excess of memory created
// with previous allocations. The size of the vector is unchanged
//!
//! <b>Throws</b>: If memory allocation throws, or T's copy constructor throws.
//!
//! <b>Complexity</b>: Linear to size().
inline void shrink_to_fit()
{ this->m_data.m_seq.shrink_to_fit(); }
inline iterator nth(size_type n) BOOST_NOEXCEPT_OR_NOTHROW
{
const bool value = boost::container::dtl::
has_member_function_callable_with_nth<container_type, size_type>::value;
return flat_tree_nth<iterator>(this->m_data.m_seq, n, dtl::bool_<value>());
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const_iterator nth(size_type n) const BOOST_NOEXCEPT_OR_NOTHROW
{
const bool value = boost::container::dtl::
has_member_function_callable_with_nth<container_type, size_type>::value;
return flat_tree_nth<const_iterator>(this->m_data.m_seq, n, dtl::bool_<value>());
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
size_type index_of(iterator p) BOOST_NOEXCEPT_OR_NOTHROW
{
const bool value = boost::container::dtl::
has_member_function_callable_with_index_of<container_type, iterator>::value;
return flat_tree_index_of(this->m_data.m_seq, p, dtl::bool_<value>());
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
size_type index_of(const_iterator p) const BOOST_NOEXCEPT_OR_NOTHROW
{
const bool value = boost::container::dtl::
has_member_function_callable_with_index_of<container_type, const_iterator>::value;
return flat_tree_index_of(this->m_data.m_seq, p, dtl::bool_<value>());
}
// set operations:
BOOST_CONTAINER_ATTRIBUTE_NODISCARD
iterator find(const key_type& k)
{
iterator i = this->lower_bound(k);
iterator end_it = this->end();
if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){
i = end_it;
}
return i;
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD
const_iterator find(const key_type& k) const
{
const_iterator i = this->lower_bound(k);
const_iterator end_it = this->cend();
if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){
i = end_it;
}
return i;
}
template<class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD
typename dtl::enable_if_transparent<key_compare, K, iterator>::type
find(const K& k)
{
iterator i = this->lower_bound(k);
iterator end_it = this->end();
if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){
i = end_it;
}
return i;
}
template<class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD
typename dtl::enable_if_transparent<key_compare, K, const_iterator>::type
find(const K& k) const
{
const_iterator i = this->lower_bound(k);
const_iterator end_it = this->cend();
if (i != end_it && this->m_data.get_comp()(k, KeyOfValue()(*i))){
i = end_it;
}
return i;
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD
size_type count(const key_type& k) const
{
std::pair<const_iterator, const_iterator> p = this->equal_range(k);
size_type n = size_type(p.second - p.first);
return n;
}
template<class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD
typename dtl::enable_if_transparent<key_compare, K, size_type>::type
count(const K& k) const
{
std::pair<const_iterator, const_iterator> p = this->equal_range(k);
size_type n = size_type(p.second - p.first);
return n;
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline bool contains(const key_type& x) const
{ return this->find(x) != this->cend(); }
template<typename K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
typename dtl::enable_if_transparent<key_compare, K, bool>::type
contains(const K& x) const
{ return this->find(x) != this->cend(); }
template<class C2>
inline void merge_unique(flat_tree<Value, KeyOfValue, C2, AllocatorOrContainer>& source)
{
this->insert_unique( boost::make_move_iterator(source.begin())
, boost::make_move_iterator(source.end()));
}
template<class C2>
inline void merge_equal(flat_tree<Value, KeyOfValue, C2, AllocatorOrContainer>& source)
{
this->insert_equal( boost::make_move_iterator(source.begin())
, boost::make_move_iterator(source.end()));
}
inline void merge_unique(flat_tree& source)
{
const bool value = boost::container::dtl::
has_member_function_callable_with_merge_unique<container_type, iterator, iterator, value_compare>::value;
(flat_tree_merge_unique)
( this->m_data.m_seq
, boost::make_move_iterator(source.m_data.m_seq.begin())
, boost::make_move_iterator(source.m_data.m_seq.end())
, this->priv_value_comp()
, dtl::bool_<value>());
}
inline void merge_equal(flat_tree& source)
{
const bool value = boost::container::dtl::
has_member_function_callable_with_merge<container_type, iterator, iterator, value_compare>::value;
(flat_tree_merge_equal)
( this->m_data.m_seq
, boost::make_move_iterator(source.m_data.m_seq.begin())
, boost::make_move_iterator(source.m_data.m_seq.end())
, this->priv_value_comp()
, dtl::bool_<value>());
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
iterator lower_bound(const key_type& k)
{ return this->priv_lower_bound(this->begin(), this->end(), k); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const_iterator lower_bound(const key_type& k) const
{ return this->priv_lower_bound(this->cbegin(), this->cend(), k); }
template<class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
typename dtl::enable_if_transparent<key_compare, K, iterator>::type
lower_bound(const K& k)
{ return this->priv_lower_bound(this->begin(), this->end(), k); }
template<class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
typename dtl::enable_if_transparent<key_compare, K, const_iterator>::type
lower_bound(const K& k) const
{ return this->priv_lower_bound(this->cbegin(), this->cend(), k); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
iterator upper_bound(const key_type& k)
{ return this->priv_upper_bound(this->begin(), this->end(), k); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const_iterator upper_bound(const key_type& k) const
{ return this->priv_upper_bound(this->cbegin(), this->cend(), k); }
template<class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
typename dtl::enable_if_transparent<key_compare, K,iterator>::type
upper_bound(const K& k)
{ return this->priv_upper_bound(this->begin(), this->end(), k); }
template<class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
typename dtl::enable_if_transparent<key_compare, K,const_iterator>::type
upper_bound(const K& k) const
{ return this->priv_upper_bound(this->cbegin(), this->cend(), k); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
std::pair<iterator,iterator> equal_range(const key_type& k)
{ return this->priv_equal_range(this->begin(), this->end(), k); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const
{ return this->priv_equal_range(this->cbegin(), this->cend(), k); }
template<class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
typename dtl::enable_if_transparent<key_compare, K, std::pair<iterator,iterator> >::type
equal_range(const K& k)
{ return this->priv_equal_range(this->begin(), this->end(), k); }
template<class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
typename dtl::enable_if_transparent<key_compare, K,std::pair<const_iterator,const_iterator> >::type
equal_range(const K& k) const
{ return this->priv_equal_range(this->cbegin(), this->cend(), k); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
std::pair<iterator, iterator> lower_bound_range(const key_type& k)
{ return this->priv_lower_bound_range(this->begin(), this->end(), k); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
std::pair<const_iterator, const_iterator> lower_bound_range(const key_type& k) const
{ return this->priv_lower_bound_range(this->cbegin(), this->cend(), k); }
template<class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
typename dtl::enable_if_transparent<key_compare, K,std::pair<iterator,iterator> >::type
lower_bound_range(const K& k)
{ return this->priv_lower_bound_range(this->begin(), this->end(), k); }
template<class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
typename dtl::enable_if_transparent<key_compare, K,std::pair<const_iterator,const_iterator> >::type
lower_bound_range(const K& k) const
{ return this->priv_lower_bound_range(this->cbegin(), this->cend(), k); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
size_type capacity() const
{
const bool value = boost::container::dtl::
has_member_function_callable_with_capacity<container_type>::value;
return (flat_tree_capacity)(this->m_data.m_seq, dtl::bool_<value>());
}
inline
void reserve(size_type cnt)
{
const bool value = boost::container::dtl::
has_member_function_callable_with_reserve<container_type, size_type>::value;
(flat_tree_reserve)(this->m_data.m_seq, cnt, dtl::bool_<value>());
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
container_type extract_sequence()
{ return boost::move(m_data.m_seq); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
container_type &get_sequence_ref()
{ return m_data.m_seq; }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
const container_type &get_sequence_cref() const
{ return m_data.m_seq; }
inline void adopt_sequence_equal(BOOST_RV_REF(container_type) seq)
{
(flat_tree_adopt_sequence_equal)( m_data.m_seq, boost::move(seq), this->priv_value_comp()
, dtl::bool_<is_contiguous_container<container_type>::value>());
}
inline void adopt_sequence_unique(BOOST_RV_REF(container_type) seq)
{
(flat_tree_adopt_sequence_unique)(m_data.m_seq, boost::move(seq), this->priv_value_comp()
, dtl::bool_<is_contiguous_container<container_type>::value>());
}
void adopt_sequence_equal(ordered_range_t, BOOST_RV_REF(container_type) seq)
{
BOOST_ASSERT((is_sorted)(seq.cbegin(), seq.cend(), this->priv_value_comp()));
m_data.m_seq = boost::move(seq);
}
void adopt_sequence_unique(ordered_unique_range_t, BOOST_RV_REF(container_type) seq)
{
BOOST_ASSERT((is_sorted_and_unique)(seq.cbegin(), seq.cend(), this->priv_value_comp()));
m_data.m_seq = boost::move(seq);
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
friend bool operator==(const flat_tree& x, const flat_tree& y)
{
return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin());
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
friend bool operator<(const flat_tree& x, const flat_tree& y)
{
return ::boost::container::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end());
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
friend bool operator!=(const flat_tree& x, const flat_tree& y)
{ return !(x == y); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
friend bool operator>(const flat_tree& x, const flat_tree& y)
{ return y < x; }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
friend bool operator<=(const flat_tree& x, const flat_tree& y)
{ return !(y < x); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD inline
friend bool operator>=(const flat_tree& x, const flat_tree& y)
{ return !(x < y); }
inline friend void swap(flat_tree& x, flat_tree& y)
BOOST_NOEXCEPT_IF(BOOST_NOEXCEPT(x.swap(y)))
{ x.swap(y); }
private:
template <class InputIterator>
void priv_range_insertion_construct( bool unique_insertion, InputIterator first, InputIterator last)
{
//Use cend() as hint to achieve linear time for
//ordered ranges as required by the standard
//for the constructor
//Call end() every iteration as reallocation might have invalidated iterators
if(unique_insertion){
this->insert_unique(first, last);
}
else{
this->insert_equal (first, last);
}
}
inline bool priv_in_range_or_end(const_iterator pos) const
{
return (this->begin() <= pos) && (pos <= this->end());
}
// insert/erase
void priv_insert_equal_prepare
(const_iterator pos, const value_type& val, insert_commit_data &data)
{
// N1780
// To insert val at pos:
// if pos == end || val <= *pos
// if pos == begin || val >= *(pos-1)
// insert val before pos
// else
// insert val before upper_bound(val)
// else
// insert val before lower_bound(val)
const value_compare &val_cmp = this->m_data;
if(pos == this->cend() || !val_cmp(*pos, val)){
if (pos == this->cbegin() || !val_cmp(val, pos[-1])){
data.position = pos;
}
else{
data.position =
this->priv_upper_bound(this->cbegin(), pos, KeyOfValue()(val));
}
}
else{
data.position =
this->priv_lower_bound(pos, this->cend(), KeyOfValue()(val));
}
}
bool priv_insert_unique_prepare
(const_iterator b, const_iterator e, const key_type& k, insert_commit_data &commit_data)
{
const key_compare &key_cmp = this->priv_key_comp();
commit_data.position = this->priv_lower_bound(b, e, k);
return commit_data.position == e || key_cmp(k, KeyOfValue()(*commit_data.position));
}
inline bool priv_insert_unique_prepare
(const key_type& k, insert_commit_data &commit_data)
{ return this->priv_insert_unique_prepare(this->cbegin(), this->cend(), k, commit_data); }
bool priv_insert_unique_prepare
(const_iterator pos, const key_type& k, insert_commit_data &commit_data)
{
//N1780. Props to Howard Hinnant!
//To insert k at pos:
//if pos == end || k <= *pos
// if pos == begin || k >= *(pos-1)
// insert k before pos
// else
// insert k before upper_bound(k)
//else if pos+1 == end || k <= *(pos+1)
// insert k after pos
//else
// insert k before lower_bound(k)
const key_compare &key_cmp = this->priv_key_comp();
const const_iterator cend_it = this->cend();
if(pos == cend_it || key_cmp(k, KeyOfValue()(*pos))){ //Check if k should go before end
const const_iterator cbeg = this->cbegin();
commit_data.position = pos;
if(pos == cbeg){ //If container is empty then insert it in the beginning
return true;
}
const_iterator prev(pos);
--prev;
if(key_cmp(KeyOfValue()(*prev), k)){ //If previous element was less, then it should go between prev and pos
return true;
}
else if(!key_cmp(k, KeyOfValue()(*prev))){ //If previous was equal then insertion should fail
commit_data.position = prev;
return false;
}
else{ //Previous was bigger so insertion hint was pointless, dispatch to hintless insertion
//but reduce the search between beg and prev as prev is bigger than k
return this->priv_insert_unique_prepare(cbeg, prev, k, commit_data);
}
}
else{
//The hint is before the insertion position, so insert it
//in the remaining range [pos, end)
return this->priv_insert_unique_prepare(pos, cend_it, k, commit_data);
}
}
template<class Convertible>
inline iterator priv_insert_commit
(insert_commit_data &commit_data, BOOST_FWD_REF(Convertible) convertible)
{
return this->m_data.m_seq.insert
( commit_data.position
, boost::forward<Convertible>(convertible));
}
template <class RanIt, class K>
RanIt priv_lower_bound(RanIt first, const RanIt last,
const K & key) const
{
const Compare &key_cmp = this->m_data.get_comp();
KeyOfValue key_extract;
size_type len = static_cast<size_type>(last - first);
RanIt middle;
while (len) {
size_type step = len >> 1;
middle = first;
middle += difference_type(step);
if (key_cmp(key_extract(*middle), key)) {
first = ++middle;
len -= step + 1;
}
else{
len = step;
}
}
return first;
}
template <class RanIt, class K>
RanIt priv_upper_bound
(RanIt first, const RanIt last,const K & key) const
{
const Compare &key_cmp = this->m_data.get_comp();
KeyOfValue key_extract;
size_type len = static_cast<size_type>(last - first);
RanIt middle;
while (len) {
size_type step = len >> 1;
middle = first;
middle += difference_type(step);
if (key_cmp(key, key_extract(*middle))) {
len = step;
}
else{
first = ++middle;
len -= step + 1;
}
}
return first;
}
template <class RanIt, class K>
std::pair<RanIt, RanIt>
priv_equal_range(RanIt first, RanIt last, const K& key) const
{
const Compare &key_cmp = this->m_data.get_comp();
KeyOfValue key_extract;
size_type len = static_cast<size_type>(last - first);
RanIt middle;
while (len) {
size_type step = len >> 1;
middle = first;
middle += difference_type(step);
if (key_cmp(key_extract(*middle), key)){
first = ++middle;
len -= step + 1;
}
else if (key_cmp(key, key_extract(*middle))){
len = step;
}
else {
//Middle is equal to key
last = first;
last += difference_type(len);
RanIt const first_ret = this->priv_lower_bound(first, middle, key);
return std::pair<RanIt, RanIt>
( first_ret, this->priv_upper_bound(++middle, last, key));
}
}
return std::pair<RanIt, RanIt>(first, first);
}
template<class RanIt, class K>
std::pair<RanIt, RanIt> priv_lower_bound_range(RanIt first, RanIt last, const K& k) const
{
const Compare &key_cmp = this->m_data.get_comp();
KeyOfValue key_extract;
RanIt lb(this->priv_lower_bound(first, last, k)), ub(lb);
if(lb != last && !key_cmp(k, key_extract(*lb))){
++ub;
}
return std::pair<RanIt, RanIt>(lb, ub);
}
};
} //namespace dtl {
} //namespace container {
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class KeyOfValue,
class Compare, class AllocatorOrContainer>
struct has_trivial_destructor_after_move<boost::container::dtl::flat_tree<T, KeyOfValue, Compare, AllocatorOrContainer> >
{
typedef boost::container::dtl::flat_tree<T, KeyOfValue, Compare, AllocatorOrContainer> flat_tree;
typedef typename flat_tree::container_type container_type;
typedef typename flat_tree::key_compare key_compare;
BOOST_STATIC_CONSTEXPR bool value = ::boost::has_trivial_destructor_after_move<container_type>::value &&
::boost::has_trivial_destructor_after_move<key_compare>::value;
};
} //namespace boost {
#include <boost/container/detail/config_end.hpp>
#endif // BOOST_CONTAINER_FLAT_TREE_HPP