boost/container/detail/copy_move_algo.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2013. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_DETAIL_COPY_MOVE_ALGO_HPP
#define BOOST_CONTAINER_DETAIL_COPY_MOVE_ALGO_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
// container
#include <boost/container/allocator_traits.hpp>
// container/detail
#include <boost/container/detail/iterator.hpp>
#include <boost/move/detail/iterator_to_raw_pointer.hpp>
#include <boost/container/detail/mpl.hpp>
#include <boost/container/detail/type_traits.hpp>
#include <boost/container/detail/construct_in_place.hpp>
#include <boost/container/detail/destroyers.hpp>
// move
#include <boost/move/adl_move_swap.hpp>
#include <boost/move/iterator.hpp>
#include <boost/move/utility_core.hpp>
#include <boost/move/traits.hpp>
// other
#include <boost/assert.hpp>
// std
#include <cstring> //for memmove/memcpy
#if defined(BOOST_GCC) && (BOOST_GCC >= 40600)
#pragma GCC diagnostic push
//pair memcpy optimizations rightfully detected by GCC
# if defined(BOOST_GCC) && (BOOST_GCC >= 80000)
# pragma GCC diagnostic ignored "-Wclass-memaccess"
# endif
//GCC 8 seems a bit confused about array access error with static_vector
//when out of bound exceptions are being thrown.
# if defined(BOOST_GCC) && ((BOOST_GCC >= 80000) && (BOOST_GCC < 80200))
# pragma GCC diagnostic ignored "-Wstringop-overflow"
# endif
//GCC 12 seems a bit confused about array access error with small_vector
# if defined(BOOST_GCC) && (BOOST_GCC >= 110000)
# pragma GCC diagnostic ignored "-Wstringop-overread"
# pragma GCC diagnostic ignored "-Wstringop-overflow"
# endif
# pragma GCC diagnostic ignored "-Warray-bounds"
#endif
namespace boost {
namespace container {
namespace dtl {
template<class I>
struct are_elements_contiguous
{
BOOST_STATIC_CONSTEXPR bool value = false;
};
/////////////////////////
// raw pointers
/////////////////////////
template<class T>
struct are_elements_contiguous<T*>
{
BOOST_STATIC_CONSTEXPR bool value = true;
};
/////////////////////////
// move iterators
/////////////////////////
template<class It>
struct are_elements_contiguous< ::boost::move_iterator<It> >
: are_elements_contiguous<It>
{};
} //namespace dtl {
/////////////////////////
// predeclarations
/////////////////////////
template <class Pointer, bool IsConst>
class vec_iterator;
} //namespace container {
namespace interprocess {
template <class PointedType, class DifferenceType, class OffsetType, std::size_t OffsetAlignment>
class offset_ptr;
} //namespace interprocess {
namespace container {
namespace dtl {
/////////////////////////
//vector_[const_]iterator
/////////////////////////
template <class Pointer, bool IsConst>
struct are_elements_contiguous<boost::container::vec_iterator<Pointer, IsConst> >
{
BOOST_STATIC_CONSTEXPR bool value = true;
};
/////////////////////////
// offset_ptr
/////////////////////////
template <class PointedType, class DifferenceType, class OffsetType, std::size_t OffsetAlignment>
struct are_elements_contiguous< ::boost::interprocess::offset_ptr<PointedType, DifferenceType, OffsetType, OffsetAlignment> >
{
BOOST_STATIC_CONSTEXPR bool value = true;
};
template <typename I, typename O>
struct are_contiguous_and_same
: boost::move_detail::and_
< are_elements_contiguous<I>
, are_elements_contiguous<O>
, is_same< typename remove_const< typename ::boost::container::iter_value<I>::type >::type
, typename ::boost::container::iterator_traits<O>::value_type
>
>
{};
template <typename I, typename O>
struct is_memtransfer_copy_assignable
: boost::move_detail::and_
< are_contiguous_and_same<I, O>
, dtl::is_trivially_copy_assignable< typename ::boost::container::iter_value<I>::type >
>
{};
template <typename I, typename O>
struct is_memtransfer_copy_constructible
: boost::move_detail::and_
< are_contiguous_and_same<I, O>
, dtl::is_trivially_copy_constructible< typename ::boost::container::iter_value<I>::type >
>
{};
template <typename I, typename O, typename R>
struct enable_if_memtransfer_copy_constructible
: enable_if<dtl::is_memtransfer_copy_constructible<I, O>, R>
{};
template <typename I, typename O, typename R>
struct disable_if_memtransfer_copy_constructible
: disable_if<dtl::is_memtransfer_copy_constructible<I, O>, R>
{};
template <typename I, typename O, typename R>
struct enable_if_memtransfer_copy_assignable
: enable_if<dtl::is_memtransfer_copy_assignable<I, O>, R>
{};
template <typename I, typename O, typename R>
struct disable_if_memtransfer_copy_assignable
: disable_if<dtl::is_memtransfer_copy_assignable<I, O>, R>
{};
template <class T>
struct has_single_value
{
private:
struct two { char array_[2]; };
template<bool Arg> struct wrapper;
template <class U> static two test(int, ...);
template <class U> static char test(int, const wrapper<U::single_value>*);
public:
BOOST_STATIC_CONSTEXPR bool value = sizeof(test<T>(0, 0)) == 1;
void dummy() {}
};
template<class InsertionProxy, bool = has_single_value<InsertionProxy>::value>
struct is_single_value_proxy_impl
{
BOOST_STATIC_CONSTEXPR bool value = InsertionProxy::single_value;
};
template<class InsertionProxy>
struct is_single_value_proxy_impl<InsertionProxy, false>
{
BOOST_STATIC_CONSTEXPR bool value = false;
};
template<class InsertionProxy>
struct is_single_value_proxy
: is_single_value_proxy_impl<InsertionProxy>
{};
template <typename P, typename R = void>
struct enable_if_single_value_proxy
: enable_if<is_single_value_proxy<P>, R>
{};
template <typename P, typename R = void>
struct disable_if_single_value_proxy
: disable_if<is_single_value_proxy<P>, R>
{};
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline F memmove(I f, I l, F r) BOOST_NOEXCEPT_OR_NOTHROW
{
typedef typename boost::container::iter_value<I>::type value_type;
typedef typename boost::container::iterator_traits<F>::difference_type r_difference_type;
value_type *const dest_raw = boost::movelib::iterator_to_raw_pointer(r);
const value_type *const beg_raw = boost::movelib::iterator_to_raw_pointer(f);
const value_type *const end_raw = boost::movelib::iterator_to_raw_pointer(l);
if(BOOST_LIKELY(beg_raw != end_raw && dest_raw && beg_raw)){
const std::size_t n = std::size_t(end_raw - beg_raw) ;
std::memmove(dest_raw, beg_raw, sizeof(value_type)*n);
r += static_cast<r_difference_type>(n);
}
return r;
}
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline F memmove_n(I f, std::size_t n, F r) BOOST_NOEXCEPT_OR_NOTHROW
{
typedef typename boost::container::iter_value<I>::type value_type;
typedef typename boost::container::iterator_traits<F>::difference_type r_difference_type;
if(BOOST_LIKELY(n != 0)){
void *dst = boost::movelib::iterator_to_raw_pointer(r);
const void *src = boost::movelib::iterator_to_raw_pointer(f);
if (dst && src)
std::memmove(dst, src, sizeof(value_type)*n);
r += static_cast<r_difference_type>(n);
}
return r;
}
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline I memmove_n_source(I f, std::size_t n, F r) BOOST_NOEXCEPT_OR_NOTHROW
{
if(BOOST_LIKELY(n != 0)){
typedef typename boost::container::iter_value<I>::type value_type;
typedef typename boost::container::iterator_traits<I>::difference_type i_difference_type;
void *dst = boost::movelib::iterator_to_raw_pointer(r);
const void *src = boost::movelib::iterator_to_raw_pointer(f);
if (dst && src)
std::memmove(dst, src, sizeof(value_type)*n);
f += static_cast<i_difference_type>(n);
}
return f;
}
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline I memmove_n_source_dest(I f, std::size_t n, F &r) BOOST_NOEXCEPT_OR_NOTHROW
{
typedef typename boost::container::iter_value<I>::type value_type;
typedef typename boost::container::iterator_traits<F>::difference_type i_difference_type;
typedef typename boost::container::iterator_traits<F>::difference_type f_difference_type;
if(BOOST_LIKELY(n != 0)){
void *dst = boost::movelib::iterator_to_raw_pointer(r);
const void *src = boost::movelib::iterator_to_raw_pointer(f);
if (dst && src)
std::memmove(dst, src, sizeof(value_type)*n);
f += i_difference_type(n);
r += f_difference_type(n);
}
return f;
}
template <typename O>
struct is_memzero_initializable
{
typedef typename ::boost::container::iterator_traits<O>::value_type value_type;
BOOST_STATIC_CONSTEXPR bool value = are_elements_contiguous<O>::value &&
( dtl::is_integral<value_type>::value || dtl::is_enum<value_type>::value
#if defined(BOOST_CONTAINER_MEMZEROED_POINTER_IS_NULL)
|| dtl::is_pointer<value_type>::value
#endif
#if defined(BOOST_CONTAINER_MEMZEROED_FLOATING_POINT_IS_ZERO)
|| dtl::is_floating_point<value_type>::value
#endif
);
};
template <typename O, typename R>
struct enable_if_memzero_initializable
: enable_if_c<dtl::is_memzero_initializable<O>::value, R>
{};
template <typename O, typename R>
struct disable_if_memzero_initializable
: enable_if_c<!dtl::is_memzero_initializable<O>::value, R>
{};
template <typename I, typename R>
struct enable_if_trivially_destructible
: enable_if_c < dtl::is_trivially_destructible
<typename boost::container::iter_value<I>::type>::value
, R>
{};
template <typename I, typename R>
struct disable_if_trivially_destructible
: enable_if_c <!dtl::is_trivially_destructible
<typename boost::container::iter_value<I>::type>::value
, R>
{};
} //namespace dtl {
//////////////////////////////////////////////////////////////////////////////
//
// uninitialized_move_alloc
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>:
//! \code
//! for (; f != l; ++r, ++f)
//! allocator_traits::construct(a, &*r, boost::move(*f));
//! \endcode
//!
//! <b>Returns</b>: r
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_constructible<I, F, F>::type
uninitialized_move_alloc(Allocator &a, I f, I l, F r)
{
F back = r;
BOOST_CONTAINER_TRY{
while (f != l) {
allocator_traits<Allocator>::construct(a, boost::movelib::iterator_to_raw_pointer(r), boost::move(*f));
++f; ++r;
}
}
BOOST_CONTAINER_CATCH(...){
for (; back != r; ++back){
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(back));
}
BOOST_CONTAINER_RETHROW;
}
BOOST_CONTAINER_CATCH_END
return r;
}
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_constructible<I, F, F>::type
uninitialized_move_alloc(Allocator &, I f, I l, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove(f, l, r); }
//////////////////////////////////////////////////////////////////////////////
//
// uninitialized_move_alloc_n
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>:
//! \code
//! for (; n--; ++r, ++f)
//! allocator_traits::construct(a, &*r, boost::move(*f));
//! \endcode
//!
//! <b>Returns</b>: r
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_constructible<I, F, F>::type
uninitialized_move_alloc_n(Allocator &a, I f, std::size_t n, F r)
{
F back = r;
BOOST_CONTAINER_TRY{
while (n) {
--n;
allocator_traits<Allocator>::construct(a, boost::movelib::iterator_to_raw_pointer(r), boost::move(*f));
++f; ++r;
}
}
BOOST_CONTAINER_CATCH(...){
for (; back != r; ++back){
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(back));
}
BOOST_CONTAINER_RETHROW;
}
BOOST_CONTAINER_CATCH_END
return r;
}
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_constructible<I, F, F>::type
uninitialized_move_alloc_n(Allocator &, I f, std::size_t n, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove_n(f, n, r); }
//////////////////////////////////////////////////////////////////////////////
//
// uninitialized_move_alloc_n_source
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>:
//! \code
//! for (; n--; ++r, ++f)
//! allocator_traits::construct(a, &*r, boost::move(*f));
//! \endcode
//!
//! <b>Returns</b>: f (after incremented)
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_constructible<I, F, I>::type
uninitialized_move_alloc_n_source(Allocator &a, I f, std::size_t n, F r)
{
F back = r;
BOOST_CONTAINER_TRY{
while (n) {
--n;
allocator_traits<Allocator>::construct(a, boost::movelib::iterator_to_raw_pointer(r), boost::move(*f));
++f; ++r;
}
}
BOOST_CONTAINER_CATCH(...){
for (; back != r; ++back){
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(back));
}
BOOST_CONTAINER_RETHROW;
}
BOOST_CONTAINER_CATCH_END
return f;
}
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_constructible<I, F, I>::type
uninitialized_move_alloc_n_source(Allocator &, I f, std::size_t n, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove_n_source(f, n, r); }
//////////////////////////////////////////////////////////////////////////////
//
// uninitialized_copy_alloc
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>:
//! \code
//! for (; f != l; ++r, ++f)
//! allocator_traits::construct(a, &*r, *f);
//! \endcode
//!
//! <b>Returns</b>: r
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_constructible<I, F, F>::type
uninitialized_copy_alloc(Allocator &a, I f, I l, F r)
{
F back = r;
BOOST_CONTAINER_TRY{
while (f != l) {
allocator_traits<Allocator>::construct(a, boost::movelib::iterator_to_raw_pointer(r), *f);
++f; ++r;
}
}
BOOST_CONTAINER_CATCH(...){
for (; back != r; ++back){
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(back));
}
BOOST_CONTAINER_RETHROW;
}
BOOST_CONTAINER_CATCH_END
return r;
}
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_constructible<I, F, F>::type
uninitialized_copy_alloc(Allocator &, I f, I l, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove(f, l, r); }
//////////////////////////////////////////////////////////////////////////////
//
// uninitialized_copy_alloc_n
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>:
//! \code
//! for (; n--; ++r, ++f)
//! allocator_traits::construct(a, &*r, *f);
//! \endcode
//!
//! <b>Returns</b>: r
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_constructible<I, F, F>::type
uninitialized_copy_alloc_n(Allocator &a, I f, std::size_t n, F r)
{
F back = r;
BOOST_CONTAINER_TRY{
while (n) {
--n;
allocator_traits<Allocator>::construct(a, boost::movelib::iterator_to_raw_pointer(r), *f);
++f; ++r;
}
}
BOOST_CONTAINER_CATCH(...){
for (; back != r; ++back){
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(back));
}
BOOST_CONTAINER_RETHROW;
}
BOOST_CONTAINER_CATCH_END
return r;
}
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_constructible<I, F, F>::type
uninitialized_copy_alloc_n(Allocator &, I f, std::size_t n, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove_n(f, n, r); }
//////////////////////////////////////////////////////////////////////////////
//
// uninitialized_copy_alloc_n_source
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>:
//! \code
//! for (; n--; ++r, ++f)
//! allocator_traits::construct(a, &*r, *f);
//! \endcode
//!
//! <b>Returns</b>: f (after incremented)
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_constructible<I, F, I>::type
uninitialized_copy_alloc_n_source(Allocator &a, I f, std::size_t n, F r)
{
F back = r;
BOOST_CONTAINER_TRY{
while (n) {
boost::container::construct_in_place(a, boost::movelib::iterator_to_raw_pointer(r), f);
++f; ++r; --n;
}
}
BOOST_CONTAINER_CATCH(...){
for (; back != r; ++back){
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(back));
}
BOOST_CONTAINER_RETHROW;
}
BOOST_CONTAINER_CATCH_END
return f;
}
template
<typename Allocator,
typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_constructible<I, F, I>::type
uninitialized_copy_alloc_n_source(Allocator &, I f, std::size_t n, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove_n_source(f, n, r); }
//////////////////////////////////////////////////////////////////////////////
//
// uninitialized_value_init_alloc_n
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>:
//! \code
//! for (; n--; ++r, ++f)
//! allocator_traits::construct(a, &*r);
//! \endcode
//!
//! <b>Returns</b>: r
template
<typename Allocator,
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memzero_initializable<F, F>::type
uninitialized_value_init_alloc_n(Allocator &a, std::size_t n, F r)
{
F back = r;
BOOST_CONTAINER_TRY{
while (n) {
--n;
allocator_traits<Allocator>::construct(a, boost::movelib::iterator_to_raw_pointer(r));
++r;
}
}
BOOST_CONTAINER_CATCH(...){
for (; back != r; ++back){
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(back));
}
BOOST_CONTAINER_RETHROW;
}
BOOST_CONTAINER_CATCH_END
return r;
}
template
<typename Allocator,
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memzero_initializable<F, F>::type
uninitialized_value_init_alloc_n(Allocator &, std::size_t n, F r)
{
typedef typename boost::container::iterator_traits<F>::value_type value_type;
typedef typename boost::container::iterator_traits<F>::difference_type r_difference_type;
if (BOOST_LIKELY(n != 0)){
std::memset((void*)boost::movelib::iterator_to_raw_pointer(r), 0, sizeof(value_type)*n);
r += static_cast<r_difference_type>(n);
}
return r;
}
//////////////////////////////////////////////////////////////////////////////
//
// uninitialized_default_init_alloc_n
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>:
//! \code
//! for (; n--; ++r, ++f)
//! allocator_traits::construct(a, &*r);
//! \endcode
//!
//! <b>Returns</b>: r
template
<typename Allocator,
typename F> // F models ForwardIterator
inline F uninitialized_default_init_alloc_n(Allocator &a, std::size_t n, F r)
{
F back = r;
BOOST_CONTAINER_TRY{
while (n) {
--n;
allocator_traits<Allocator>::construct(a, boost::movelib::iterator_to_raw_pointer(r), default_init);
++r;
}
}
BOOST_CONTAINER_CATCH(...){
for (; back != r; ++back){
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(back));
}
BOOST_CONTAINER_RETHROW;
}
BOOST_CONTAINER_CATCH_END
return r;
}
//////////////////////////////////////////////////////////////////////////////
//
// uninitialized_fill_alloc
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>:
//! \code
//! for (; f != l; ++r, ++f)
//! allocator_traits::construct(a, &*r, *f);
//! \endcode
//!
//! <b>Returns</b>: r
template
<typename Allocator,
typename F, // F models ForwardIterator
typename T>
inline void uninitialized_fill_alloc(Allocator &a, F f, F l, const T &t)
{
F back = f;
BOOST_CONTAINER_TRY{
while (f != l) {
allocator_traits<Allocator>::construct(a, boost::movelib::iterator_to_raw_pointer(f), t);
++f;
}
}
BOOST_CONTAINER_CATCH(...){
for (; back != l; ++back){
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(back));
}
BOOST_CONTAINER_RETHROW;
}
BOOST_CONTAINER_CATCH_END
}
//////////////////////////////////////////////////////////////////////////////
//
// uninitialized_fill_alloc_n
//
//////////////////////////////////////////////////////////////////////////////
//! <b>Effects</b>:
//! \code
//! for (; n--; ++r, ++f)
//! allocator_traits::construct(a, &*r, v);
//! \endcode
//!
//! <b>Returns</b>: r
template
<typename Allocator,
typename T,
typename F> // F models ForwardIterator
inline F uninitialized_fill_alloc_n(Allocator &a, const T &v, std::size_t n, F r)
{
F back = r;
BOOST_CONTAINER_TRY{
while (n) {
--n;
allocator_traits<Allocator>::construct(a, boost::movelib::iterator_to_raw_pointer(r), v);
++r;
}
}
BOOST_CONTAINER_CATCH(...){
for (; back != r; ++back){
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(back));
}
BOOST_CONTAINER_RETHROW;
}
BOOST_CONTAINER_CATCH_END
return r;
}
//////////////////////////////////////////////////////////////////////////////
//
// copy
//
//////////////////////////////////////////////////////////////////////////////
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_assignable<I, F, F>::type
copy(I f, I l, F r)
{
while (f != l) {
*r = *f;
++f; ++r;
}
return r;
}
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_assignable<I, F, F>::type
copy(I f, I l, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove(f, l, r); }
//////////////////////////////////////////////////////////////////////////////
//
// copy_n
//
//////////////////////////////////////////////////////////////////////////////
template
<typename I, // I models InputIterator
typename U, // U models unsigned integral constant
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_assignable<I, F, F>::type
copy_n(I f, U n, F r)
{
while (n) {
--n;
*r = *f;
++f; ++r;
}
return r;
}
template
<typename I, // I models InputIterator
typename U, // U models unsigned integral constant
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_assignable<I, F, F>::type
copy_n(I f, U n, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove_n(f, n, r); }
//////////////////////////////////////////////////////////////////////////////
//
// copy_n_source
//
//////////////////////////////////////////////////////////////////////////////
template
<typename I, // I models InputIterator
typename U, // U models unsigned integral constant
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_assignable<I, F, I>::type
copy_n_source(I f, U n, F r)
{
while (n) {
--n;
boost::container::assign_in_place(r, f);
++f; ++r;
}
return f;
}
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_assignable<I, F, I>::type
copy_n_source(I f, std::size_t n, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove_n_source(f, n, r); }
//////////////////////////////////////////////////////////////////////////////
//
// copy_n_source_dest
//
//////////////////////////////////////////////////////////////////////////////
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_assignable<I, F, I>::type
copy_n_source_dest(I f, std::size_t n, F &r)
{
while (n) {
--n;
*r = *f;
++f; ++r;
}
return f;
}
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_assignable<I, F, I>::type
copy_n_source_dest(I f, std::size_t n, F &r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove_n_source_dest(f, n, r); }
//////////////////////////////////////////////////////////////////////////////
//
// move
//
//////////////////////////////////////////////////////////////////////////////
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_assignable<I, F, F>::type
move(I f, I l, F r)
{
while (f != l) {
*r = ::boost::move(*f);
++f; ++r;
}
return r;
}
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_assignable<I, F, F>::type
move(I f, I l, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove(f, l, r); }
//////////////////////////////////////////////////////////////////////////////
//
// move_n
//
//////////////////////////////////////////////////////////////////////////////
template
<typename I, // I models InputIterator
typename U, // U models unsigned integral constant
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_assignable<I, F, F>::type
move_n(I f, U n, F r)
{
while (n) {
--n;
*r = ::boost::move(*f);
++f; ++r;
}
return r;
}
template
<typename I, // I models InputIterator
typename U, // U models unsigned integral constant
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_assignable<I, F, F>::type
move_n(I f, U n, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove_n(f, n, r); }
//////////////////////////////////////////////////////////////////////////////
//
// move_backward
//
//////////////////////////////////////////////////////////////////////////////
template
<typename I, // I models BidirectionalIterator
typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_assignable<I, F, F>::type
move_backward(I f, I l, F r)
{
while (f != l) {
--l; --r;
*r = ::boost::move(*l);
}
return r;
}
template
<typename I, // I models InputIterator
typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_assignable<I, F, F>::type
move_backward(I f, I l, F r) BOOST_NOEXCEPT_OR_NOTHROW
{
typedef typename boost::container::iter_value<I>::type value_type;
const std::size_t n = boost::container::iterator_udistance(f, l);
if (BOOST_LIKELY(n != 0)){
r -= n;
std::memmove((boost::movelib::iterator_to_raw_pointer)(r), (boost::movelib::iterator_to_raw_pointer)(f), sizeof(value_type)*n);
}
return r;
}
//////////////////////////////////////////////////////////////////////////////
//
// move_n_source_dest
//
//////////////////////////////////////////////////////////////////////////////
template
<typename I // I models InputIterator
,typename U // U models unsigned integral constant
,typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_assignable<I, F, I>::type
move_n_source_dest(I f, U n, F &r)
{
while (n) {
--n;
*r = ::boost::move(*f);
++f; ++r;
}
return f;
}
template
<typename I // I models InputIterator
,typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_assignable<I, F, I>::type
move_n_source_dest(I f, std::size_t n, F &r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove_n_source_dest(f, n, r); }
//////////////////////////////////////////////////////////////////////////////
//
// move_n_source
//
//////////////////////////////////////////////////////////////////////////////
template
<typename I // I models InputIterator
,typename U // U models unsigned integral constant
,typename F> // F models ForwardIterator
inline typename dtl::disable_if_memtransfer_copy_assignable<I, F, I>::type
move_n_source(I f, U n, F r)
{
while (n) {
--n;
*r = ::boost::move(*f);
++f; ++r;
}
return f;
}
template
<typename I // I models InputIterator
,typename F> // F models ForwardIterator
inline typename dtl::enable_if_memtransfer_copy_assignable<I, F, I>::type
move_n_source(I f, std::size_t n, F r) BOOST_NOEXCEPT_OR_NOTHROW
{ return dtl::memmove_n_source(f, n, r); }
template<typename F> // F models ForwardIterator
inline F move_forward_overlapping(F f, F l, F r)
{
return (f != r) ? (move)(f, l, r) : l;
}
template<typename B> // B models BidirIterator
inline B move_backward_overlapping(B f, B l, B rl)
{
return (l != rl) ? (move_backward)(f, l, rl) : f;
}
//////////////////////////////////////////////////////////////////////////////
//
// destroy_alloc_n
//
//////////////////////////////////////////////////////////////////////////////
template
<typename Allocator
,typename I // I models InputIterator
,typename U> // U models unsigned integral constant
inline typename dtl::disable_if_trivially_destructible<I, void>::type
destroy_alloc_n(Allocator &a, I f, U n)
{
while(n){
--n;
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(f));
++f;
}
}
template
<typename Allocator
,typename I // I models InputIterator
,typename U> // U models unsigned integral constant
inline typename dtl::enable_if_trivially_destructible<I, void>::type
destroy_alloc_n(Allocator &, I, U)
{}
//////////////////////////////////////////////////////////////////////////////
//
// destroy_alloc
//
//////////////////////////////////////////////////////////////////////////////
template
<typename Allocator
,typename I> // I models InputIterator
inline typename dtl::disable_if_trivially_destructible<I, void>::type
destroy_alloc(Allocator &a, I f, I l)
{
while(f != l){
allocator_traits<Allocator>::destroy(a, boost::movelib::iterator_to_raw_pointer(f));
++f;
}
}
template
<typename Allocator
,typename I > // I models InputIterator
inline typename dtl::enable_if_trivially_destructible<I, void>::type
destroy_alloc(Allocator &, I, I)
{}
//////////////////////////////////////////////////////////////////////////////
//
// deep_swap_alloc_n
//
//////////////////////////////////////////////////////////////////////////////
template
<std::size_t MaxTmpBytes
,typename Allocator
,typename F // F models ForwardIterator
,typename G // G models ForwardIterator
>
inline typename dtl::disable_if_memtransfer_copy_assignable<F, G, void>::type
deep_swap_alloc_n( Allocator &a, F short_range_f, std::size_t n_i, G large_range_f, std::size_t n_j)
{
std::size_t n = 0;
for (; n != n_i ; ++short_range_f, ++large_range_f, ++n){
boost::adl_move_swap(*short_range_f, *large_range_f);
}
boost::container::uninitialized_move_alloc_n(a, large_range_f, std::size_t(n_j - n_i), short_range_f); // may throw
boost::container::destroy_alloc_n(a, large_range_f, std::size_t(n_j - n_i));
}
BOOST_CONTAINER_CONSTANT_VAR std::size_t DeepSwapAllocNMaxStorage = std::size_t(1) << std::size_t(11); //2K bytes
template
<std::size_t MaxTmpBytes
,typename Allocator
,typename F // F models ForwardIterator
,typename G // G models ForwardIterator
>
inline typename dtl::enable_if_c
< dtl::is_memtransfer_copy_assignable<F, G>::value && (MaxTmpBytes <= DeepSwapAllocNMaxStorage) && false
, void>::type
deep_swap_alloc_n( Allocator &a, F short_range_f, std::size_t n_i, G large_range_f, std::size_t n_j)
{
typedef typename allocator_traits<Allocator>::value_type value_type;
typedef typename dtl::aligned_storage
<MaxTmpBytes, dtl::alignment_of<value_type>::value>::type storage_type;
storage_type storage;
const std::size_t n_i_bytes = sizeof(value_type)*n_i;
void *const large_ptr = static_cast<void*>(boost::movelib::iterator_to_raw_pointer(large_range_f));
void *const short_ptr = static_cast<void*>(boost::movelib::iterator_to_raw_pointer(short_range_f));
void *const stora_ptr = static_cast<void*>(boost::movelib::iterator_to_raw_pointer(storage.data));
std::memcpy(stora_ptr, large_ptr, n_i_bytes);
std::memcpy(large_ptr, short_ptr, n_i_bytes);
std::memcpy(short_ptr, stora_ptr, n_i_bytes);
boost::container::iterator_uadvance(large_range_f, n_i);
boost::container::iterator_uadvance(short_range_f, n_i);
boost::container::uninitialized_move_alloc_n(a, large_range_f, std::size_t(n_j - n_i), short_range_f); // may throw
boost::container::destroy_alloc_n(a, large_range_f, std::size_t(n_j - n_i));
}
template
<std::size_t MaxTmpBytes
,typename Allocator
,typename F // F models ForwardIterator
,typename G // G models ForwardIterator
>
inline typename dtl::enable_if_c
< dtl::is_memtransfer_copy_assignable<F, G>::value && true//(MaxTmpBytes > DeepSwapAllocNMaxStorage)
, void>::type
deep_swap_alloc_n( Allocator &a, F short_range_f, std::size_t n_i, G large_range_f, std::size_t n_j)
{
typedef typename allocator_traits<Allocator>::value_type value_type;
typedef typename dtl::aligned_storage
<DeepSwapAllocNMaxStorage, dtl::alignment_of<value_type>::value>::type storage_type;
storage_type storage;
const std::size_t sizeof_storage = sizeof(storage);
std::size_t n_i_bytes = sizeof(value_type)*n_i;
char *large_ptr = static_cast<char*>(static_cast<void*>(boost::movelib::iterator_to_raw_pointer(large_range_f)));
char *short_ptr = static_cast<char*>(static_cast<void*>(boost::movelib::iterator_to_raw_pointer(short_range_f)));
char *stora_ptr = static_cast<char*>(static_cast<void*>(storage.data));
std::size_t szt_times = n_i_bytes/sizeof_storage;
const std::size_t szt_rem = n_i_bytes%sizeof_storage;
//Loop unrolling using Duff's device, as it seems it helps on some architectures
const std::size_t Unroll = 4;
std::size_t n = (szt_times + (Unroll-1))/Unroll;
const std::size_t branch_number = (szt_times == 0)*Unroll + (szt_times % Unroll);
switch(branch_number){
case 4:
break;
case 0: do{
std::memcpy(stora_ptr, large_ptr, sizeof_storage);
std::memcpy(large_ptr, short_ptr, sizeof_storage);
std::memcpy(short_ptr, stora_ptr, sizeof_storage);
large_ptr += sizeof_storage;
short_ptr += sizeof_storage;
BOOST_FALLTHROUGH;
case 3:
std::memcpy(stora_ptr, large_ptr, sizeof_storage);
std::memcpy(large_ptr, short_ptr, sizeof_storage);
std::memcpy(short_ptr, stora_ptr, sizeof_storage);
large_ptr += sizeof_storage;
short_ptr += sizeof_storage;
BOOST_FALLTHROUGH;
case 2:
std::memcpy(stora_ptr, large_ptr, sizeof_storage);
std::memcpy(large_ptr, short_ptr, sizeof_storage);
std::memcpy(short_ptr, stora_ptr, sizeof_storage);
large_ptr += sizeof_storage;
short_ptr += sizeof_storage;
BOOST_FALLTHROUGH;
case 1:
std::memcpy(stora_ptr, large_ptr, sizeof_storage);
std::memcpy(large_ptr, short_ptr, sizeof_storage);
std::memcpy(short_ptr, stora_ptr, sizeof_storage);
large_ptr += sizeof_storage;
short_ptr += sizeof_storage;
} while(--n);
}
std::memcpy(stora_ptr, large_ptr, szt_rem);
std::memcpy(large_ptr, short_ptr, szt_rem);
std::memcpy(short_ptr, stora_ptr, szt_rem);
boost::container::iterator_uadvance(large_range_f, n_i);
boost::container::iterator_uadvance(short_range_f, n_i);
boost::container::uninitialized_move_alloc_n(a, large_range_f, std::size_t(n_j - n_i), short_range_f); // may throw
boost::container::destroy_alloc_n(a, large_range_f, std::size_t(n_j - n_i));
}
//////////////////////////////////////////////////////////////////////////////
//
// copy_assign_range_alloc_n
//
//////////////////////////////////////////////////////////////////////////////
template
<typename Allocator
,typename I // F models InputIterator
,typename O // G models OutputIterator
>
void copy_assign_range_alloc_n( Allocator &a, I inp_start, std::size_t n_i, O out_start, std::size_t n_o )
{
if (n_o < n_i){
inp_start = boost::container::copy_n_source_dest(inp_start, n_o, out_start); // may throw
boost::container::uninitialized_copy_alloc_n(a, inp_start, std::size_t(n_i - n_o), out_start);// may throw
}
else{
out_start = boost::container::copy_n(inp_start, n_i, out_start); // may throw
boost::container::destroy_alloc_n(a, out_start, std::size_t(n_o - n_i));
}
}
//////////////////////////////////////////////////////////////////////////////
//
// move_assign_range_alloc_n
//
//////////////////////////////////////////////////////////////////////////////
template
<typename Allocator
,typename I // F models InputIterator
,typename O // G models OutputIterator
>
void move_assign_range_alloc_n( Allocator &a, I inp_start, std::size_t n_i, O out_start, std::size_t n_o )
{
if (n_o < n_i){
inp_start = boost::container::move_n_source_dest(inp_start, n_o, out_start); // may throw
boost::container::uninitialized_move_alloc_n(a, inp_start, std::size_t(n_i - n_o), out_start); // may throw
}
else{
out_start = boost::container::move_n(inp_start, n_i, out_start); // may throw
boost::container::destroy_alloc_n(a, out_start, std::size_t(n_o - n_i));
}
}
template<class Allocator>
struct array_destructor
{
typedef typename ::boost::container::allocator_traits<Allocator>::value_type value_type;
typedef typename dtl::if_c
<dtl::is_trivially_destructible<value_type>::value
,dtl::null_scoped_destructor_range<Allocator>
,dtl::scoped_destructor_range<Allocator>
>::type type;
};
template<class Allocator>
struct value_destructor
{
typedef typename ::boost::container::allocator_traits<Allocator>::value_type value_type;
typedef typename dtl::if_c
<dtl::is_trivially_destructible<value_type>::value
, dtl::null_scoped_destructor<Allocator>
, dtl::scoped_destructor<Allocator>
>::type type;
};
template
<typename Allocator
,typename F // F models ForwardIterator
,typename O // G models OutputIterator
,typename InsertionProxy
>
void uninitialized_move_and_insert_alloc
( Allocator &a
, F first
, F pos
, F last
, O d_first
, std::size_t n
, InsertionProxy insertion_proxy)
{
typedef typename array_destructor<Allocator>::type array_destructor_t;
//Anti-exception rollbacks
array_destructor_t new_values_destroyer(d_first, d_first, a);
//Initialize with [begin(), pos) old buffer
//the start of the new buffer
O d_last = ::boost::container::uninitialized_move_alloc(a, first, pos, d_first);
new_values_destroyer.set_end(d_last);
//Initialize new objects, starting from previous point
insertion_proxy.uninitialized_copy_n_and_update(a, d_last, n);
d_last += n;
new_values_destroyer.set_end(d_last);
//Initialize from the rest of the old buffer,
//starting from previous point
(void) ::boost::container::uninitialized_move_alloc(a, pos, last, d_last);
//All construction successful, disable rollbacks
new_values_destroyer.release();
}
template
<typename Allocator
,typename F // F models ForwardIterator
,typename InsertionProxy
>
typename dtl::enable_if_c<dtl::is_single_value_proxy<InsertionProxy>::value, void>::type
expand_backward_and_insert_nonempty_middle_alloc
( Allocator &a
, F const first
, F const pos
, std::size_t const
, InsertionProxy insertion_proxy)
{
BOOST_ASSERT(first != pos);
typedef typename value_destructor<Allocator>::type value_destructor_t;
F aux = first; --aux;
allocator_traits<Allocator>::construct(a, boost::movelib::iterator_to_raw_pointer(aux), boost::move(*first));
value_destructor_t on_exception(a, boost::movelib::iterator_to_raw_pointer(aux));
//Copy previous to last objects to the initialized end
aux = first; ++aux;
aux = boost::container::move(aux, pos, first);
//Insert new objects in the pos
insertion_proxy.copy_n_and_update(a, aux, 1u);
on_exception.release();
}
template
<typename Allocator
,typename F // F models ForwardIterator
,typename InsertionProxy
>
typename dtl::disable_if_c<dtl::is_single_value_proxy<InsertionProxy>::value, void>::type
expand_backward_and_insert_nonempty_middle_alloc
( Allocator &a
, F first
, F pos
, std::size_t const n
, InsertionProxy insertion_proxy)
{
BOOST_ASSERT(first != pos);
BOOST_ASSERT(n != 0);
typedef typename array_destructor<Allocator>::type array_destructor_t;
const std::size_t elems_before = iterator_udistance(first, pos);
if(elems_before >= n){
//New elements can be just copied.
//Move to uninitialized memory last objects
F const first_less_n = first - n;
F nxt = ::boost::container::uninitialized_move_alloc_n_source(a, first, n, first_less_n);
array_destructor_t on_exception(first_less_n, first, a);
//Copy previous to last objects to the initialized end
nxt = boost::container::move(nxt, pos, first);
//Insert new objects in the pos
insertion_proxy.copy_n_and_update(a, nxt, n);
on_exception.release();
}
else {
//The new elements don't fit in the [pos, end()) range.
//Copy old [pos, end()) elements to the uninitialized memory (a gap is created)
F aux = ::boost::container::uninitialized_move_alloc(a, first, pos, first - n);
array_destructor_t on_exception(first -n, aux, a);
//Copy to the beginning of the unallocated zone the last new elements (the gap is closed).
insertion_proxy.uninitialized_copy_n_and_update(a, aux, std::size_t(n - elems_before));
insertion_proxy.copy_n_and_update(a, first, elems_before);
on_exception.release();
}
}
template
<typename Allocator
,typename F // F models ForwardIterator
,typename InsertionProxy
>
typename dtl::enable_if_c<dtl::is_single_value_proxy<InsertionProxy>::value, void>::type
expand_forward_and_insert_nonempty_middle_alloc
( Allocator &a
, F pos
, F last
, std::size_t const
, InsertionProxy insertion_proxy)
{
BOOST_ASSERT(last != pos);
typedef typename value_destructor<Allocator>::type value_destructor_t;
F last_m_n = last; --last_m_n;
allocator_traits<Allocator>::construct(a, boost::movelib::iterator_to_raw_pointer(last), boost::move(*last_m_n));
value_destructor_t on_exception(a, boost::movelib::iterator_to_raw_pointer(last));
//Copy previous to last objects to the initialized end
boost::container::move_backward(pos, last_m_n, last);
//Insert new objects in the pos
insertion_proxy.copy_n_and_update(a, pos, 1);
on_exception.release();
}
template
<typename Allocator
,typename F // F models ForwardIterator
,typename InsertionProxy
>
typename dtl::disable_if_c<dtl::is_single_value_proxy<InsertionProxy>::value, void>::type
expand_forward_and_insert_nonempty_middle_alloc
( Allocator &a
, F pos
, F last
, std::size_t const n
, InsertionProxy insertion_proxy)
{
BOOST_ASSERT(last != pos);
BOOST_ASSERT(n != 0);
typedef typename array_destructor<Allocator>::type array_destructor_t;
const std::size_t elems_after = iterator_udistance(pos, last);
if(elems_after >= n){
//New elements can be just copied.
//Move to uninitialized memory last objects
F const last_m_n = last - n;
F const nxt = ::boost::container::uninitialized_move_alloc_n(a, last_m_n, n, last);
array_destructor_t on_exception(last, nxt, a);
//Copy previous to last objects to the initialized end
boost::container::move_backward(pos, last_m_n, last);
//Insert new objects in the pos
insertion_proxy.copy_n_and_update(a, pos, n);
on_exception.release();
}
else {
//The new elements don't fit in the [pos, end()) range.
//Copy old [pos, end()) elements to the uninitialized memory (a gap is created)
F new_last = ::boost::container::uninitialized_move_alloc(a, pos, last, pos + n);
array_destructor_t on_exception(pos + n, new_last, a);
//Copy first new elements in pos (gap is still there)
insertion_proxy.copy_n_and_update(a, pos, elems_after);
//Copy to the beginning of the unallocated zone the last new elements (the gap is closed).
insertion_proxy.uninitialized_copy_n_and_update(a, last, std::size_t(n - elems_after));
on_exception.release();
}
}
template
<typename Allocator
, typename F // F models ForwardIterator
, typename InsertionProxy
>
inline void expand_forward_and_insert_alloc
( Allocator& a
, F pos
, F last
, std::size_t const n
, InsertionProxy insertion_proxy)
{
if (last == pos) {
insertion_proxy.uninitialized_copy_n_and_update(a, last, n);
}
else{
const bool single_value = dtl::is_single_value_proxy<InsertionProxy>::value;
BOOST_IF_CONSTEXPR(!single_value){
if (BOOST_UNLIKELY(!n)) {
return;
}
}
expand_forward_and_insert_nonempty_middle_alloc(a, pos, last, n, insertion_proxy);
}
}
template <class B, class InsertionProxy, class Allocator>
void expand_backward_forward_and_insert_alloc_move_backward
( B const old_start
, std::size_t const old_size
, B const new_start
, B const pos
, std::size_t const n
, InsertionProxy insertion_proxy
, Allocator& a)
{
typedef std::size_t size_type;
typedef typename allocator_traits<Allocator>::value_type value_type;
BOOST_STATIC_CONSTEXPR bool trivial_dctr_after_move = has_trivial_destructor_after_move<value_type>::value;
BOOST_STATIC_CONSTEXPR bool trivial_dctr = dtl::is_trivially_destructible<value_type>::value;
typedef typename dtl::if_c
<trivial_dctr
, dtl::null_scoped_destructor_n<Allocator, B>
, dtl::scoped_destructor_n<Allocator, B>
>::type array_destructor_t;
//n can be zero to just expand capacity
B old_finish = make_iterator_uadvance(old_start, old_size);
//We can have 8 possibilities:
const size_type elemsbefore = static_cast<size_type>(iterator_udistance(old_start, pos));
const size_type raw_before = static_cast<size_type>(iterator_udistance(new_start, old_start));
const size_type before_plus_new = size_type(elemsbefore + n);
//Check if raw_before is big enough to hold the beginning of old data + new data
if (raw_before >= before_plus_new) {
//If anything goes wrong, this object will destroy
//all the old objects to fulfill previous vector state
array_destructor_t old_values_destroyer(old_start, a, old_size);
// _________________________________________________________
//| raw_mem | old_begin | old_end | //Old situation
//| __________________________________|___________|_________|
// _________________________________________________________
//| old_begin | new | raw_mem | old_begin | old_end | //First step
//|___________|__________|____________|___________|_________|
//Copy first old values before pos, after that the new objects
B const new_elem_pos = ::boost::container::uninitialized_move_alloc(a, old_start, pos, new_start);
array_destructor_t new_values_destroyer(new_start, a, elemsbefore);
insertion_proxy.uninitialized_copy_n_and_update(a, new_elem_pos, n);
new_values_destroyer.set_size(before_plus_new);
const size_type new_size = size_type(old_size + n);
//Check if raw_before is so big that even copying the old data + new data
//there is a gap between the new data and the old data
if (raw_before >= new_size) {
// _______________________________________________________
//| raw_mem | old_begin | old_end | //Old situation
//|_________________________________|___________|_________|
// _______________________________________________________
//| old_begin | new | raw_mem | old_begin | old_end | //First step
//|___________|________|____________|___________|_________|
// _______________________________________________________
//| old_begin | new | old_end | raw_mem | //New situation
//|___________|________|_________|________________________|
//
//Now initialize the rest of memory with the last old values
if (before_plus_new != new_size) { //Special case to avoid operations in back insertion
B new_start_end(make_iterator_uadvance(new_start, before_plus_new));
::boost::container::uninitialized_move_alloc(a, pos, old_finish, new_start_end);
}
//All new elements correctly constructed, avoid new element destruction
new_values_destroyer.release();
//Old values destroyed automatically with "old_values_destroyer"
//when "old_values_destroyer" goes out of scope unless the have trivial
//destructor after move.
if(trivial_dctr_after_move)
old_values_destroyer.release();
}
//raw_before is so big that divides old_end
else {
// _________________________________________________
//| raw | old_beg | old_end | //Old situation
//|_____________________________|_________|_________|
// _________________________________________________
//| old_begin | new | raw | old_beg | old_end | //First step
//|___________|__________|______|_________|_________|
// _________________________________________________
//| old_begin | new | old_end | raw_mem | //New situation
//|___________|__________|_________|________________|
//Now initialize the rest of memory with the last old values
//All new elements correctly constructed, avoid new element destruction
BOOST_IF_CONSTEXPR(!trivial_dctr) {
//Now initialize the rest of raw_before memory with the
//first of elements after new values
const size_type raw_gap = raw_before - before_plus_new;
B new_start_plus(make_iterator_uadvance(new_start, before_plus_new));
::boost::container::uninitialized_move_alloc_n(a, pos, raw_gap, new_start_plus);
new_values_destroyer.release();
old_values_destroyer.increment_size_backwards(raw_before);
//Now move remaining last objects in the old buffer begin
B remaining_pos(make_iterator_uadvance(pos, raw_gap));
remaining_pos = ::boost::container::move_forward_overlapping(remaining_pos, old_finish, old_start);
(void)remaining_pos;
//Once moved, avoid calling the destructors if trivial after move
if(!trivial_dctr_after_move) {
boost::container::destroy_alloc(a, remaining_pos, old_finish);
}
}
else { //If trivial destructor, we can uninitialized copy + copy in a single uninitialized copy
::boost::container::uninitialized_move_alloc_n
(a, pos, static_cast<size_type>(old_finish - pos), make_iterator_uadvance(new_start, before_plus_new));
}
old_values_destroyer.release();
}
}
else {
//If anything goes wrong, this object will destroy
//all the old objects to fulfill previous vector state
array_destructor_t old_values_destroyer(old_start, a, old_size);
//Check if we have to do the insertion in two phases
//since maybe raw_before is not big enough and
//the buffer was expanded both sides
// _________________________________________________
//| raw_mem | old_begin + old_end | raw_mem | //Old situation
//|_________|_____________________|_________________|
// _________________________________________________
//| old_begin + new + old_end | raw_mem | //New situation with do_after
//|___________________________________|_____________|
// _________________________________________________
//| old_begin + new + old_end | raw_mem | //New without do_after
//|____________________________|____________________|
//
const bool do_after = n > raw_before;
//Now we can have two situations: the raw_mem of the
//beginning divides the old_begin, or the new elements:
if (raw_before <= elemsbefore) {
//The raw memory divides the old_begin group:
//
//If we need two phase construction (do_after)
//new group is divided in new = new_beg + new_end groups
//In this phase only new_beg will be inserted
//
// _________________________________________________
//| raw_mem | old_begin | old_end | raw_mem | //Old situation
//|_________|___________|_________|_________________|
// _________________________________________________
//| old_begin | new_beg | old_end | raw_mem | //New situation with do_after(1),
//|___________|_________|_________|_________________| //not definitive, pending operations
// _________________________________________________
//| old_begin | new | old_end | raw_mem | //New situation without do_after,
//|___________|_____|_________|_____________________| //definitive.
//
//Copy the first part of old_begin to raw_mem
::boost::container::uninitialized_move_alloc_n(a, old_start, raw_before, new_start);
//The buffer is all constructed until old_end,
//so program trailing destruction and assign final size
//if !do_after, raw_before+n otherwise.
size_type new_1st_range;
old_values_destroyer.increment_size_backwards(raw_before);
new_1st_range = do_after ? raw_before : n;
//Now copy the second part of old_begin overwriting itself
B const old_next(make_iterator_uadvance(old_start, raw_before));
B const next = ::boost::container::move(old_next, pos, old_start);
//Now copy the new_beg elements
insertion_proxy.copy_n_and_update(a, next, new_1st_range);
//If there is no after work and the last old part needs to be moved to front, do it
if (!do_after) {
//Now displace old_end elements and destroy trailing
B const new_first(make_iterator_uadvance(next, new_1st_range));
B const p = ::boost::container::move_forward_overlapping(pos, old_finish, new_first);
(void)p;
if(!trivial_dctr_after_move)
boost::container::destroy_alloc(a, p, old_finish);
}
}
else {
//If we have to expand both sides,
//we will play if the first new values so
//calculate the upper bound of new values
//The raw memory divides the new elements
//
//If we need two phase construction (do_after)
//new group is divided in new = new_beg + new_end groups
//In this phase only new_beg will be inserted
//
// ____________________________________________________
//| raw_mem | old_begin | old_end | raw_mem | //Old situation
//|_______________|___________|_________|______________|
// ____________________________________________________
//| old_begin | new_beg | old_end | raw_mem | //New situation with do_after(),
//|___________|_______________|_________|______________| //not definitive, pending operations
// ____________________________________________________
//| old_begin | new | old_end | raw_mem | //New situation without do_after,
//|___________|_____|_________|________________________| //definitive
//
//First copy whole old_begin and part of new to raw_mem
B const new_pos = ::boost::container::uninitialized_move_alloc(a, old_start, pos, new_start);
array_destructor_t new_values_destroyer(new_start, a, elemsbefore);
const size_type mid_n = size_type(raw_before - elemsbefore);
insertion_proxy.uninitialized_copy_n_and_update(a, new_pos, mid_n);
new_values_destroyer.release();
//The buffer is all constructed until old_end
old_values_destroyer.increment_size_backwards(raw_before);
if (do_after) {
//Copy new_beg part
insertion_proxy.copy_n_and_update(a, old_start, elemsbefore);
}
else {
//Copy all new elements
const size_type rest_new = size_type(n - mid_n);
insertion_proxy.copy_n_and_update(a, old_start, rest_new);
B move_start(make_iterator_uadvance(old_start, rest_new));
//Displace old_end, but make sure data has to be moved
B const move_end = ::boost::container::move_forward_overlapping(pos, old_finish, move_start);
(void)move_end; //To avoid warnings of unused initialization for move_end in case
//trivial_dctr_after_move is true
//Destroy remaining moved elements from old_end except if they
//have trivial destructor after being moved
if(!trivial_dctr_after_move) {
boost::container::destroy_alloc(a, move_end, old_finish);
}
}
}
//This is only executed if two phase construction is needed
if (do_after) {
//The raw memory divides the new elements
// ______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem | //Old situation
//|______________|___________|____________|______________|
// _______________________________________________________
//| old_begin + new_beg | new_end |old_end | rawmem | //New situation with do_after(1)
//|__________________________|_________|________|________|
// ______________________________________________________
//| old_begin + new | old_end |raw | //New situation with do_after(2)
//|_______________________________________|_________|____|
const size_type n_after = size_type(n - raw_before);
const size_type elemsafter = size_type(old_size - elemsbefore);
//We can have two situations:
if (elemsafter >= n_after) {
//The raw_mem from end will divide displaced old_end
//
//Old situation:
// ______________________________________________________
//| raw_mem | old_begin | old_end | raw_mem |
//|______________|___________|____________|______________|
//
//New situation with do_after(1):
// _______________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem |
//|__________________________|_________|________|_________|
//
//First copy the part of old_end raw_mem
B finish_n = make_iterator_advance(old_finish, -std::ptrdiff_t(n_after));
::boost::container::uninitialized_move_alloc(a, finish_n, old_finish, old_finish);
old_values_destroyer.increment_size(n_after);
//Displace the rest of old_end to the new position
boost::container::move_backward_overlapping(pos, finish_n, old_finish);
//Now overwrite with new_end
//The new_end part is [first + (n - n_after), last)
insertion_proxy.copy_n_and_update(a, pos, n_after);
}
else {
//The raw_mem from end will divide new_end part
// _____________________________________________________________
//| raw_mem | old_begin | old_end | raw_mem | //Old situation
//|______________|___________|____________|_____________________|
// _____________________________________________________________
//| old_begin + new_beg | new_end |old_end | raw_mem | //New situation with do_after(2)
//|__________________________|_______________|________|_________|
//First initialize data in raw memory
const size_type mid_last_dist = size_type(n_after - elemsafter);
//Copy to the old_end part to the uninitialized zone leaving a gap.
B const mid_last(make_iterator_uadvance(old_finish, mid_last_dist));
::boost::container::uninitialized_move_alloc(a, pos, old_finish, mid_last);
array_destructor_t old_end_destroyer(mid_last, a, iterator_udistance(pos, old_finish));
//Copy the first part to the already constructed old_end zone
insertion_proxy.copy_n_and_update(a, pos, elemsafter);
//Copy the rest to the uninitialized zone filling the gap
insertion_proxy.uninitialized_copy_n_and_update(a, old_finish, mid_last_dist);
old_end_destroyer.release();
}
}
old_values_destroyer.release();
}
}
template
<typename Allocator
, typename B // B models BidirIterator
, typename InsertionProxy
>
inline void expand_backward_forward_and_insert_alloc_move_forward
( B const old_start
, std::size_t const old_size
, B const new_start
, B const pos
, std::size_t const n
, InsertionProxy insertion_proxy
, Allocator& a)
{
typedef std::size_t size_type;
typedef typename allocator_traits<Allocator>::value_type value_type;
BOOST_STATIC_CONSTEXPR bool trivial_dctr_after_move = has_trivial_destructor_after_move<value_type>::value;
BOOST_STATIC_CONSTEXPR bool trivial_dctr = dtl::is_trivially_destructible<value_type>::value;
typedef typename dtl::if_c
<trivial_dctr
, dtl::null_scoped_destructor_n<Allocator, B>
, dtl::scoped_destructor_n<Allocator, B>
>::type array_destructor_t;
//n can be zero to just expand capacity
B const old_finish = make_iterator_uadvance(old_start, old_size);
const size_type new_size = size_type(old_size + n);
B const new_finish = make_iterator_uadvance(new_start, new_size);
//We can have 8 possibilities:
const size_type elemsafter = static_cast<size_type>(iterator_udistance(pos, old_finish));
const size_type raw_after = static_cast<size_type>(iterator_udistance(old_finish, new_finish));
const size_type after_plus_new = size_type(elemsafter + n);
//Check if raw_before is big enough to hold the new data + the end of old data
if (raw_after >= after_plus_new) {
//If anything goes wrong, this object will destroy
//all the old objects to fulfill previous vector state
array_destructor_t old_values_destroyer(old_start, a, old_size);
//______________________ __________________________________
//| old_begin | old_end | raw_mem //Old situation
//|___________|_________|__________________________________
// _____________________ _________________________________
//| old_begin | old_end | raw_mem | new | old_end | //First step
//|___________|_________|__________|__________|___________|
//Copy first new objects, after that old values after pos
B new_elem_pos = new_finish - after_plus_new;
insertion_proxy.uninitialized_copy_n_and_update(a, new_elem_pos, n);
array_destructor_t new_values_destroyer(new_elem_pos, a, n);
::boost::container::uninitialized_move_alloc(a, pos, old_finish, new_elem_pos+n);
new_values_destroyer.set_size(after_plus_new);
//Check if raw_before is so big that even copying the old data + new data
//there is a gap between the new data and the old data
if (raw_after >= new_size) {
//______________________ __________________________________
//| old_begin | old_end | raw_mem //Old situation
//|___________|_________|__________________________________
// _____________________ _________________________________
//| old_begin | old_end | raw_mem | new | old_end | //First step
//|___________|_________|______________|________|_________|
// _____________________V_________________________________
//| raw_mem | old_begin | new | old_end | //New situation
//|________________________|___________|________|_________|
//
//Now initialize the rest of memory with the last old values
::boost::container::uninitialized_move_alloc(a, old_start, pos, new_start);
//All new elements correctly constructed, avoid new element destruction
new_values_destroyer.release();
//Old values destroyed automatically with "old_values_destroyer"
//when "old_values_destroyer" goes out of scope unless the have trivial
//destructor after move.
if(trivial_dctr_after_move)
old_values_destroyer.release();
}
//raw_before is so big that divides old_end
else {
//______________________ ____________________________
//| old_begin | old_end | raw_mem //Old situation
//|___________|_________|____________________________
// _____________________ ____________________________
//| old_begin | old_end | raw_mem | new | old_end | //First step
//|___________|_________|_________|________|_________|
// _________________________________________________
//| raw_mem | old_begin | new | old_end | //New situation
//|___________________|___________|________|_________|
//Now initialize the rest of raw_before memory with the
//last elements before new values
const size_type raw_gap = raw_after - after_plus_new;
B const pre_pos_raw = pos - raw_gap;
::boost::container::uninitialized_move_alloc_n(a, pre_pos_raw, raw_gap, old_finish);
new_values_destroyer.release();
old_values_destroyer.increment_size(raw_after);
//Now move remaining last objects in the old buffer begin
BOOST_ASSERT(old_start != old_finish);
boost::container::move_backward_overlapping(old_start, pre_pos_raw, old_finish);
old_values_destroyer.release();
if (!trivial_dctr_after_move) {
boost::container::destroy_alloc(a, old_start, new_start);
}
}
}
else{
//If anything goes wrong, this object will destroy
//all the old objects to fulfill previous vector state
array_destructor_t old_values_destroyer(old_start, a, old_size);
//Now we can have two situations: the raw_mem of the
//end divides the new elements or the old_end
if (raw_after > elemsafter) {
//The raw memory divides the new elements
//__________________________________
//| old_begin | old_end | raw | //Old situation
//|___________|_________|___________|
// _____ ___________________________
//| raw | old_begin | new | old_end | //New situation
//|_____|___________|_____|_________|
//First copy whole old_end and part of new to raw_mem
B p = new_finish - elemsafter;
::boost::container::uninitialized_move_alloc(a, pos, old_finish, p);
array_destructor_t new_values_destroyer(p, a, elemsafter);
//Copy all new elements
const size_type mid_n = size_type(raw_after - elemsafter);
const size_type rest_new = size_type(n - mid_n);
B new_rng_start = old_finish - rest_new;
insertion_proxy.copy_n_and_update(a, new_rng_start, rest_new);
insertion_proxy.uninitialized_copy_n_and_update(a, old_finish, mid_n);
new_values_destroyer.release();
old_values_destroyer.increment_size_backwards(raw_after);
//Displace old_end, but make sure data has to be moved
p = ::boost::container::move_backward_overlapping(old_start, pos, new_rng_start);
//Destroy remaining moved elements from old_begin except if they
//have trivial destructor after being moved
old_values_destroyer.release();
if (!trivial_dctr_after_move) {
boost::container::destroy_alloc(a, old_start, p);
}
}
else {
//The raw memory divides the old_end group:
//________________________________________
//| old_begin | old_end | raw | //Old situation
//|___________|_______________|___________|
// _____ __________________________________
//| raw | old_begin | new | old_end | //New situation
//|_____|___________|_____|_______________|
//
//Copy the last part of old_end to raw_mem
const B old_end_pivot = old_finish - raw_after;
::boost::container::uninitialized_move_alloc_n(a, old_end_pivot, raw_after, old_finish);
//The buffer is all constructed
old_values_destroyer.increment_size_backwards(raw_after);
//Now copy the first part of old_end overwriting itself
B const new_end_pos = ::boost::container::move_backward_overlapping(pos, old_end_pivot, old_finish);
B const new_beg_pos = new_end_pos - n;
//Now copy the new_beg elements
insertion_proxy.copy_n_and_update(a, new_beg_pos, n);
B const p = ::boost::container::move_backward_overlapping(old_start, pos, new_beg_pos);
old_values_destroyer.release();
if (!trivial_dctr_after_move) {
(void)p;
boost::container::destroy_alloc(a, old_start, p);
}
}
}
}
template <class R, class InsertionProxy, class Allocator>
void expand_backward_forward_and_insert_alloc
( R const old_start
, std::size_t const old_size
, R const new_start
, R const pos
, std::size_t const n
, InsertionProxy insertion_proxy
, Allocator& a)
{
if(new_start < old_start){
expand_backward_forward_and_insert_alloc_move_backward(old_start, old_size, new_start, pos, n, insertion_proxy, a);
}
else{
expand_backward_forward_and_insert_alloc_move_forward(old_start, old_size, new_start, pos, n, insertion_proxy, a);
}
}
} //namespace container {
} //namespace boost {
//#pragma GCC diagnostic ignored "-Wclass-memaccess"
#if defined(BOOST_GCC) && (BOOST_GCC >= 40600)
#pragma GCC diagnostic pop
#endif
#endif //#ifndef BOOST_CONTAINER_DETAIL_COPY_MOVE_ALGO_HPP