libs/utility/test/base_from_member_test.cpp
// Boost test program for base-from-member class templates -----------------//
// Copyright 2001, 2003 Daryle Walker. Use, modification, and distribution are
// subject to the Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or a copy at <http://www.boost.org/LICENSE_1_0.txt>.)
// See <http://www.boost.org/libs/utility/> for the library's home page.
// Revision History
// 14 Jun 2003 Adjusted code for Boost.Test changes (Daryle Walker)
// 29 Aug 2001 Initial Version (Daryle Walker)
#include <boost/core/lightweight_test.hpp>
#include <boost/config.hpp> // for BOOST_NO_MEMBER_TEMPLATES
#include <boost/noncopyable.hpp> // for boost::noncopyable
#include <boost/utility/base_from_member.hpp> // for boost::base_from_member
#include <functional> // for std::less
#include <iostream> // for std::cout (std::ostream, std::endl indirectly)
#include <set> // for std::set
#include <typeinfo> // for std::type_info
#include <utility> // for std::pair, std::make_pair
#include <vector> // for std::vector
// Control if extra information is printed
#ifndef CONTROL_EXTRA_PRINTING
#define CONTROL_EXTRA_PRINTING 1
#endif
// A (sub)object can be identified by its memory location and its type.
// Both are needed since an object can start at the same place as its
// first base class subobject and/or contained subobject.
typedef std::pair< void *, std::type_info const * > object_id;
// Object IDs need to be printed
std::ostream & operator <<( std::ostream &os, object_id const &oi );
// A way to generate an object ID
template < typename T >
object_id identify( T &obj );
// A custom comparison type is needed
struct object_id_compare
{
bool operator ()( object_id const &a, object_id const &b ) const;
}; // object_id_compare
// A singleton of this type coordinates the acknowledgements
// of objects being created and used.
class object_registrar
: private boost::noncopyable
{
public:
#ifndef BOOST_NO_MEMBER_TEMPLATES
template < typename T >
void register_object( T &obj )
{ this->register_object_imp( identify(obj) ); }
template < typename T, typename U >
void register_use( T &owner, U &owned )
{ this->register_use_imp( identify(owner), identify(owned) ); }
template < typename T, typename U >
void unregister_use( T &owner, U &owned )
{ this->unregister_use_imp( identify(owner), identify(owned) ); }
template < typename T >
void unregister_object( T &obj )
{ this->unregister_object_imp( identify(obj) ); }
#endif
void register_object_imp( object_id obj );
void register_use_imp( object_id owner, object_id owned );
void unregister_use_imp( object_id owner, object_id owned );
void unregister_object_imp( object_id obj );
typedef std::set<object_id, object_id_compare> set_type;
typedef std::vector<object_id> error_record_type;
typedef std::vector< std::pair<object_id, object_id> > error_pair_type;
set_type db_;
error_pair_type defrauders_in_, defrauders_out_;
error_record_type overeager_, overkilled_;
}; // object_registrar
// A sample type to be used by containing types
class base_or_member
{
public:
explicit base_or_member( int x = 1, double y = -0.25 );
~base_or_member();
}; // base_or_member
// A sample type that uses base_or_member, used
// as a base for the main demonstration classes
class base_class
{
public:
explicit base_class( base_or_member &x, base_or_member *y = 0,
base_or_member *z = 0 );
~base_class();
private:
base_or_member *x_, *y_, *z_;
}; // base_class
// This bad class demonstrates the direct method of a base class needing
// to be initialized by a member. This is improper since the member
// isn't initialized until after the base class.
class bad_class
: public base_class
{
public:
bad_class();
~bad_class();
private:
base_or_member x_;
}; // bad_class
// The first good class demonstrates the correct way to initialize a
// base class with a member. The member is changed to another base
// class, one that is initialized before the base that needs it.
class good_class_1
: private boost::base_from_member<base_or_member>
, public base_class
{
typedef boost::base_from_member<base_or_member> pbase_type;
typedef base_class base_type;
public:
good_class_1();
~good_class_1();
}; // good_class_1
// The second good class also demonstrates the correct way to initialize
// base classes with other subobjects. This class uses the other helpers
// in the library, and shows the technique of using two base subobjects
// of the "same" type.
class good_class_2
: private boost::base_from_member<base_or_member, 0>
, private boost::base_from_member<base_or_member, 1>
, private boost::base_from_member<base_or_member, 2>
, public base_class
{
typedef boost::base_from_member<base_or_member, 0> pbase_type0;
typedef boost::base_from_member<base_or_member, 1> pbase_type1;
typedef boost::base_from_member<base_or_member, 2> pbase_type2;
typedef base_class base_type;
public:
good_class_2();
~good_class_2();
}; // good_class_2
// Declare/define the single object registrar
object_registrar obj_reg;
// Main functionality
int
main()
{
BOOST_TEST( obj_reg.db_.empty() );
BOOST_TEST( obj_reg.defrauders_in_.empty() );
BOOST_TEST( obj_reg.defrauders_out_.empty() );
BOOST_TEST( obj_reg.overeager_.empty() );
BOOST_TEST( obj_reg.overkilled_.empty() );
// Make a separate block to examine pre- and post-effects
{
using std::cout;
using std::endl;
bad_class bc;
BOOST_TEST( obj_reg.db_.size() == 3 );
BOOST_TEST( obj_reg.defrauders_in_.size() == 1 );
good_class_1 gc1;
BOOST_TEST( obj_reg.db_.size() == 6 );
BOOST_TEST( obj_reg.defrauders_in_.size() == 1 );
good_class_2 gc2;
BOOST_TEST( obj_reg.db_.size() == 11 );
BOOST_TEST( obj_reg.defrauders_in_.size() == 1 );
BOOST_TEST( obj_reg.defrauders_out_.empty() );
BOOST_TEST( obj_reg.overeager_.empty() );
BOOST_TEST( obj_reg.overkilled_.empty() );
// Getting the addresses of the objects ensure
// that they're used, and not optimized away.
cout << "Object 'bc' is at " << &bc << '.' << endl;
cout << "Object 'gc1' is at " << &gc1 << '.' << endl;
cout << "Object 'gc2' is at " << &gc2 << '.' << endl;
}
BOOST_TEST( obj_reg.db_.empty() );
BOOST_TEST( obj_reg.defrauders_in_.size() == 1 );
BOOST_TEST( obj_reg.defrauders_out_.size() == 1 );
BOOST_TEST( obj_reg.overeager_.empty() );
BOOST_TEST( obj_reg.overkilled_.empty() );
return boost::report_errors();
}
// Print an object's ID
std::ostream &
operator <<
(
std::ostream & os,
object_id const & oi
)
{
// I had an std::ostringstream to help, but I did not need it since
// the program never screws around with formatting. Worse, using
// std::ostringstream is an issue with some compilers.
return os << '[' << ( oi.second ? oi.second->name() : "NOTHING" )
<< " at " << oi.first << ']';
}
// Get an object ID given an object
template < typename T >
inline
object_id
identify
(
T & obj
)
{
return std::make_pair( static_cast<void *>(&obj), &(typeid( obj )) );
}
// Compare two object IDs
bool
object_id_compare::operator ()
(
object_id const & a,
object_id const & b
) const
{
std::less<void *> vp_cmp;
if ( vp_cmp(a.first, b.first) )
{
return true;
}
else if ( vp_cmp(b.first, a.first) )
{
return false;
}
else
{
// object pointers are equal, compare the types
if ( a.second == b.second )
{
return false;
}
else if ( !a.second )
{
return true; // NULL preceeds anything else
}
else if ( !b.second )
{
return false; // NULL preceeds anything else
}
else
{
return a.second->before( *b.second ) != 0;
}
}
}
// Let an object register its existence
void
object_registrar::register_object_imp
(
object_id obj
)
{
if ( db_.count(obj) <= 0 )
{
db_.insert( obj );
#if CONTROL_EXTRA_PRINTING
std::cout << "Registered " << obj << '.' << std::endl;
#endif
}
else
{
overeager_.push_back( obj );
#if CONTROL_EXTRA_PRINTING
std::cout << "Attempted to register a non-existant " << obj
<< '.' << std::endl;
#endif
}
}
// Let an object register its use of another object
void
object_registrar::register_use_imp
(
object_id owner,
object_id owned
)
{
if ( db_.count(owned) > 0 )
{
// We don't care to record usage registrations
}
else
{
defrauders_in_.push_back( std::make_pair(owner, owned) );
#if CONTROL_EXTRA_PRINTING
std::cout << "Attempted to own a non-existant " << owned
<< " by " << owner << '.' << std::endl;
#endif
}
}
// Let an object un-register its use of another object
void
object_registrar::unregister_use_imp
(
object_id owner,
object_id owned
)
{
if ( db_.count(owned) > 0 )
{
// We don't care to record usage un-registrations
}
else
{
defrauders_out_.push_back( std::make_pair(owner, owned) );
#if CONTROL_EXTRA_PRINTING
std::cout << "Attempted to disown a non-existant " << owned
<< " by " << owner << '.' << std::endl;
#endif
}
}
// Let an object un-register its existence
void
object_registrar::unregister_object_imp
(
object_id obj
)
{
set_type::iterator const i = db_.find( obj );
if ( i != db_.end() )
{
db_.erase( i );
#if CONTROL_EXTRA_PRINTING
std::cout << "Unregistered " << obj << '.' << std::endl;
#endif
}
else
{
overkilled_.push_back( obj );
#if CONTROL_EXTRA_PRINTING
std::cout << "Attempted to unregister a non-existant " << obj
<< '.' << std::endl;
#endif
}
}
// Macros to abstract the registration of objects
#ifndef BOOST_NO_MEMBER_TEMPLATES
#define PRIVATE_REGISTER_BIRTH(o) obj_reg.register_object( (o) )
#define PRIVATE_REGISTER_DEATH(o) obj_reg.unregister_object( (o) )
#define PRIVATE_REGISTER_USE(o, w) obj_reg.register_use( (o), (w) )
#define PRIVATE_UNREGISTER_USE(o, w) obj_reg.unregister_use( (o), (w) )
#else
#define PRIVATE_REGISTER_BIRTH(o) obj_reg.register_object_imp( \
identify((o)) )
#define PRIVATE_REGISTER_DEATH(o) obj_reg.unregister_object_imp( \
identify((o)) )
#define PRIVATE_REGISTER_USE(o, w) obj_reg.register_use_imp( identify((o)), \
identify((w)) )
#define PRIVATE_UNREGISTER_USE(o, w) obj_reg.unregister_use_imp( \
identify((o)), identify((w)) )
#endif
// Create a base_or_member, with arguments to simulate member initializations
base_or_member::base_or_member
(
int x, // = 1
double y // = -0.25
)
{
PRIVATE_REGISTER_BIRTH( *this );
#if CONTROL_EXTRA_PRINTING
std::cout << "\tMy x-factor is " << x << " and my y-factor is " << y
<< '.' << std::endl;
#endif
}
// Destroy a base_or_member
inline
base_or_member::~base_or_member
(
)
{
PRIVATE_REGISTER_DEATH( *this );
}
// Create a base_class, registering any objects used
base_class::base_class
(
base_or_member & x,
base_or_member * y, // = 0
base_or_member * z // = 0
)
: x_( &x ), y_( y ), z_( z )
{
PRIVATE_REGISTER_BIRTH( *this );
#if CONTROL_EXTRA_PRINTING
std::cout << "\tMy x-factor is " << x_;
#endif
PRIVATE_REGISTER_USE( *this, *x_ );
if ( y_ )
{
#if CONTROL_EXTRA_PRINTING
std::cout << ", my y-factor is " << y_;
#endif
PRIVATE_REGISTER_USE( *this, *y_ );
}
if ( z_ )
{
#if CONTROL_EXTRA_PRINTING
std::cout << ", my z-factor is " << z_;
#endif
PRIVATE_REGISTER_USE( *this, *z_ );
}
#if CONTROL_EXTRA_PRINTING
std::cout << '.' << std::endl;
#endif
}
// Destroy a base_class, unregistering the objects it uses
base_class::~base_class
(
)
{
PRIVATE_REGISTER_DEATH( *this );
#if CONTROL_EXTRA_PRINTING
std::cout << "\tMy x-factor was " << x_;
#endif
PRIVATE_UNREGISTER_USE( *this, *x_ );
if ( y_ )
{
#if CONTROL_EXTRA_PRINTING
std::cout << ", my y-factor was " << y_;
#endif
PRIVATE_UNREGISTER_USE( *this, *y_ );
}
if ( z_ )
{
#if CONTROL_EXTRA_PRINTING
std::cout << ", my z-factor was " << z_;
#endif
PRIVATE_UNREGISTER_USE( *this, *z_ );
}
#if CONTROL_EXTRA_PRINTING
std::cout << '.' << std::endl;
#endif
}
// Create a bad_class, noting the improper construction order
bad_class::bad_class
(
)
: x_( -7, 16.75 ), base_class( x_ ) // this order doesn't matter
{
PRIVATE_REGISTER_BIRTH( *this );
#if CONTROL_EXTRA_PRINTING
std::cout << "\tMy factor is at " << &x_
<< " and my base is at " << static_cast<base_class *>(this) << '.'
<< std::endl;
#endif
}
// Destroy a bad_class, noting the improper destruction order
bad_class::~bad_class
(
)
{
PRIVATE_REGISTER_DEATH( *this );
#if CONTROL_EXTRA_PRINTING
std::cout << "\tMy factor was at " << &x_
<< " and my base was at " << static_cast<base_class *>(this)
<< '.' << std::endl;
#endif
}
// Create a good_class_1, noting the proper construction order
good_class_1::good_class_1
(
)
: pbase_type( 8 ), base_type( member )
{
PRIVATE_REGISTER_BIRTH( *this );
#if CONTROL_EXTRA_PRINTING
std::cout << "\tMy factor is at " << &member
<< " and my base is at " << static_cast<base_class *>(this) << '.'
<< std::endl;
#endif
}
// Destroy a good_class_1, noting the proper destruction order
good_class_1::~good_class_1
(
)
{
PRIVATE_REGISTER_DEATH( *this );
#if CONTROL_EXTRA_PRINTING
std::cout << "\tMy factor was at " << &member
<< " and my base was at " << static_cast<base_class *>(this)
<< '.' << std::endl;
#endif
}
// Create a good_class_2, noting the proper construction order
good_class_2::good_class_2
(
)
: pbase_type0(), pbase_type1(-16, 0.125), pbase_type2(2, -3)
, base_type( pbase_type1::member, &this->pbase_type0::member,
&this->pbase_type2::member )
{
PRIVATE_REGISTER_BIRTH( *this );
#if CONTROL_EXTRA_PRINTING
std::cout << "\tMy factors are at " << &this->pbase_type0::member
<< ", " << &this->pbase_type1::member << ", "
<< &this->pbase_type2::member << ", and my base is at "
<< static_cast<base_class *>(this) << '.' << std::endl;
#endif
}
// Destroy a good_class_2, noting the proper destruction order
good_class_2::~good_class_2
(
)
{
PRIVATE_REGISTER_DEATH( *this );
#if CONTROL_EXTRA_PRINTING
std::cout << "\tMy factors were at " << &this->pbase_type0::member
<< ", " << &this->pbase_type1::member << ", "
<< &this->pbase_type2::member << ", and my base was at "
<< static_cast<base_class *>(this) << '.' << std::endl;
#endif
}