libs/unordered/benchmark/string_stats.cpp
// Copyright 2021 Peter Dimov.
// Copyright 2023-2024 Joaquin M Lopez Munoz.
// Distributed under the Boost Software License, Version 1.0.
// https://www.boost.org/LICENSE_1_0.txt
#define _SILENCE_CXX17_OLD_ALLOCATOR_MEMBERS_DEPRECATION_WARNING
#define _SILENCE_CXX20_CISO646_REMOVED_WARNING
#define BOOST_UNORDERED_ENABLE_STATS
#include <boost/unordered/unordered_flat_map.hpp>
#include <boost/core/detail/splitmix64.hpp>
#include <boost/config.hpp>
#include <unordered_map>
#include <vector>
#include <memory>
#include <cstdint>
#include <iostream>
#include <iomanip>
#include <chrono>
#include <type_traits>
using namespace std::chrono_literals;
static void print_time( std::chrono::steady_clock::time_point & t1, char const* label, std::uint32_t s, std::size_t size )
{
auto t2 = std::chrono::steady_clock::now();
std::cout << label << ": " << ( t2 - t1 ) / 1ms << " ms (s=" << s << ", size=" << size << ")\n";
t1 = t2;
}
constexpr unsigned N = 50'000;
constexpr int K = 10;
static std::vector<std::string> indices1, indices2;
static std::string make_index( unsigned x )
{
char buffer[ 64 ];
std::snprintf( buffer, sizeof(buffer), "pfx_%u_sfx", x );
return buffer;
}
static std::string make_random_index( unsigned x )
{
char buffer[ 64 ];
std::snprintf( buffer, sizeof(buffer), "pfx_%0*d_%u_sfx", x % 8 + 1, 0, x );
return buffer;
}
static void init_indices()
{
indices1.reserve( N*2+1 );
indices1.push_back( make_index( 0 ) );
for( unsigned i = 1; i <= N*2; ++i )
{
indices1.push_back( make_index( i ) );
}
indices2.reserve( N*2+1 );
indices2.push_back( make_index( 0 ) );
{
boost::detail::splitmix64 rng;
for( unsigned i = 1; i <= N*2; ++i )
{
indices2.push_back( make_random_index( static_cast<std::uint32_t>( rng() ) ) );
}
}
}
template<class Map> BOOST_NOINLINE void test_insert( Map& map, std::chrono::steady_clock::time_point & t1 )
{
for( unsigned i = 1; i <= N; ++i )
{
map.insert( { indices1[ i ], i } );
}
print_time( t1, "Consecutive insert", 0, map.size() );
for( unsigned i = 1; i <= N; ++i )
{
map.insert( { indices2[ i ], i } );
}
print_time( t1, "Random insert", 0, map.size() );
std::cout << std::endl;
}
template<class Map> BOOST_NOINLINE void test_lookup( Map& map, std::chrono::steady_clock::time_point & t1 )
{
std::uint32_t s;
s = 0;
for( int j = 0; j < K; ++j )
{
for( unsigned i = 1; i <= N * 2; ++i )
{
auto it = map.find( indices1[ i ] );
if( it != map.end() ) s += it->second;
}
}
print_time( t1, "Consecutive lookup", s, map.size() );
s = 0;
for( int j = 0; j < K; ++j )
{
for( unsigned i = 1; i <= N * 2; ++i )
{
auto it = map.find( indices2[ i ] );
if( it != map.end() ) s += it->second;
}
}
print_time( t1, "Random lookup", s, map.size() );
std::cout << std::endl;
}
template<class Map> BOOST_NOINLINE void test_iteration( Map& map, std::chrono::steady_clock::time_point & t1 )
{
auto it = map.begin();
while( it != map.end() )
{
if( it->second & 1 )
{
if constexpr( std::is_void_v< decltype( map.erase( it ) ) > )
{
map.erase( it++ );
}
else
{
it = map.erase( it );
}
}
else
{
++it;
}
}
print_time( t1, "Iterate and erase odd elements", 0, map.size() );
std::cout << std::endl;
}
template<class Map> BOOST_NOINLINE void test_erase( Map& map, std::chrono::steady_clock::time_point & t1 )
{
for( unsigned i = 1; i <= N; ++i )
{
map.erase( indices1[ i ] );
}
print_time( t1, "Consecutive erase", 0, map.size() );
for( unsigned i = 1; i <= N; ++i )
{
map.erase( indices2[ i ] );
}
print_time( t1, "Random erase", 0, map.size() );
std::cout << std::endl;
}
//
// All Unordered container use the same struct
using stats = boost::unordered_flat_map<int, int>::stats;
struct record
{
std::string label_;
long long time_;
stats stats_;
};
static std::vector<record> records;
template<template<class...> class Map> BOOST_NOINLINE void test( char const* label )
{
std::cout << label << ":\n\n";
Map<std::string, std::uint32_t> map;
auto t0 = std::chrono::steady_clock::now();
auto t1 = t0;
test_insert( map, t1 );
record rec = { label, 0 };
test_lookup( map, t1 );
test_iteration( map, t1 );
test_lookup( map, t1 );
test_erase( map, t1 );
auto tN = std::chrono::steady_clock::now();
std::cout << "Total: " << ( tN - t0 ) / 1ms << " ms\n\n";
rec.time_ = ( tN - t0 ) / 1ms;
rec.stats_ = map.get_stats();
records.push_back( rec );
}
//
template<class K, class V> using boost_unordered_flat_map =
boost::unordered_flat_map<K, V, boost::hash<K>, std::equal_to<K>>;
// fnv1a_hash
template<int Bits> struct fnv1a_hash_impl;
template<> struct fnv1a_hash_impl<32>
{
std::size_t operator()( std::string const& s ) const
{
std::size_t h = 0x811C9DC5u;
char const * first = s.data();
char const * last = first + s.size();
for( ; first != last; ++first )
{
h ^= static_cast<unsigned char>( *first );
h *= 0x01000193ul;
}
return h;
}
};
template<> struct fnv1a_hash_impl<64>
{
std::size_t operator()( std::string const& s ) const
{
std::size_t h = 0xCBF29CE484222325ull;
char const * first = s.data();
char const * last = first + s.size();
for( ; first != last; ++first )
{
h ^= static_cast<unsigned char>( *first );
h *= 0x00000100000001B3ull;
}
return h;
}
};
struct fnv1a_hash: fnv1a_hash_impl< std::numeric_limits<std::size_t>::digits >
{
using is_avalanching = std::true_type;
};
template<class K, class V> using boost_unordered_flat_map_fnv1a =
boost::unordered_flat_map<K, V, fnv1a_hash, std::equal_to<K>>;
// slightly bad hash
struct slightly_bad_hash
{
using is_avalanching = std::true_type;
std::size_t operator()( std::string const& s ) const
{
std::size_t h = s.size();
for( auto ch: s )
{
h *= 0x811C9DC4u; // multiplicative factor is even!
h += static_cast<std::size_t>( ch );
}
return h;
}
};
template<class K, class V> using boost_unordered_flat_map_slightly_bad_hash =
boost::unordered_flat_map<K, V, slightly_bad_hash, std::equal_to<K>>;
// bad hash
struct bad_hash
{
using is_avalanching = std::true_type;
std::size_t operator()( std::string const& s ) const
{
std::size_t h = s.size();
for( auto ch: s )
{
h *= 31;
h += static_cast<std::size_t>( ch );
}
return h;
}
};
template<class K, class V> using boost_unordered_flat_map_bad_hash =
boost::unordered_flat_map<K, V, bad_hash, std::equal_to<K>>;
//
int main()
{
init_indices();
test<boost_unordered_flat_map>( "boost::unordered_flat_map" );
test<boost_unordered_flat_map_fnv1a>( "boost::unordered_flat_map, FNV-1a" );
test<boost_unordered_flat_map_slightly_bad_hash>( "boost::unordered_flat_map, slightly_bad_hash" );
test<boost_unordered_flat_map_bad_hash>( "boost::unordered_flat_map, bad_hash" );
std::cout << "---\n\n";
for( auto const& x: records )
{
std::cout << std::setw( 46 ) << ( x.label_ + ": " ) << std::setw( 5 ) << x.time_ << " ms\n"
<< std::setw( 46 ) << "insertion: "
<< "probe length " << x.stats_.insertion.probe_length.average << "\n"
<< std::setw( 46 ) << "successful lookup: "
<< "probe length " << x.stats_.successful_lookup.probe_length.average
<< ", num comparisons " << x.stats_.successful_lookup.num_comparisons.average << "\n"
<< std::setw( 46 ) << "unsuccessful lookup: "
<< "probe length " << x.stats_.unsuccessful_lookup.probe_length.average
<< ", num comparisons " << x.stats_.unsuccessful_lookup.num_comparisons.average << "\n\n";
}
}