libs/multiprecision/test/constexpr_test_cpp_int_5.cpp
// (C) Copyright John Maddock 2019.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// Contains Quickbook markup, using in Boost.Multiprecision.qbk section on Literals and constexpr, penultimate section on factorials.
#include "constexpr_arithmetric_test.hpp"
#include "boost/multiprecision/cpp_int.hpp"
#include "boost/multiprecision/integer.hpp"
#include "test.hpp"
template <class F, class V>
decltype(std::declval<F>()(std::declval<V>())) non_constexpr_invoke(F f, V v)
{
return f(v);
}
//[factorial_decl
template <class T>
constexpr T factorial(const T& a)
{
return a ? a * factorial(a - 1) : 1;
}
//]
template <class T, class U>
constexpr T big_mul(const U& a, const U& b)
{
using boost::multiprecision::multiply;
T result = T();
multiply(result, a, b);
return result;
}
template <class T, class U>
constexpr T big_add(const U& a, const U& b)
{
using boost::multiprecision::add;
T result = T();
add(result, a, b);
return result;
}
template <class T, class U>
constexpr T big_sub(const U& a, const U& b)
{
using boost::multiprecision::subtract;
T result = T();
subtract(result, a, b);
return result;
}
template <class U>
constexpr U div_qr_d(const U& a, const U& b)
{
using boost::multiprecision::divide_qr;
U result = U();
U r = U();
divide_qr(a, b, result, r);
return result;
}
template <class U>
constexpr U div_qr_r(const U& a, const U& b)
{
using boost::multiprecision::divide_qr;
U result = U();
U r = U();
divide_qr(a, b, result, r);
return r;
}
template <class T>
constexpr T do_bit_set(T val, unsigned pos)
{
using boost::multiprecision::bit_set;
bit_set(val, pos);
return val;
}
template <class T>
constexpr T do_bit_unset(T val, unsigned pos)
{
using boost::multiprecision::bit_unset;
bit_unset(val, pos);
return val;
}
template <class T>
constexpr T do_bit_flip(T val, unsigned pos)
{
using boost::multiprecision::bit_flip;
bit_flip(val, pos);
return val;
}
template <class T>
constexpr T test_swap(T a, T b)
{
swap(a, b);
a.swap(b);
return a;
}
int main()
{
using namespace boost::multiprecision::literals;
typedef boost::multiprecision::checked_int1024_t int_backend;
typedef boost::multiprecision::checked_int512_t small_int_backend;
typedef boost::multiprecision::checked_uint1024_t unsigned_backend;
constexpr int_backend f1 = factorial(int_backend(31));
static_assert(f1 == 0x1956ad0aae33a4560c5cd2c000000_cppi);
constexpr unsigned_backend f2 = factorial(unsigned_backend(31));
static_assert(f2 == 0x1956ad0aae33a4560c5cd2c000000_cppui);
//
// Test integer non-member functions:
//
constexpr small_int_backend si1 = (std::numeric_limits<small_int_backend>::max)();
constexpr small_int_backend si2 = 239876;
constexpr std::int32_t i = (std::numeric_limits<int>::max)();
constexpr std::int32_t j = 239876;
// Multiply:
{
constexpr int_backend i1 = big_mul<int_backend>(si1, si2);
int_backend nc;
multiply(nc, si1, si2);
BOOST_CHECK_EQUAL(nc, i1);
constexpr std::int64_t k = big_mul<std::int64_t>(i, j);
std::int64_t ii;
boost::multiprecision::multiply(ii, i, j);
BOOST_CHECK_EQUAL(ii, k);
}
// Add:
{
constexpr int_backend i1 = big_add<int_backend>(si1, si2);
int_backend nc;
add(nc, si1, si2);
BOOST_CHECK_EQUAL(nc, i1);
constexpr std::int64_t k = big_add<std::int64_t>(i, j);
std::int64_t ii;
boost::multiprecision::add(ii, i, j);
BOOST_CHECK_EQUAL(ii, k);
}
// Subtract:
{
constexpr int_backend i1 = big_sub<int_backend>(si1, -si2);
int_backend nc;
subtract(nc, si1, -si2);
BOOST_CHECK_EQUAL(nc, i1);
constexpr std::int64_t k = big_sub<std::int64_t>(i, -j);
std::int64_t ii;
boost::multiprecision::subtract(ii, i, -j);
BOOST_CHECK_EQUAL(ii, k);
}
// divide_qr:
{
constexpr small_int_backend i1 = div_qr_d(si1, si2);
small_int_backend nc, nc2;
divide_qr(si1, si2, nc, nc2);
BOOST_CHECK_EQUAL(nc, i1);
constexpr std::int64_t k = div_qr_d(i, j);
std::int32_t ii, ij;
boost::multiprecision::divide_qr(i, j, ii, ij);
BOOST_CHECK_EQUAL(ii, k);
}
// divide_qr:
{
constexpr small_int_backend i1 = div_qr_r(si1, si2);
small_int_backend nc, nc2;
divide_qr(si1, si2, nc, nc2);
BOOST_CHECK_EQUAL(nc2, i1);
constexpr std::int64_t k = div_qr_r(i, j);
std::int32_t ii, ij;
boost::multiprecision::divide_qr(i, j, ii, ij);
BOOST_CHECK_EQUAL(ij, k);
}
// integer_modulus:
{
constexpr int i1 = integer_modulus(si1, 67);
small_int_backend nc(si1);
int r = integer_modulus(nc, 67);
BOOST_CHECK_EQUAL(r, i1);
constexpr std::int32_t k = boost::multiprecision::integer_modulus(i, j);
std::int32_t ii(i);
r = boost::multiprecision::integer_modulus(ii, j);
BOOST_CHECK_EQUAL(r, k);
}
// powm:
{
constexpr small_int_backend i1 = powm(si1, si2, si2);
small_int_backend nc(si1);
nc = powm(nc, si2, si2);
BOOST_CHECK_EQUAL(nc, i1);
constexpr std::int32_t k = boost::multiprecision::powm(i, j, j);
std::int32_t ii(i);
ii = boost::multiprecision::powm(ii, j, j);
BOOST_CHECK_EQUAL(ii, k);
}
// lsb:
{
constexpr std::size_t i1 = lsb(si1);
small_int_backend nc(si1);
std::size_t nci = lsb(nc);
BOOST_CHECK_EQUAL(nci, i1);
constexpr std::size_t k = boost::multiprecision::lsb(i);
std::size_t ii(i);
ii = boost::multiprecision::lsb(ii);
BOOST_CHECK_EQUAL(ii, k);
}
// msb:
{
constexpr std::size_t i1 = msb(si1);
small_int_backend nc(si1);
std::size_t nci = msb(nc);
BOOST_CHECK_EQUAL(nci, i1);
constexpr std::size_t k = boost::multiprecision::msb(i);
std::size_t ii(i);
ii = boost::multiprecision::msb(ii);
BOOST_CHECK_EQUAL(ii, k);
}
// bit_test:
{
constexpr bool b = bit_test(si1, 1);
static_assert(b);
constexpr bool k = boost::multiprecision::bit_test(i, 1);
static_assert(k);
}
// bit_set:
{
constexpr int_backend i(0);
constexpr int_backend j = do_bit_set(i, 20);
static_assert(bit_test(j, 20));
constexpr int ii(0);
constexpr int jj = do_bit_set(ii, 20);
static_assert(boost::multiprecision::bit_test(jj, 20));
}
// bit_unset:
{
constexpr int_backend r = do_bit_unset(si1, 20);
static_assert(bit_test(r, 20) == false);
constexpr int jj = do_bit_unset(i, 20);
static_assert(boost::multiprecision::bit_test(jj, 20) == false);
}
// bit_unset:
{
constexpr int_backend r = do_bit_flip(si1, 20);
static_assert(bit_test(r, 20) == false);
constexpr int jj = do_bit_flip(i, 20);
static_assert(boost::multiprecision::bit_test(jj, 20) == false);
}
// sqrt:
{
constexpr int_backend r = sqrt(si1);
small_int_backend nc(si1);
nc = sqrt(nc);
BOOST_CHECK_EQUAL(nc, r);
constexpr int_backend r2 = sqrt(si1 * 1);
BOOST_CHECK_EQUAL(nc, r2);
constexpr int jj = boost::multiprecision::sqrt(i);
int k = i;
k = boost::multiprecision::sqrt(k);
BOOST_CHECK_EQUAL(jj, k);
}
{
// swap:
constexpr small_int_backend r = test_swap(si1, si2);
static_assert(si1 == r);
}
{
// gcd:
constexpr int_backend i(si1), j(si1 / 3);
constexpr int_backend k = gcd(i, j);
int_backend ii(i), jj(j);
BOOST_CHECK_EQUAL(k, gcd(ii, jj));
constexpr unsigned_backend ui(i), uj(j);
constexpr unsigned_backend uk = gcd(ui, uj);
unsigned_backend uii(ui), ujj(uj);
BOOST_CHECK_EQUAL(uk, gcd(uii, ujj));
constexpr int_backend l = lcm(i, j);
BOOST_CHECK_EQUAL(l, lcm(ii, jj));
constexpr unsigned_backend ul = lcm(ui, uj);
BOOST_CHECK_EQUAL(ul, lcm(uii, ujj));
}
return boost::report_errors();
}