...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
The primary motivation for Boost.Signals2 is to provide a version of
the original Boost.Signals library which can be used safely in a
multi-threaded environment.
This is achieved primarily through two changes from the original Boost.Signals
API. One is the introduction of a new automatic connection management scheme
relying on shared_ptr
and weak_ptr
,
as described in the tutorial.
The second change was the introduction of a Mutex
template type
parameter to the signal
class. This section details how
the library employs these changes to provide thread-safety, and
the limits of the provided thread-safety.
Each signal object default-constructs a Mutex
object to protect
its internal state. Furthermore, a Mutex
is created
each time a new slot is connected to the signal, to protect the
associated signal-slot connection.
A signal's mutex is automatically locked whenever any of the
signal's methods are called. The mutex is usually held until the
method completes, however there is one major exception to this rule. When
a signal is invoked by calling
signal::operator()
,
the invocation first acquires a lock on the signal's mutex. Then
it obtains a handle to the signal's slot list and combiner. Next
it releases the signal's mutex, before invoking the combiner to
iterate through the slot list. Thus no mutexes are held by the
signal while a slot is executing. This design choice
makes it impossible for user code running in a slot
to deadlock against any of the
mutexes used internally by the Boost.Signals2 library.
It also prevents slots from accidentally causing
recursive locking attempts on any of the library's internal mutexes.
Therefore, if you invoke a signal concurrently from multiple threads,
it is possible for the signal's combiner to be invoked concurrently
and thus the slots to execute concurrently.
During a combiner invocation, the following steps are performed in order to find the next callable slot while iterating through the signal's slot list.
The Mutex
associated with the connection to the
slot is locked.
All the tracked weak_ptr
associated with the
slot are copied into temporary shared_ptr
which
will be kept alive until the invocation is done with the slot. If this fails due
to any of the
weak_ptr
being expired, the connection is
automatically disconnected. Therefore a slot will never be run
if any of its tracked weak_ptr
have expired,
and none of its tracked weak_ptr
will
expire while the slot is running.
The slot's connection is checked to see if it is blocked or disconnected, and then the connection's mutex is unlocked. If the connection was either blocked or disconnected, we start again from the beginning with the next slot in the slot list. Otherwise, we commit to executing the slot when the combiner next dereferences the slot call iterator (unless the combiner should increment the iterator without ever dereferencing it).
Note that since we unlock the connection's mutex before executing
its associated slot, it is possible a slot will still be executing
after it has been disconnected by a
connection::disconnect()
, if
the disconnect was called concurrently with signal invocation.
You may have noticed above that during signal invocation, the invocation only
obtains handles to the signal's slot list and combiner while holding the
signal's mutex. Thus concurrent signal invocations may still wind up
accessing the
same slot list and combiner concurrently. So what happens if the slot list is modified,
for example by connecting a new slot, while a signal
invocation is in progress concurrently? If the slot list is already in use,
the signal performs a deep copy of the slot list before modifying it.
Thus the a concurrent signal invocation will continue to use the old unmodified slot list,
undisturbed by modifications made to the newly created deep copy of the slot list.
Future signal invocations will receive a handle to the newly created deep
copy of the slot list, and the old slot list will be destroyed once it
is no longer in use. Similarly, if you change a signal's combiner with
signal::set_combiner
while a signal invocation is running concurrently, the concurrent
signal invocation will continue to use the old combiner undisturbed,
while future signal invocations will receive a handle to the new combiner.
The fact that concurrent signal invocations use the same combiner object means you need to insure any custom combiner you write is thread-safe. So if your combiner maintains state which is modified when the combiner is invoked, you may need to protect that state with a mutex. Be aware, if you hold a mutex in your combiner while dereferencing slot call iterators, you run the risk of deadlocks and recursive locking if any of the slots cause additional mutex locking to occur. One way to avoid these perils is for your combiner to release any locks before dereferencing a slot call iterator. The combiner classes provided by the Boost.Signals2 library are all thread-safe, since they do not maintain any state across invocations.
Suppose a user writes a slot which connects another slot to the invoking signal. Will the newly connected slot be run during the same signal invocation in which the new connection was made? The answer is no. Connecting a new slot modifies the signal's slot list, and as explained above, a signal invocation already in progress will not see any modifications made to the slot list.
Suppose a user writes a slot which disconnects another slot from the invoking signal. Will the disconnected slot be prevented from running during the same signal invocation, if it appears later in the slot list than the slot which disconnected it? This time the answer is yes. Even if the disconnected slot is still present in the signal's slot list, each slot is checked to see if it is disconnected or blocked immediately before it is executed (or not executed as the case may be), as was described in more detail above.
The methods of the signals2::connection
class are thread-safe,
with the exception of assignment and swap. This is achived via locking the mutex
associated with the object's underlying signal-slot connection. Assignment and
swap are not thread-safe because the mutex protects the underlying connection
which a signals2::connection
object references, not
the signals2::connection
object itself. That is,
there may be many copies of a signals2::connection
object,
all of which reference the same underlying connection. There is not a mutex
for each signals2::connection
object, there is only
a single mutex protecting the underlying connection they reference.
The shared_connection_block
class obtains some thread-safety
from the Mutex
protecting the underlying connection which is blocked
and unblocked. The internal reference counting which is used to keep track of
how many shared_connection_block
objects are asserting
blocks on their underlying connection is also thread-safe (the implementation
relies on shared_ptr
for the reference counting).
However, individual shared_connection_block
objects
should not be accessed concurrently by multiple threads. As long as two
threads each have their own shared_connection_block
object,
then they may use them in safety, even if both shared_connection_block
objects are copies and refer to the same underlying connection.
The signals2::slot
class has no internal mutex locking
built into it. It is expected that slot objects will be created then
connected to a signal in a single thread. Once they have been copied into
a signal's slot list, they are protected by the mutex associated with
each signal-slot connection.
The signals2::trackable
class does NOT provide
thread-safe automatic connection management. In particular, it leaves open the
possibility of a signal invocation calling into a partially destructed object
if the trackable-derived object is destroyed in a different thread from the
one invoking the signal.
signals2::trackable
is only provided as a convenience
for porting single-threaded code from Boost.Signals to Boost.Signals2.