...one of the most highly
regarded and expertly designed C++ library projects in the
world.
— Herb Sutter and Andrei
Alexandrescu, C++
Coding Standards
boost::container::flat_multiset
// In header: <boost/container/flat_set.hpp> template<typename Key, typename Compare = std::less<Key>, typename AllocatorOrContainer = new_allocator<Key> > class flat_multiset { public: // types typedef Key key_type; typedef Compare key_compare; typedef Key value_type; typedef implementation_defined sequence_type; typedef sequence_type::allocator_type allocator_type; typedef ::boost::container::allocator_traits< allocator_type > allocator_traits_type; typedef sequence_type::pointer pointer; typedef sequence_type::const_pointer const_pointer; typedef sequence_type::reference reference; typedef sequence_type::const_reference const_reference; typedef sequence_type::size_type size_type; typedef sequence_type::difference_type difference_type; typedef implementation_defined stored_allocator_type; typedef implementation_defined value_compare; typedef sequence_type::iterator iterator; typedef sequence_type::const_iterator const_iterator; typedef sequence_type::reverse_iterator reverse_iterator; typedef sequence_type::const_reverse_iterator const_reverse_iterator; // public member functions flat_multiset() noexcept(dtl::is_nothrow_default_constructible< AllocatorOrContainer >::value &&dtl::is_nothrow_default_constructible< Compare >::value); explicit flat_multiset(const Compare &); explicit flat_multiset(const allocator_type &); flat_multiset(const Compare &, const allocator_type &); template<typename InputIterator> flat_multiset(InputIterator, InputIterator); template<typename InputIterator> flat_multiset(InputIterator, InputIterator, const allocator_type &); template<typename InputIterator> flat_multiset(InputIterator, InputIterator, const Compare &); template<typename InputIterator> flat_multiset(InputIterator, InputIterator, const Compare &, const allocator_type &); template<typename InputIterator> flat_multiset(ordered_range_t, InputIterator, InputIterator); template<typename InputIterator> flat_multiset(ordered_range_t, InputIterator, InputIterator, const Compare &); template<typename InputIterator> flat_multiset(ordered_range_t, InputIterator, InputIterator, const Compare &, const allocator_type &); template<typename InputIterator> flat_multiset(ordered_range_t, InputIterator, InputIterator, const allocator_type &); flat_multiset(std::initializer_list< value_type >); flat_multiset(std::initializer_list< value_type >, const allocator_type &); flat_multiset(std::initializer_list< value_type >, const Compare &); flat_multiset(std::initializer_list< value_type >, const Compare &, const allocator_type &); flat_multiset(ordered_range_t, std::initializer_list< value_type >); flat_multiset(ordered_range_t, std::initializer_list< value_type >, const Compare &); flat_multiset(ordered_range_t, std::initializer_list< value_type >, const Compare &, const allocator_type &); flat_multiset(const flat_multiset &); flat_multiset(flat_multiset &&) noexcept(boost::container::dtl::is_nothrow_move_constructible< Compare >::value); flat_multiset(const flat_multiset &, const allocator_type &); flat_multiset(flat_multiset &&, const allocator_type &); flat_multiset & operator=(const flat_multiset &); flat_multiset & operator=(flat_multiset &&) noexcept((allocator_traits_type::propagate_on_container_move_assignment::value||allocator_traits_type::is_always_equal::value) &&boost::container::dtl::is_nothrow_move_assignable< Compare >::value); flat_multiset & operator=(std::initializer_list< value_type >); allocator_type get_allocator() const noexcept; stored_allocator_type & get_stored_allocator() noexcept; const stored_allocator_type & get_stored_allocator() const noexcept; iterator begin() noexcept; const_iterator begin() const; const_iterator cbegin() const noexcept; iterator end() noexcept; const_iterator end() const noexcept; const_iterator cend() const noexcept; reverse_iterator rbegin() noexcept; const_reverse_iterator rbegin() const noexcept; const_reverse_iterator crbegin() const noexcept; reverse_iterator rend() noexcept; const_reverse_iterator rend() const noexcept; const_reverse_iterator crend() const noexcept; bool empty() const noexcept; size_type size() const noexcept; size_type max_size() const noexcept; size_type capacity() const noexcept; void reserve(size_type); void shrink_to_fit(); template<class... Args> iterator emplace(Args &&...); template<class... Args> iterator emplace_hint(const_iterator, Args &&...); iterator insert(const value_type &); iterator insert(value_type &&); iterator insert(const_iterator, const value_type &); iterator insert(const_iterator, value_type &&); template<typename InputIterator> void insert(InputIterator, InputIterator); template<typename InputIterator> void insert(ordered_range_t, InputIterator, InputIterator); void insert(std::initializer_list< value_type >); void insert(ordered_range_t, std::initializer_list< value_type >); template<typename C2> void merge(flat_multiset< Key, C2, AllocatorOrContainer > &); template<typename C2> void merge(flat_multiset< Key, C2, AllocatorOrContainer > &&); template<typename C2> void merge(flat_set< Key, C2, AllocatorOrContainer > &); template<typename C2> void merge(flat_set< Key, C2, AllocatorOrContainer > &&); iterator erase(const_iterator); size_type erase(const key_type &); iterator erase(const_iterator, const_iterator); void swap(flat_multiset &) noexcept(allocator_traits_type::is_always_equal::value &&boost::container::dtl::is_nothrow_swappable< Compare >::value); void clear() noexcept; key_compare key_comp() const; value_compare value_comp() const; iterator find(const key_type &); const_iterator find(const key_type &) const; iterator nth(size_type) noexcept; const_iterator nth(size_type) const noexcept; size_type index_of(iterator) noexcept; size_type index_of(const_iterator) const noexcept; size_type count(const key_type &) const; bool contains(const key_type &) const; template<typename K> bool contains(const K &) const; iterator lower_bound(const key_type &); const_iterator lower_bound(const key_type &) const; iterator upper_bound(const key_type &); const_iterator upper_bound(const key_type &) const; std::pair< const_iterator, const_iterator > equal_range(const key_type &) const; std::pair< iterator, iterator > equal_range(const key_type &); sequence_type extract_sequence(); void adopt_sequence(sequence_type &&); void adopt_sequence(ordered_range_t, sequence_type &&); const sequence_type & sequence() const noexcept; // friend functions bool operator==(const flat_multiset &, const flat_multiset &); bool operator!=(const flat_multiset &, const flat_multiset &); bool operator<(const flat_multiset &, const flat_multiset &); bool operator>(const flat_multiset &, const flat_multiset &); bool operator<=(const flat_multiset &, const flat_multiset &); bool operator>=(const flat_multiset &, const flat_multiset &); void swap(flat_multiset &, flat_multiset &) noexcept(allocator_traits_type::is_always_equal::value &&boost::container::dtl::is_nothrow_swappable< Compare >::value); };
flat_multiset is a Sorted Associative Container that stores objects of type Key and can store multiple copies of the same key value.
flat_multiset is similar to std::multiset but it's implemented by as an ordered sequence container. The underlying sequence container is by default vector but it can also work user-provided vector-like SequenceContainers (like static_vector or small_vector).
Using vector-like sequence containers means that inserting a new element into a flat_multiset might invalidate previous iterators and references (unless that sequence container is stable_vector or a similar container that offers stable pointers and references). Similarly, erasing an element might invalidate iterators and references pointing to elements that come after (their keys are bigger) the erased element.
This container provides random-access iterators.
typename Key
is the type to be inserted in the multiset, which is also the key_type
typename Compare = std::less<Key>
is the comparison functor used to order keys
typename AllocatorOrContainer = new_allocator<Key>
is either:
The allocator to allocate value_type
s (e.g. allocator< std::pair<Key, T> > ). (in this case sequence_type will be vector<value_type, AllocatorOrContainer>)
The SequenceContainer to be used as the underlying sequence_type. It must be a vector-like sequence container with random-access iterators.
flat_multiset
public member functionsflat_multiset() noexcept(dtl::is_nothrow_default_constructible< AllocatorOrContainer >::value &&dtl::is_nothrow_default_constructible< Compare >::value);
Effects: Default constructs an empty container.
Complexity: Constant.
explicit flat_multiset(const Compare & comp);
Effects: Constructs an empty container using the specified comparison object.
Complexity: Constant.
explicit flat_multiset(const allocator_type & a);
Effects: Constructs an empty container using the specified allocator.
Complexity: Constant.
flat_multiset(const Compare & comp, const allocator_type & a);
Effects: Constructs an empty container using the specified comparison object and allocator.
Complexity: Constant.
template<typename InputIterator> flat_multiset(InputIterator first, InputIterator last);
Effects: Constructs an empty container and inserts elements from the range [first ,last ).
Complexity: Linear in N if the range [first ,last ) is already sorted using comp and otherwise N logN, where N is last - first.
template<typename InputIterator> flat_multiset(InputIterator first, InputIterator last, const allocator_type & a);
Effects: Constructs an empty container using the specified allocator, and inserts elements from the range [first ,last ).
Complexity: Linear in N if the range [first ,last ) is already sorted using comp and otherwise N logN, where N is last - first.
template<typename InputIterator> flat_multiset(InputIterator first, InputIterator last, const Compare & comp);
Effects: Constructs an empty container using the specified comparison object and inserts elements from the range [first ,last ).
Complexity: Linear in N if the range [first ,last ) is already sorted using comp and otherwise N logN, where N is last - first.
template<typename InputIterator> flat_multiset(InputIterator first, InputIterator last, const Compare & comp, const allocator_type & a);
Effects: Constructs an empty container using the specified comparison object and allocator, and inserts elements from the range [first ,last ).
Complexity: Linear in N if the range [first ,last ) is already sorted using comp and otherwise N logN, where N is last - first.
template<typename InputIterator> flat_multiset(ordered_range_t, InputIterator first, InputIterator last);
Effects: Constructs an empty flat_multiset and inserts elements from the ordered range [first ,last ). This function is more efficient than the normal range creation for ordered ranges.
Requires: [first ,last) must be ordered according to the predicate.
Complexity: Linear in N.
Note: Non-standard extension.
template<typename InputIterator> flat_multiset(ordered_range_t, InputIterator first, InputIterator last, const Compare & comp);
Effects: Constructs an empty flat_multiset using the specified comparison object and inserts elements from the ordered range [first ,last ). This function is more efficient than the normal range creation for ordered ranges.
Requires: [first ,last) must be ordered according to the predicate.
Complexity: Linear in N.
Note: Non-standard extension.
template<typename InputIterator> flat_multiset(ordered_range_t, InputIterator first, InputIterator last, const Compare & comp, const allocator_type & a);
Effects: Constructs an empty flat_multiset using the specified comparison object and allocator, and inserts elements from the ordered range [first, last ). This function is more efficient than the normal range creation for ordered ranges.
Requires: [first ,last) must be ordered according to the predicate.
Complexity: Linear in N.
Note: Non-standard extension.
template<typename InputIterator> flat_multiset(ordered_range_t, InputIterator first, InputIterator last, const allocator_type & a);
Effects: Constructs an empty flat_multiset using the specified allocator and inserts elements from the ordered range [first ,last ). This function is more efficient than the normal range creation for ordered ranges.
Requires: [first ,last) must be ordered according to the predicate.
Complexity: Linear in N.
Note: Non-standard extension.
flat_multiset(std::initializer_list< value_type > il);
Effects: Default constructs an empty container.
Complexity: Constant.
flat_multiset(std::initializer_list< value_type > il, const allocator_type & a);
Effects: Constructs an empty container using the specified allocator, and inserts elements from the range [il.begin(), il.end()).
Complexity: Linear in N if the range [il.begin(), il.end()) is already sorted using comp and otherwise N logN, where N is il.begin() - il.end().
flat_multiset(std::initializer_list< value_type > il, const Compare & comp);
Effects: Constructs an empty container using the specified comparison object and inserts elements from the range [il.begin(), il.end()).
Complexity: Linear in N if the range [il.begin(), il.end()) is already sorted using comp and otherwise N logN, where N is il.begin() - il.end().
flat_multiset(std::initializer_list< value_type > il, const Compare & comp, const allocator_type & a);
Effects: Constructs an empty container using the specified comparison object and allocator, and inserts elements from the range [il.begin(), il.end()).
Complexity: Linear in N if the range [il.begin(), il.end()) is already sorted using comp and otherwise N logN, where N is il.begin() - il.end().
flat_multiset(ordered_range_t, std::initializer_list< value_type > il);
Effects: Constructs an empty containerand inserts elements from the ordered unique range [il.begin(), il.end()). This function is more efficient than the normal range creation for ordered ranges.
Requires: [il.begin(), il.end()) must be ordered according to the predicate.
Complexity: Linear in N.
Note: Non-standard extension.
flat_multiset(ordered_range_t, std::initializer_list< value_type > il, const Compare & comp);
Effects: Constructs an empty container using the specified comparison object and inserts elements from the ordered unique range [il.begin(), il.end()). This function is more efficient than the normal range creation for ordered ranges.
Requires: [il.begin(), il.end()) must be ordered according to the predicate.
Complexity: Linear in N.
Note: Non-standard extension.
flat_multiset(ordered_range_t, std::initializer_list< value_type > il, const Compare & comp, const allocator_type & a);
Effects: Constructs an empty container using the specified comparison object and allocator, and inserts elements from the ordered unique range [il.begin(), il.end()). This function is more efficient than the normal range creation for ordered ranges.
Requires: [il.begin(), il.end()) must be ordered according to the predicate.
Complexity: Linear in N.
Note: Non-standard extension.
flat_multiset(const flat_multiset & x);
Effects: Copy constructs the container.
Complexity: Linear in x.size().
flat_multiset(flat_multiset && x) noexcept(boost::container::dtl::is_nothrow_move_constructible< Compare >::value);
Effects: Move constructs thecontainer. Constructs *this using x's resources.
Complexity: Constant.
Postcondition: x is emptied.
flat_multiset(const flat_multiset & x, const allocator_type & a);
Effects: Copy constructs a container using the specified allocator.
Complexity: Linear in x.size().
flat_multiset(flat_multiset && x, const allocator_type & a);
Effects: Move constructs a container using the specified allocator. Constructs *this using x's resources.
Complexity: Constant if a == x.get_allocator(), linear otherwise
flat_multiset & operator=(const flat_multiset & x);
Effects: Makes *this a copy of x.
Complexity: Linear in x.size().
flat_multiset & operator=(flat_multiset && x) noexcept((allocator_traits_type::propagate_on_container_move_assignment::value||allocator_traits_type::is_always_equal::value) &&boost::container::dtl::is_nothrow_move_assignable< Compare >::value);
Throws: If allocator_traits_type::propagate_on_container_move_assignment is false and (allocation throws or value_type's move constructor throws)
Complexity: Constant if allocator_traits_type:: propagate_on_container_move_assignment is true or this->get>allocator() == x.get_allocator(). Linear otherwise.
flat_multiset & operator=(std::initializer_list< value_type > il);
Effects: Copy all elements from il to *this.
Complexity: Linear in il.size().
allocator_type get_allocator() const noexcept;
Effects: Returns a copy of the allocator that was passed to the object's constructor.
Complexity: Constant.
stored_allocator_type & get_stored_allocator() noexcept;
Effects: Returns a reference to the internal allocator.
Throws: Nothing
Complexity: Constant.
Note: Non-standard extension.
const stored_allocator_type & get_stored_allocator() const noexcept;
Effects: Returns a reference to the internal allocator.
Throws: Nothing
Complexity: Constant.
Note: Non-standard extension.
iterator begin() noexcept;
Effects: Returns an iterator to the first element contained in the container.
Throws: Nothing.
Complexity: Constant.
const_iterator begin() const;
Effects: Returns a const_iterator to the first element contained in the container.
Throws: Nothing.
Complexity: Constant.
const_iterator cbegin() const noexcept;
Effects: Returns a const_iterator to the first element contained in the container.
Throws: Nothing.
Complexity: Constant.
iterator end() noexcept;
Effects: Returns an iterator to the end of the container.
Throws: Nothing.
Complexity: Constant.
const_iterator end() const noexcept;
Effects: Returns a const_iterator to the end of the container.
Throws: Nothing.
Complexity: Constant.
const_iterator cend() const noexcept;
Effects: Returns a const_iterator to the end of the container.
Throws: Nothing.
Complexity: Constant.
reverse_iterator rbegin() noexcept;
Effects: Returns a reverse_iterator pointing to the beginning of the reversed container.
Throws: Nothing.
Complexity: Constant.
const_reverse_iterator rbegin() const noexcept;
Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed container.
Throws: Nothing.
Complexity: Constant.
const_reverse_iterator crbegin() const noexcept;
Effects: Returns a const_reverse_iterator pointing to the beginning of the reversed container.
Throws: Nothing.
Complexity: Constant.
reverse_iterator rend() noexcept;
Effects: Returns a reverse_iterator pointing to the end of the reversed container.
Throws: Nothing.
Complexity: Constant.
const_reverse_iterator rend() const noexcept;
Effects: Returns a const_reverse_iterator pointing to the end of the reversed container.
Throws: Nothing.
Complexity: Constant.
const_reverse_iterator crend() const noexcept;
Effects: Returns a const_reverse_iterator pointing to the end of the reversed container.
Throws: Nothing.
Complexity: Constant.
bool empty() const noexcept;
Effects: Returns true if the container contains no elements.
Throws: Nothing.
Complexity: Constant.
size_type size() const noexcept;
Effects: Returns the number of the elements contained in the container.
Throws: Nothing.
Complexity: Constant.
size_type max_size() const noexcept;
Effects: Returns the largest possible size of the container.
Throws: Nothing.
Complexity: Constant.
size_type capacity() const noexcept;
Effects: Number of elements for which memory has been allocated. capacity() is always greater than or equal to size().
Throws: Nothing.
Complexity: Constant.
void reserve(size_type cnt);
Effects: If n is less than or equal to capacity(), or the underlying container has no reserve
member, this call has no effect. Otherwise, it is a request for allocation of additional memory. If the request is successful, then capacity() is greater than or equal to n; otherwise, capacity() is unchanged. In either case, size() is unchanged.
Throws: If memory allocation allocation throws or T's copy constructor throws.
Note: If capacity() is less than "cnt", iterators and references to to values might be invalidated.
void shrink_to_fit();Effects: Tries to deallocate the excess of memory created
Throws: If memory allocation throws, or Key's copy constructor throws.
Complexity: Linear to size().
template<class... Args> iterator emplace(Args &&... args);
Effects: Inserts an object of type Key constructed with std::forward<Args>(args)... and returns the iterator pointing to the newly inserted element.
Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.
Note: If an element is inserted it might invalidate elements.
template<class... Args> iterator emplace_hint(const_iterator p, Args &&... args);
Effects: Inserts an object of type Key constructed with std::forward<Args>(args)... in the container. p is a hint pointing to where the insert should start to search.
Returns: An iterator pointing to the element with key equivalent to the key of x.
Complexity: Logarithmic search time (constant if x is inserted right before p) plus insertion linear to the elements with bigger keys than x.
Note: If an element is inserted it might invalidate elements.
iterator insert(const value_type & x);
Effects: Inserts x and returns the iterator pointing to the newly inserted element.
Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.
Note: If an element is inserted it might invalidate elements.
iterator insert(value_type && x);
Effects: Inserts a new value_type move constructed from x and returns the iterator pointing to the newly inserted element.
Complexity: Logarithmic search time plus linear insertion to the elements with bigger keys than x.
Note: If an element is inserted it might invalidate elements.
iterator insert(const_iterator p, const value_type & x);
Effects: Inserts a copy of x in the container. p is a hint pointing to where the insert should start to search.
Returns: An iterator pointing to the element with key equivalent to the key of x.
Complexity: Logarithmic search time (constant if x is inserted right before p) plus insertion linear to the elements with bigger keys than x.
Note: If an element is inserted it might invalidate elements.
iterator insert(const_iterator p, value_type && x);
Effects: Inserts a new value move constructed from x in the container. p is a hint pointing to where the insert should start to search.
Returns: An iterator pointing to the element with key equivalent to the key of x.
Complexity: Logarithmic search time (constant if x is inserted right before p) plus insertion linear to the elements with bigger keys than x.
Note: If an element is inserted it might invalidate elements.
template<typename InputIterator> void insert(InputIterator first, InputIterator last);
Requires: first, last are not iterators into *this.
Effects: inserts each element from the range [first,last) .
Complexity: N log(N).
Note: If an element is inserted it might invalidate elements.
template<typename InputIterator> void insert(ordered_range_t, InputIterator first, InputIterator last);
Requires: first, last are not iterators into *this and must be ordered according to the predicate.
Effects: inserts each element from the range [first,last) .This function is more efficient than the normal range creation for ordered ranges.
Complexity: Linear.
Note: Non-standard extension. If an element is inserted it might invalidate elements.
void insert(std::initializer_list< value_type > il);
Effects: inserts each element from the range [il.begin(), il.end()).
Complexity: N log(N).
Note: If an element is inserted it might invalidate elements.
void insert(ordered_range_t, std::initializer_list< value_type > il);
Requires: Range [il.begin(), il.end()) must be ordered according to the predicate.
Effects: inserts each element from the range [il.begin(), il.end()). This function is more efficient than the normal range creation for ordered ranges.
Complexity: Linear.
Note: Non-standard extension. If an element is inserted it might invalidate elements.
template<typename C2> void merge(flat_multiset< Key, C2, AllocatorOrContainer > & source);
Requires: this->get_allocator() == source.get_allocator().
Effects: Move-inserts each element from source into *this a using the comparison object of *this.
Complexity: Linear in this->size() + source.size().
Note: Invalidates all iterators and references.
template<typename C2> void merge(flat_multiset< Key, C2, AllocatorOrContainer > && source);
Requires: this->get_allocator() == source.get_allocator().
Effects: Move-inserts each element from source into *this a using the comparison object of *this.
Complexity: Linear in this->size() + source.size().
Note: Invalidates all iterators and references.
template<typename C2> void merge(flat_set< Key, C2, AllocatorOrContainer > & source);
Requires: this->get_allocator() == source.get_allocator().
Effects: Move-inserts each element from source into *this a using the comparison object of *this.
Complexity: Linear in this->size() + source.size().
Note: Invalidates all iterators and references.
template<typename C2> void merge(flat_set< Key, C2, AllocatorOrContainer > && source);
Requires: this->get_allocator() == source.get_allocator().
Effects: Move-inserts each element from source into *this a using the comparison object of *this.
Complexity: Linear in this->size() + source.size().
Note: Invalidates all iterators and references.
iterator erase(const_iterator p);
Effects: Erases the element pointed to by p.
Returns: Returns an iterator pointing to the element immediately following q prior to the element being erased. If no such element exists, returns end().
Complexity: Linear to the elements with keys bigger than p
Note: Invalidates elements with keys not less than the erased element.
size_type erase(const key_type & x);
Effects: If present, erases the element in the container with key equivalent to x.
Returns: Returns the number of erased elements (0/1).
Complexity: Logarithmic search time plus erasure time linear to the elements with bigger keys.
iterator erase(const_iterator first, const_iterator last);
Effects: Erases all the elements in the range [first, last).
Returns: Returns last.
Complexity: size()*N where N is the distance from first to last.
Complexity: Logarithmic search time plus erasure time linear to the elements with bigger keys.
void swap(flat_multiset & x) noexcept(allocator_traits_type::is_always_equal::value &&boost::container::dtl::is_nothrow_swappable< Compare >::value);
Effects: Swaps the contents of *this and x.
Throws: Nothing.
Complexity: Constant.
void clear() noexcept;
Effects: erase(begin(),end()).
Postcondition: size() == 0.
Complexity: linear in size().
key_compare key_comp() const;
Effects: Returns the comparison object out of which a was constructed.
Complexity: Constant.
value_compare value_comp() const;
Effects: Returns an object of value_compare constructed out of the comparison object.
Complexity: Constant.
iterator find(const key_type & x);
Returns: An iterator pointing to an element with the key equivalent to x, or end() if such an element is not found.
Complexity: Logarithmic.
const_iterator find(const key_type & x) const;
Returns: A const_iterator pointing to an element with the key equivalent to x, or end() if such an element is not found.
Complexity: Logarithmic.
iterator nth(size_type n) noexcept;
Requires: size() >= n.
Effects: Returns an iterator to the nth element from the beginning of the container. Returns end() if n == size().
Throws: Nothing.
Complexity: Constant.
Note: Non-standard extension
const_iterator nth(size_type n) const noexcept;
Requires: size() >= n.
Effects: Returns a const_iterator to the nth element from the beginning of the container. Returns end() if n == size().
Throws: Nothing.
Complexity: Constant.
Note: Non-standard extension
size_type index_of(iterator p) noexcept;
Requires: begin() <= p <= end().
Effects: Returns the index of the element pointed by p and size() if p == end().
Throws: Nothing.
Complexity: Constant.
Note: Non-standard extension
size_type index_of(const_iterator p) const noexcept;
Requires: begin() <= p <= end().
Effects: Returns the index of the element pointed by p and size() if p == end().
Throws: Nothing.
Complexity: Constant.
Note: Non-standard extension
size_type count(const key_type & x) const;
Returns: The number of elements with key equivalent to x.
Complexity: log(size())+count(k)
bool contains(const key_type & x) const;
Returns: Returns true if there is an element with key equivalent to key in the container, otherwise false.
Complexity: log(size()).
template<typename K> bool contains(const K & x) const;
Requires: This overload is available only if key_compare::is_transparent exists.
Returns: Returns true if there is an element with key equivalent to key in the container, otherwise false.
Complexity: log(size()).
iterator lower_bound(const key_type & x);
Returns: An iterator pointing to the first element with key not less than x, or end() if such an element is not found.
Complexity: Logarithmic
const_iterator lower_bound(const key_type & x) const;
Returns: A const iterator pointing to the first element with key not less than x, or end() if such an element is not found.
Complexity: Logarithmic
iterator upper_bound(const key_type & x);
Returns: An iterator pointing to the first element with key greater than x, or end() if such an element is not found.
Complexity: Logarithmic
const_iterator upper_bound(const key_type & x) const;
Returns: A const iterator pointing to the first element with key greater than x, or end() if such an element is not found.
Complexity: Logarithmic
std::pair< const_iterator, const_iterator > equal_range(const key_type & x) const;
Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
Complexity: Logarithmic
std::pair< iterator, iterator > equal_range(const key_type & x);
Effects: Equivalent to std::make_pair(this->lower_bound(k), this->upper_bound(k)).
Complexity: Logarithmic
sequence_type extract_sequence();
Effects: Extracts the internal sequence container.
Complexity: Same as the move constructor of sequence_type, usually constant.
Postcondition: this->empty()
Throws: If secuence_type's move constructor throws
void adopt_sequence(sequence_type && seq);
Effects: Discards the internally hold sequence container and adopts the one passed externally using the move assignment.
Complexity: Assuming O(1) move assignment, O(NlogN) with N = seq.size()
Throws: If the comparison or the move constructor throws
void adopt_sequence(ordered_range_t, sequence_type && seq);
Requires: seq shall be ordered according to this->compare()
Effects: Discards the internally hold sequence container and adopts the one passed externally using the move assignment.
Complexity: Assuming O(1) move assignment, O(1)
Throws: If the move assignment throws
const sequence_type & sequence() const noexcept;
Effects: Returns a const view of the underlying sequence.
Complexity: Constant
Throws: Nothing
flat_multiset
friend functionsbool operator==(const flat_multiset & x, const flat_multiset & y);
Effects: Returns true if x and y are equal
Complexity: Linear to the number of elements in the container.
bool operator!=(const flat_multiset & x, const flat_multiset & y);
Effects: Returns true if x and y are unequal
Complexity: Linear to the number of elements in the container.
bool operator<(const flat_multiset & x, const flat_multiset & y);
Effects: Returns true if x is less than y
Complexity: Linear to the number of elements in the container.
bool operator>(const flat_multiset & x, const flat_multiset & y);
Effects: Returns true if x is greater than y
Complexity: Linear to the number of elements in the container.
bool operator<=(const flat_multiset & x, const flat_multiset & y);
Effects: Returns true if x is equal or less than y
Complexity: Linear to the number of elements in the container.
bool operator>=(const flat_multiset & x, const flat_multiset & y);
Effects: Returns true if x is equal or greater than y
Complexity: Linear to the number of elements in the container.
void swap(flat_multiset & x, flat_multiset & y) noexcept(allocator_traits_type::is_always_equal::value &&boost::container::dtl::is_nothrow_swappable< Compare >::value);
Effects: x.swap(y)
Complexity: Constant.