boost/thread/v2/shared_mutex.hpp
#ifndef BOOST_THREAD_V2_SHARED_MUTEX_HPP
#define BOOST_THREAD_V2_SHARED_MUTEX_HPP
// shared_mutex.hpp
//
// Copyright Howard Hinnant 2007-2010.
// Copyright Vicente J. Botet Escriba 2012.
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
/*
<shared_mutex> synopsis
namespace boost
{
namespace thread_v2
{
class shared_mutex
{
public:
shared_mutex();
~shared_mutex();
shared_mutex(const shared_mutex&) = delete;
shared_mutex& operator=(const shared_mutex&) = delete;
// Exclusive ownership
void lock();
bool try_lock();
template <class Rep, class Period>
bool try_lock_for(const boost::chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool
try_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
void unlock();
// Shared ownership
void lock_shared();
bool try_lock_shared();
template <class Rep, class Period>
bool
try_lock_shared_for(const boost::chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool
try_lock_shared_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
void unlock_shared();
};
class upgrade_mutex
{
public:
upgrade_mutex();
~upgrade_mutex();
upgrade_mutex(const upgrade_mutex&) = delete;
upgrade_mutex& operator=(const upgrade_mutex&) = delete;
// Exclusive ownership
void lock();
bool try_lock();
template <class Rep, class Period>
bool try_lock_for(const boost::chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool
try_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
void unlock();
// Shared ownership
void lock_shared();
bool try_lock_shared();
template <class Rep, class Period>
bool
try_lock_shared_for(const boost::chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool
try_lock_shared_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
void unlock_shared();
// Upgrade ownership
void lock_upgrade();
bool try_lock_upgrade();
template <class Rep, class Period>
bool
try_lock_upgrade_for(
const boost::chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool
try_lock_upgrade_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
void unlock_upgrade();
// Shared <-> Exclusive
bool try_unlock_shared_and_lock();
template <class Rep, class Period>
bool
try_unlock_shared_and_lock_for(
const boost::chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool
try_unlock_shared_and_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
void unlock_and_lock_shared();
// Shared <-> Upgrade
bool try_unlock_shared_and_lock_upgrade();
template <class Rep, class Period>
bool
try_unlock_shared_and_lock_upgrade_for(
const boost::chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool
try_unlock_shared_and_lock_upgrade_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
void unlock_upgrade_and_lock_shared();
// Upgrade <-> Exclusive
void unlock_upgrade_and_lock();
bool try_unlock_upgrade_and_lock();
template <class Rep, class Period>
bool
try_unlock_upgrade_and_lock_for(
const boost::chrono::duration<Rep, Period>& rel_time);
template <class Clock, class Duration>
bool
try_unlock_upgrade_and_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
void unlock_and_lock_upgrade();
};
} // thread_v2
} // boost
*/
#include <boost/thread/detail/config.hpp>
#include <boost/thread/mutex.hpp>
#include <boost/thread/condition_variable.hpp>
#include <boost/thread/mutex.hpp>
#ifdef BOOST_THREAD_USES_CHRONO
#include <boost/chrono.hpp>
#endif
#include <climits>
#include <boost/system/system_error.hpp>
#include <boost/bind/bind.hpp>
namespace boost {
namespace thread_v2 {
class shared_mutex
{
typedef boost::mutex mutex_t;
typedef boost::condition_variable cond_t;
typedef unsigned count_t;
mutex_t mut_;
cond_t gate1_;
// the gate2_ condition variable is only used by functions that
// have taken write_entered_ but are waiting for no_readers()
cond_t gate2_;
count_t state_;
static const count_t write_entered_ = 1U << (sizeof(count_t)*CHAR_BIT - 1);
static const count_t n_readers_ = ~write_entered_;
bool no_writer() const
{
return (state_ & write_entered_) == 0;
}
bool one_writer() const
{
return (state_ & write_entered_) != 0;
}
bool no_writer_no_readers() const
{
//return (state_ & write_entered_) == 0 &&
// (state_ & n_readers_) == 0;
return state_ == 0;
}
bool no_writer_no_max_readers() const
{
return (state_ & write_entered_) == 0 &&
(state_ & n_readers_) != n_readers_;
}
bool no_readers() const
{
return (state_ & n_readers_) == 0;
}
bool one_or_more_readers() const
{
return (state_ & n_readers_) > 0;
}
shared_mutex(shared_mutex const&);
shared_mutex& operator=(shared_mutex const&);
public:
shared_mutex();
~shared_mutex();
// Exclusive ownership
void lock();
bool try_lock();
#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_lock_for(const boost::chrono::duration<Rep, Period>& rel_time)
{
return try_lock_until(chrono::steady_clock::now() + rel_time);
}
template <class Clock, class Duration>
bool try_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
#endif
#if defined BOOST_THREAD_USES_DATETIME
template<typename T>
bool timed_lock(T const & abs_or_rel_time);
#endif
void unlock();
// Shared ownership
void lock_shared();
bool try_lock_shared();
#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_lock_shared_for(const boost::chrono::duration<Rep, Period>& rel_time)
{
return try_lock_shared_until(chrono::steady_clock::now() + rel_time);
}
template <class Clock, class Duration>
bool try_lock_shared_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
#endif
#if defined BOOST_THREAD_USES_DATETIME
template<typename T>
bool timed_lock_shared(T const & abs_or_rel_time);
#endif
void unlock_shared();
};
inline shared_mutex::shared_mutex()
: state_(0)
{
}
inline shared_mutex::~shared_mutex()
{
boost::lock_guard<mutex_t> _(mut_);
}
// Exclusive ownership
inline void shared_mutex::lock()
{
boost::unique_lock<mutex_t> lk(mut_);
gate1_.wait(lk, boost::bind(&shared_mutex::no_writer, boost::ref(*this)));
state_ |= write_entered_;
gate2_.wait(lk, boost::bind(&shared_mutex::no_readers, boost::ref(*this)));
}
inline bool shared_mutex::try_lock()
{
boost::unique_lock<mutex_t> lk(mut_);
if (!no_writer_no_readers())
{
return false;
}
state_ = write_entered_;
return true;
}
#ifdef BOOST_THREAD_USES_CHRONO
template <class Clock, class Duration>
bool shared_mutex::try_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time)
{
boost::unique_lock<mutex_t> lk(mut_);
if (!gate1_.wait_until(lk, abs_time, boost::bind(
&shared_mutex::no_writer, boost::ref(*this))))
{
return false;
}
state_ |= write_entered_;
if (!gate2_.wait_until(lk, abs_time, boost::bind(
&shared_mutex::no_readers, boost::ref(*this))))
{
state_ &= ~write_entered_;
return false;
}
return true;
}
#endif
#if defined BOOST_THREAD_USES_DATETIME
template<typename T>
bool shared_mutex::timed_lock(T const & abs_or_rel_time)
{
boost::unique_lock<mutex_t> lk(mut_);
if (!gate1_.timed_wait(lk, abs_or_rel_time, boost::bind(
&shared_mutex::no_writer, boost::ref(*this))))
{
return false;
}
state_ |= write_entered_;
if (!gate2_.timed_wait(lk, abs_or_rel_time, boost::bind(
&shared_mutex::no_readers, boost::ref(*this))))
{
state_ &= ~write_entered_;
return false;
}
return true;
}
#endif
inline void shared_mutex::unlock()
{
boost::lock_guard<mutex_t> _(mut_);
BOOST_ASSERT(one_writer());
BOOST_ASSERT(no_readers());
state_ = 0;
// notify all since multiple *lock_shared*() calls may be able
// to proceed in response to this notification
gate1_.notify_all();
}
// Shared ownership
inline void shared_mutex::lock_shared()
{
boost::unique_lock<mutex_t> lk(mut_);
gate1_.wait(lk, boost::bind(&shared_mutex::no_writer_no_max_readers, boost::ref(*this)));
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= num_readers;
}
inline bool shared_mutex::try_lock_shared()
{
boost::unique_lock<mutex_t> lk(mut_);
if (!no_writer_no_max_readers())
{
return false;
}
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= num_readers;
return true;
}
#ifdef BOOST_THREAD_USES_CHRONO
template <class Clock, class Duration>
bool shared_mutex::try_lock_shared_until(
const boost::chrono::time_point<Clock, Duration>& abs_time)
{
boost::unique_lock<mutex_t> lk(mut_);
if (!gate1_.wait_until(lk, abs_time, boost::bind(
&shared_mutex::no_writer_no_max_readers, boost::ref(*this))))
{
return false;
}
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= num_readers;
return true;
}
#endif
#if defined BOOST_THREAD_USES_DATETIME
template<typename T>
bool shared_mutex::timed_lock_shared(T const & abs_or_rel_time)
{
boost::unique_lock<mutex_t> lk(mut_);
if (!gate1_.timed_wait(lk, abs_or_rel_time, boost::bind(
&shared_mutex::no_writer_no_max_readers, boost::ref(*this))))
{
return false;
}
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= num_readers;
return true;
}
#endif
inline void shared_mutex::unlock_shared()
{
boost::lock_guard<mutex_t> _(mut_);
BOOST_ASSERT(one_or_more_readers());
count_t num_readers = (state_ & n_readers_) - 1;
state_ &= ~n_readers_;
state_ |= num_readers;
if (no_writer())
{
if (num_readers == n_readers_ - 1)
gate1_.notify_one();
}
else
{
if (num_readers == 0)
gate2_.notify_one();
}
}
} // thread_v2
} // boost
namespace boost {
namespace thread_v2 {
class upgrade_mutex
{
typedef boost::mutex mutex_t;
typedef boost::condition_variable cond_t;
typedef unsigned count_t;
mutex_t mut_;
cond_t gate1_;
// the gate2_ condition variable is only used by functions that
// have taken write_entered_ but are waiting for no_readers()
cond_t gate2_;
count_t state_;
static const unsigned write_entered_ = 1U << (sizeof(count_t)*CHAR_BIT - 1);
static const unsigned upgradable_entered_ = write_entered_ >> 1;
static const unsigned n_readers_ = ~(write_entered_ | upgradable_entered_);
bool no_writer() const
{
return (state_ & write_entered_) == 0;
}
bool one_writer() const
{
return (state_ & write_entered_) != 0;
}
bool no_writer_no_max_readers() const
{
return (state_ & write_entered_) == 0 &&
(state_ & n_readers_) != n_readers_;
}
bool no_writer_no_upgrader() const
{
return (state_ & (write_entered_ | upgradable_entered_)) == 0;
}
bool no_writer_no_upgrader_no_readers() const
{
//return (state_ & (write_entered_ | upgradable_entered_)) == 0 &&
// (state_ & n_readers_) == 0;
return state_ == 0;
}
bool no_writer_no_upgrader_one_reader() const
{
//return (state_ & (write_entered_ | upgradable_entered_)) == 0 &&
// (state_ & n_readers_) == 1;
return state_ == 1;
}
bool no_writer_no_upgrader_no_max_readers() const
{
return (state_ & (write_entered_ | upgradable_entered_)) == 0 &&
(state_ & n_readers_) != n_readers_;
}
bool no_upgrader() const
{
return (state_ & upgradable_entered_) == 0;
}
bool one_upgrader() const
{
return (state_ & upgradable_entered_) != 0;
}
bool no_readers() const
{
return (state_ & n_readers_) == 0;
}
bool one_reader() const
{
return (state_ & n_readers_) == 1;
}
bool one_or_more_readers() const
{
return (state_ & n_readers_) > 0;
}
upgrade_mutex(const upgrade_mutex&);
upgrade_mutex& operator=(const upgrade_mutex&);
public:
upgrade_mutex();
~upgrade_mutex();
// Exclusive ownership
void lock();
bool try_lock();
#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_lock_for(const boost::chrono::duration<Rep, Period>& rel_time)
{
return try_lock_until(chrono::steady_clock::now() + rel_time);
}
template <class Clock, class Duration>
bool try_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
#endif
#if defined BOOST_THREAD_USES_DATETIME
template<typename T>
bool timed_lock(T const & abs_or_rel_time);
#endif
void unlock();
// Shared ownership
void lock_shared();
bool try_lock_shared();
#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_lock_shared_for(const boost::chrono::duration<Rep, Period>& rel_time)
{
return try_lock_shared_until(chrono::steady_clock::now() + rel_time);
}
template <class Clock, class Duration>
bool try_lock_shared_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
#endif
#if defined BOOST_THREAD_USES_DATETIME
template<typename T>
bool timed_lock_shared(T const & abs_or_rel_time);
#endif
void unlock_shared();
// Upgrade ownership
void lock_upgrade();
bool try_lock_upgrade();
#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_lock_upgrade_for(
const boost::chrono::duration<Rep, Period>& rel_time)
{
return try_lock_upgrade_until(chrono::steady_clock::now() + rel_time);
}
template <class Clock, class Duration>
bool try_lock_upgrade_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
#endif
#if defined BOOST_THREAD_USES_DATETIME
template<typename T>
bool timed_lock_upgrade(T const & abs_or_rel_time);
#endif
void unlock_upgrade();
// Shared <-> Exclusive
#ifdef BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSIONS
//bool unlock_shared_and_lock(); // can cause a deadlock if used
bool try_unlock_shared_and_lock();
#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_unlock_shared_and_lock_for(
const boost::chrono::duration<Rep, Period>& rel_time)
{
return try_unlock_shared_and_lock_until(chrono::steady_clock::now() + rel_time);
}
template <class Clock, class Duration>
bool try_unlock_shared_and_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
#endif
#endif
void unlock_and_lock_shared();
// Shared <-> Upgrade
#ifdef BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSIONS
//bool unlock_shared_and_lock_upgrade(); // can cause a deadlock if used
bool try_unlock_shared_and_lock_upgrade();
#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_unlock_shared_and_lock_upgrade_for(
const boost::chrono::duration<Rep, Period>& rel_time)
{
return try_unlock_shared_and_lock_upgrade_until(chrono::steady_clock::now() + rel_time);
}
template <class Clock, class Duration>
bool try_unlock_shared_and_lock_upgrade_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
#endif
#endif
void unlock_upgrade_and_lock_shared();
// Upgrade <-> Exclusive
void unlock_upgrade_and_lock();
bool try_unlock_upgrade_and_lock();
#ifdef BOOST_THREAD_USES_CHRONO
template <class Rep, class Period>
bool try_unlock_upgrade_and_lock_for(
const boost::chrono::duration<Rep, Period>& rel_time)
{
return try_unlock_upgrade_and_lock_until(chrono::steady_clock::now() + rel_time);
}
template <class Clock, class Duration>
bool try_unlock_upgrade_and_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time);
#endif
void unlock_and_lock_upgrade();
};
inline upgrade_mutex::upgrade_mutex()
: gate1_(),
gate2_(),
state_(0)
{
}
inline upgrade_mutex::~upgrade_mutex()
{
boost::lock_guard<mutex_t> _(mut_);
}
// Exclusive ownership
inline void upgrade_mutex::lock()
{
boost::unique_lock<mutex_t> lk(mut_);
gate1_.wait(lk, boost::bind(&upgrade_mutex::no_writer_no_upgrader, boost::ref(*this)));
state_ |= write_entered_;
gate2_.wait(lk, boost::bind(&upgrade_mutex::no_readers, boost::ref(*this)));
}
inline bool upgrade_mutex::try_lock()
{
boost::unique_lock<mutex_t> lk(mut_);
if (!no_writer_no_upgrader_no_readers())
{
return false;
}
state_ = write_entered_;
return true;
}
#ifdef BOOST_THREAD_USES_CHRONO
template <class Clock, class Duration>
bool upgrade_mutex::try_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time)
{
boost::unique_lock<mutex_t> lk(mut_);
if (!gate1_.wait_until(lk, abs_time, boost::bind(
&upgrade_mutex::no_writer_no_upgrader, boost::ref(*this))))
{
return false;
}
state_ |= write_entered_;
if (!gate2_.wait_until(lk, abs_time, boost::bind(
&upgrade_mutex::no_readers, boost::ref(*this))))
{
state_ &= ~write_entered_;
return false;
}
return true;
}
#endif
#if defined BOOST_THREAD_USES_DATETIME
template<typename T>
bool upgrade_mutex::timed_lock(T const & abs_or_rel_time)
{
boost::unique_lock<mutex_t> lk(mut_);
if (!gate1_.timed_wait(lk, abs_or_rel_time, boost::bind(
&upgrade_mutex::no_writer_no_upgrader, boost::ref(*this))))
{
return false;
}
state_ |= write_entered_;
if (!gate2_.timed_wait(lk, abs_or_rel_time, boost::bind(
&upgrade_mutex::no_readers, boost::ref(*this))))
{
state_ &= ~write_entered_;
return false;
}
return true;
}
#endif
inline void upgrade_mutex::unlock()
{
boost::lock_guard<mutex_t> _(mut_);
BOOST_ASSERT(one_writer());
BOOST_ASSERT(no_upgrader());
BOOST_ASSERT(no_readers());
state_ = 0;
// notify all since multiple *lock_shared*() calls and a *lock_upgrade*()
// call may be able to proceed in response to this notification
gate1_.notify_all();
}
// Shared ownership
inline void upgrade_mutex::lock_shared()
{
boost::unique_lock<mutex_t> lk(mut_);
gate1_.wait(lk, boost::bind(&upgrade_mutex::no_writer_no_max_readers, boost::ref(*this)));
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= num_readers;
}
inline bool upgrade_mutex::try_lock_shared()
{
boost::unique_lock<mutex_t> lk(mut_);
if (!no_writer_no_max_readers())
{
return false;
}
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= num_readers;
return true;
}
#ifdef BOOST_THREAD_USES_CHRONO
template <class Clock, class Duration>
bool upgrade_mutex::try_lock_shared_until(
const boost::chrono::time_point<Clock, Duration>& abs_time)
{
boost::unique_lock<mutex_t> lk(mut_);
if (!gate1_.wait_until(lk, abs_time, boost::bind(
&upgrade_mutex::no_writer_no_max_readers, boost::ref(*this))))
{
return false;
}
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= num_readers;
return true;
}
#endif
#if defined BOOST_THREAD_USES_DATETIME
template<typename T>
bool upgrade_mutex::timed_lock_shared(T const & abs_or_rel_time)
{
boost::unique_lock<mutex_t> lk(mut_);
if (!gate1_.timed_wait(lk, abs_or_rel_time, boost::bind(
&upgrade_mutex::no_writer_no_max_readers, boost::ref(*this))))
{
return false;
}
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= num_readers;
return true;
}
#endif
inline void upgrade_mutex::unlock_shared()
{
boost::lock_guard<mutex_t> _(mut_);
BOOST_ASSERT(one_or_more_readers());
count_t num_readers = (state_ & n_readers_) - 1;
state_ &= ~n_readers_;
state_ |= num_readers;
if (no_writer())
{
if (num_readers == n_readers_ - 1)
gate1_.notify_one();
}
else
{
if (num_readers == 0)
gate2_.notify_one();
}
}
// Upgrade ownership
inline void upgrade_mutex::lock_upgrade()
{
boost::unique_lock<mutex_t> lk(mut_);
gate1_.wait(lk, boost::bind(&upgrade_mutex::no_writer_no_upgrader_no_max_readers, boost::ref(*this)));
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= upgradable_entered_ | num_readers;
}
inline bool upgrade_mutex::try_lock_upgrade()
{
boost::unique_lock<mutex_t> lk(mut_);
if (!no_writer_no_upgrader_no_max_readers())
{
return false;
}
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= upgradable_entered_ | num_readers;
return true;
}
#ifdef BOOST_THREAD_USES_CHRONO
template <class Clock, class Duration>
bool upgrade_mutex::try_lock_upgrade_until(
const boost::chrono::time_point<Clock, Duration>& abs_time)
{
boost::unique_lock<mutex_t> lk(mut_);
if (!gate1_.wait_until(lk, abs_time, boost::bind(
&upgrade_mutex::no_writer_no_upgrader_no_max_readers, boost::ref(*this))))
{
return false;
}
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= upgradable_entered_ | num_readers;
return true;
}
#endif
#if defined BOOST_THREAD_USES_DATETIME
template<typename T>
bool upgrade_mutex::timed_lock_upgrade(T const & abs_or_rel_time)
{
boost::unique_lock<mutex_t> lk(mut_);
if (!gate1_.timed_wait(lk, abs_or_rel_time, boost::bind(
&upgrade_mutex::no_writer_no_upgrader_no_max_readers, boost::ref(*this))))
{
return false;
}
count_t num_readers = (state_ & n_readers_) + 1;
state_ &= ~n_readers_;
state_ |= upgradable_entered_ | num_readers;
return true;
}
#endif
inline void upgrade_mutex::unlock_upgrade()
{
boost::lock_guard<mutex_t> _(mut_);
BOOST_ASSERT(no_writer());
BOOST_ASSERT(one_upgrader());
BOOST_ASSERT(one_or_more_readers());
count_t num_readers = (state_ & n_readers_) - 1;
state_ &= ~(upgradable_entered_ | n_readers_);
state_ |= num_readers;
// notify all since both a *lock*() and a *lock_shared*() call
// may be able to proceed in response to this notification
gate1_.notify_all();
}
// Shared <-> Exclusive
#ifdef BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSIONS
inline bool upgrade_mutex::try_unlock_shared_and_lock()
{
boost::unique_lock<mutex_t> lk(mut_);
BOOST_ASSERT(one_or_more_readers());
if (!no_writer_no_upgrader_one_reader())
{
return false;
}
state_ = write_entered_;
return true;
}
#ifdef BOOST_THREAD_USES_CHRONO
template <class Clock, class Duration>
bool upgrade_mutex::try_unlock_shared_and_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time)
{
boost::unique_lock<mutex_t> lk(mut_);
BOOST_ASSERT(one_or_more_readers());
if (!gate1_.wait_until(lk, abs_time, boost::bind(
&upgrade_mutex::no_writer_no_upgrader, boost::ref(*this))))
{
return false;
}
count_t num_readers = (state_ & n_readers_) - 1;
state_ &= ~n_readers_;
state_ |= (write_entered_ | num_readers);
if (!gate2_.wait_until(lk, abs_time, boost::bind(
&upgrade_mutex::no_readers, boost::ref(*this))))
{
++num_readers;
state_ &= ~(write_entered_ | n_readers_);
state_ |= num_readers;
return false;
}
return true;
}
#endif
#endif
inline void upgrade_mutex::unlock_and_lock_shared()
{
boost::lock_guard<mutex_t> _(mut_);
BOOST_ASSERT(one_writer());
BOOST_ASSERT(no_upgrader());
BOOST_ASSERT(no_readers());
state_ = 1;
// notify all since multiple *lock_shared*() calls and a *lock_upgrade*()
// call may be able to proceed in response to this notification
gate1_.notify_all();
}
// Shared <-> Upgrade
#ifdef BOOST_THREAD_PROVIDES_SHARED_MUTEX_UPWARDS_CONVERSIONS
inline bool upgrade_mutex::try_unlock_shared_and_lock_upgrade()
{
boost::unique_lock<mutex_t> lk(mut_);
BOOST_ASSERT(one_or_more_readers());
if (!no_writer_no_upgrader())
{
return false;
}
state_ |= upgradable_entered_;
return true;
}
#ifdef BOOST_THREAD_USES_CHRONO
template <class Clock, class Duration>
bool upgrade_mutex::try_unlock_shared_and_lock_upgrade_until(
const boost::chrono::time_point<Clock, Duration>& abs_time)
{
boost::unique_lock<mutex_t> lk(mut_);
BOOST_ASSERT(one_or_more_readers());
if (!gate1_.wait_until(lk, abs_time, boost::bind(
&upgrade_mutex::no_writer_no_upgrader, boost::ref(*this))))
{
return false;
}
state_ |= upgradable_entered_;
return true;
}
#endif
#endif
inline void upgrade_mutex::unlock_upgrade_and_lock_shared()
{
boost::lock_guard<mutex_t> _(mut_);
BOOST_ASSERT(no_writer());
BOOST_ASSERT(one_upgrader());
BOOST_ASSERT(one_or_more_readers());
state_ &= ~upgradable_entered_;
// notify all since only one *lock*() or *lock_upgrade*() call can win and
// proceed in response to this notification, but a *lock_shared*() call may
// also be waiting and could steal the notification
gate1_.notify_all();
}
// Upgrade <-> Exclusive
inline void upgrade_mutex::unlock_upgrade_and_lock()
{
boost::unique_lock<mutex_t> lk(mut_);
BOOST_ASSERT(no_writer());
BOOST_ASSERT(one_upgrader());
BOOST_ASSERT(one_or_more_readers());
count_t num_readers = (state_ & n_readers_) - 1;
state_ &= ~(upgradable_entered_ | n_readers_);
state_ |= write_entered_ | num_readers;
gate2_.wait(lk, boost::bind(&upgrade_mutex::no_readers, boost::ref(*this)));
}
inline bool upgrade_mutex::try_unlock_upgrade_and_lock()
{
boost::unique_lock<mutex_t> lk(mut_);
BOOST_ASSERT(no_writer());
BOOST_ASSERT(one_upgrader());
BOOST_ASSERT(one_or_more_readers());
if (!one_reader())
{
return false;
}
state_ = write_entered_;
return true;
}
#ifdef BOOST_THREAD_USES_CHRONO
template <class Clock, class Duration>
bool upgrade_mutex::try_unlock_upgrade_and_lock_until(
const boost::chrono::time_point<Clock, Duration>& abs_time)
{
boost::unique_lock<mutex_t> lk(mut_);
BOOST_ASSERT(no_writer());
BOOST_ASSERT(one_upgrader());
BOOST_ASSERT(one_or_more_readers());
count_t num_readers = (state_ & n_readers_) - 1;
state_ &= ~(upgradable_entered_ | n_readers_);
state_ |= (write_entered_ | num_readers);
if (!gate2_.wait_until(lk, abs_time, boost::bind(
&upgrade_mutex::no_readers, boost::ref(*this))))
{
++num_readers;
state_ &= ~(write_entered_ | n_readers_);
state_ |= (upgradable_entered_ | num_readers);
return false;
}
return true;
}
#endif
inline void upgrade_mutex::unlock_and_lock_upgrade()
{
boost::lock_guard<mutex_t> _(mut_);
BOOST_ASSERT(one_writer());
BOOST_ASSERT(no_upgrader());
BOOST_ASSERT(no_readers());
state_ = upgradable_entered_ | 1;
// notify all since multiple *lock_shared*() calls may be able
// to proceed in response to this notification
gate1_.notify_all();
}
} // thread_v2
} // boost
namespace boost {
//using thread_v2::shared_mutex;
using thread_v2::upgrade_mutex;
typedef thread_v2::upgrade_mutex shared_mutex;
}
#endif