boost/numeric/odeint/stepper/explicit_error_generic_rk.hpp
/*
[auto_generated]
boost/numeric/odeint/stepper/explicit_error_generic_rk.hpp
[begin_description]
Implementation of the generic Runge Kutta error stepper. Base class for many RK error steppers.
[end_description]
Copyright 2011-2013 Mario Mulansky
Copyright 2011-2013 Karsten Ahnert
Copyright 2012 Christoph Koke
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_STEPPER_EXPLICIT_ERROR_GENERIC_RK_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_STEPPER_EXPLICIT_ERROR_GENERIC_RK_HPP_INCLUDED
#include <boost/numeric/odeint/stepper/base/explicit_error_stepper_base.hpp>
#include <boost/numeric/odeint/algebra/default_operations.hpp>
#include <boost/numeric/odeint/algebra/range_algebra.hpp>
#include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
#include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
#include <boost/numeric/odeint/stepper/detail/generic_rk_algorithm.hpp>
#include <boost/numeric/odeint/stepper/detail/generic_rk_call_algebra.hpp>
#include <boost/numeric/odeint/stepper/detail/generic_rk_operations.hpp>
#include <boost/numeric/odeint/util/state_wrapper.hpp>
#include <boost/numeric/odeint/util/is_resizeable.hpp>
#include <boost/numeric/odeint/util/resizer.hpp>
namespace boost {
namespace numeric {
namespace odeint {
template<
size_t StageCount,
size_t Order,
size_t StepperOrder ,
size_t ErrorOrder ,
class State ,
class Value = double ,
class Deriv = State ,
class Time = Value ,
class Algebra = typename algebra_dispatcher< State >::algebra_type ,
class Operations = typename operations_dispatcher< State >::operations_type ,
class Resizer = initially_resizer
>
#ifndef DOXYGEN_SKIP
class explicit_error_generic_rk
: public explicit_error_stepper_base<
explicit_error_generic_rk< StageCount , Order , StepperOrder , ErrorOrder , State ,
Value , Deriv , Time , Algebra , Operations , Resizer > ,
Order , StepperOrder , ErrorOrder , State , Value , Deriv , Time , Algebra ,
Operations , Resizer >
#else
class explicit_error_generic_rk : public explicit_error_stepper_base
#endif
{
public:
#ifndef DOXYGEN_SKIP
typedef explicit_error_stepper_base<
explicit_error_generic_rk< StageCount , Order , StepperOrder , ErrorOrder , State ,
Value , Deriv , Time , Algebra , Operations , Resizer > ,
Order , StepperOrder , ErrorOrder , State , Value , Deriv , Time , Algebra ,
Operations , Resizer > stepper_base_type;
#else
typedef explicit_stepper_base< ... > stepper_base_type;
#endif
typedef typename stepper_base_type::state_type state_type;
typedef typename stepper_base_type::wrapped_state_type wrapped_state_type;
typedef typename stepper_base_type::value_type value_type;
typedef typename stepper_base_type::deriv_type deriv_type;
typedef typename stepper_base_type::wrapped_deriv_type wrapped_deriv_type;
typedef typename stepper_base_type::time_type time_type;
typedef typename stepper_base_type::algebra_type algebra_type;
typedef typename stepper_base_type::operations_type operations_type;
typedef typename stepper_base_type::resizer_type resizer_type;
#ifndef DOXYGEN_SKIP
typedef explicit_error_generic_rk< StageCount , Order , StepperOrder , ErrorOrder , State ,
Value , Deriv , Time , Algebra , Operations , Resizer > stepper_type;
#endif
typedef detail::generic_rk_algorithm< StageCount , Value , Algebra , Operations > rk_algorithm_type;
typedef typename rk_algorithm_type::coef_a_type coef_a_type;
typedef typename rk_algorithm_type::coef_b_type coef_b_type;
typedef typename rk_algorithm_type::coef_c_type coef_c_type;
static const size_t stage_count = StageCount;
private:
public:
// we use an explicit_generic_rk to do the normal rk step
// and add a separate calculation of the error estimate afterwards
explicit_error_generic_rk( const coef_a_type &a ,
const coef_b_type &b ,
const coef_b_type &b2 ,
const coef_c_type &c ,
const algebra_type &algebra = algebra_type() )
: stepper_base_type( algebra ) , m_rk_algorithm( a , b , c ) , m_b2( b2 )
{ }
template< class System , class StateIn , class DerivIn , class StateOut , class Err >
void do_step_impl( System system , const StateIn &in , const DerivIn &dxdt ,
time_type t , StateOut &out , time_type dt , Err &xerr )
{
// normal step
do_step_impl( system , in , dxdt , t , out , dt );
// additionally, perform the error calculation
detail::template generic_rk_call_algebra< StageCount , algebra_type >()( stepper_base_type::m_algebra ,
xerr , dxdt , m_F , detail::generic_rk_scale_sum_err< StageCount , operations_type , value_type , time_type >( m_b2 , dt) );
}
template< class System , class StateIn , class DerivIn , class StateOut >
void do_step_impl( System system , const StateIn &in , const DerivIn &dxdt ,
time_type t , StateOut &out , time_type dt )
{
m_resizer.adjust_size(in, [this](auto&& arg) { return this->resize_impl<StateIn>(std::forward<decltype(arg)>(arg)); });
// actual calculation done in generic_rk.hpp
m_rk_algorithm.do_step( stepper_base_type::m_algebra , system , in , dxdt , t , out , dt , m_x_tmp.m_v , m_F );
}
template< class StateIn >
void adjust_size( const StateIn &x )
{
resize_impl( x );
stepper_base_type::adjust_size( x );
}
private:
template< class StateIn >
bool resize_impl( const StateIn &x )
{
bool resized( false );
resized |= adjust_size_by_resizeability( m_x_tmp , x , typename is_resizeable<state_type>::type() );
for( size_t i = 0 ; i < StageCount-1 ; ++i )
{
resized |= adjust_size_by_resizeability( m_F[i] , x , typename is_resizeable<deriv_type>::type() );
}
return resized;
}
rk_algorithm_type m_rk_algorithm;
coef_b_type m_b2;
resizer_type m_resizer;
wrapped_state_type m_x_tmp;
wrapped_deriv_type m_F[StageCount-1];
};
/********* DOXYGEN *********/
/**
* \class explicit_error_generic_rk
* \brief A generic implementation of explicit Runge-Kutta algorithms with error estimation. This class is as a
* base class for all explicit Runge-Kutta steppers with error estimation.
*
* This class implements the explicit Runge-Kutta algorithms with error estimation in a generic way.
* The Butcher tableau is passed to the stepper which constructs the stepper scheme with the help of a
* template-metaprogramming algorithm. ToDo : Add example!
*
* This class derives explicit_error_stepper_base which provides the stepper interface.
*
* \tparam StageCount The number of stages of the Runge-Kutta algorithm.
* \tparam Order The order of a stepper if the stepper is used without error estimation.
* \tparam StepperOrder The order of a step if the stepper is used with error estimation. Usually Order and StepperOrder have
* the same value.
* \tparam ErrorOrder The order of the error step if the stepper is used with error estimation.
* \tparam State The type representing the state of the ODE.
* \tparam Value The floating point type which is used in the computations.
* \tparam Time The type representing the independent variable - the time - of the ODE.
* \tparam Algebra The algebra type.
* \tparam Operations The operations type.
* \tparam Resizer The resizer policy type.
*/
/**
* \fn explicit_error_generic_rk::explicit_error_generic_rk( const coef_a_type &a , const coef_b_type &b , const coef_b_type &b2 , const coef_c_type &c , const algebra_type &algebra )
* \brief Constructs the explicit_error_generik_rk class with the given parameters a, b, b2 and c. See examples section for details on the coefficients.
*
* \param a Triangular matrix of parameters b in the Butcher tableau.
* \param b Last row of the butcher tableau.
* \param b2 Parameters for lower-order evaluation to estimate the error.
* \param c Parameters to calculate the time points in the Butcher tableau.
* \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
*/
/**
* \fn explicit_error_generic_rk::do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt , Err &xerr )
* \brief This method performs one step. The derivative `dxdt` of `in` at the time `t` is passed to the method.
* The result is updated out-of-place, hence the input is in `in` and the output in `out`. Futhermore, an
* estimation of the error is stored in `xerr`. `do_step_impl` is used by explicit_error_stepper_base.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param in The state of the ODE which should be solved. in is not modified in this method
* \param dxdt The derivative of x at t.
* \param t The value of the time, at which the step should be performed.
* \param out The result of the step is written in out.
* \param dt The step size.
* \param xerr The result of the error estimation is written in xerr.
*/
/**
* \fn explicit_error_generic_rk::do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )
* \brief This method performs one step. The derivative `dxdt` of `in` at the time `t` is passed to the method.
* The result is updated out-of-place, hence the input is in `in` and the output in `out`.
* Access to this step functionality is provided by explicit_stepper_base and
* `do_step_impl` should not be called directly.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param in The state of the ODE which should be solved. in is not modified in this method
* \param dxdt The derivative of x at t.
* \param t The value of the time, at which the step should be performed.
* \param out The result of the step is written in out.
* \param dt The step size.
*/
/**
* \fn explicit_error_generic_rk::adjust_size( const StateIn &x )
* \brief Adjust the size of all temporaries in the stepper manually.
* \param x A state from which the size of the temporaries to be resized is deduced.
*/
}
}
}
#endif // BOOST_NUMERIC_ODEINT_STEPPER_EXPLICIT_ERROR_GENERIC_RK_HPP_INCLUDED