boost/numeric/odeint/stepper/base/explicit_error_stepper_fsal_base.hpp
/*
[auto_generated]
boost/numeric/odeint/stepper/base/explicit_error_stepper_fsal_base.hpp
[begin_description]
Base class for all explicit first-same-as-last Runge Kutta steppers.
[end_description]
Copyright 2010-2013 Karsten Ahnert
Copyright 2010-2012 Mario Mulansky
Copyright 2012 Christoph Koke
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED
#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_same.hpp>
#include <boost/numeric/odeint/util/bind.hpp>
#include <boost/numeric/odeint/util/unwrap_reference.hpp>
#include <boost/numeric/odeint/util/state_wrapper.hpp>
#include <boost/numeric/odeint/util/is_resizeable.hpp>
#include <boost/numeric/odeint/util/resizer.hpp>
#include <boost/numeric/odeint/util/copy.hpp>
#include <boost/numeric/odeint/stepper/stepper_categories.hpp>
#include <boost/numeric/odeint/stepper/base/algebra_stepper_base.hpp>
namespace boost {
namespace numeric {
namespace odeint {
/*
* base class for explicit stepper and error steppers with the fsal property
* models the stepper AND the error stepper fsal concept
*
* this class provides the following do_step overloads
* do_step( sys , x , t , dt )
* do_step( sys , x , dxdt , t , dt )
* do_step( sys , in , t , out , dt )
* do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )
* do_step( sys , x , t , dt , xerr )
* do_step( sys , x , dxdt , t , dt , xerr )
* do_step( sys , in , t , out , dt , xerr )
* do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )
*/
template<
class Stepper ,
unsigned short Order ,
unsigned short StepperOrder ,
unsigned short ErrorOrder ,
class State ,
class Value ,
class Deriv ,
class Time ,
class Algebra ,
class Operations ,
class Resizer
>
class explicit_error_stepper_fsal_base : public algebra_stepper_base< Algebra , Operations >
{
public:
typedef algebra_stepper_base< Algebra , Operations > algebra_stepper_base_type;
typedef typename algebra_stepper_base_type::algebra_type algebra_type;
typedef State state_type;
typedef Value value_type;
typedef Deriv deriv_type;
typedef Time time_type;
typedef Resizer resizer_type;
typedef Stepper stepper_type;
typedef explicit_error_stepper_fsal_tag stepper_category;
#ifndef DOXYGEN_SKIP
typedef state_wrapper< state_type > wrapped_state_type;
typedef state_wrapper< deriv_type > wrapped_deriv_type;
typedef explicit_error_stepper_fsal_base< Stepper , Order , StepperOrder , ErrorOrder ,
State , Value , Deriv , Time , Algebra , Operations , Resizer > internal_stepper_base_type;
#endif
typedef unsigned short order_type;
static const order_type order_value = Order;
static const order_type stepper_order_value = StepperOrder;
static const order_type error_order_value = ErrorOrder;
explicit_error_stepper_fsal_base( const algebra_type &algebra = algebra_type() )
: algebra_stepper_base_type( algebra ) , m_first_call( true )
{ }
order_type order( void ) const
{
return order_value;
}
order_type stepper_order( void ) const
{
return stepper_order_value;
}
order_type error_order( void ) const
{
return error_order_value;
}
/*
* version 1 : do_step( sys , x , t , dt )
*
* the two overloads are needed in order to solve the forwarding problem
*/
template< class System , class StateInOut >
void do_step( System system , StateInOut &x , time_type t , time_type dt )
{
do_step_v1( system , x , t , dt );
}
/**
* \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
*/
template< class System , class StateInOut >
void do_step( System system , const StateInOut &x , time_type t , time_type dt )
{
do_step_v1( system , x , t , dt );
}
/*
* version 2 : do_step( sys , x , dxdt , t , dt )
*
* this version does not solve the forwarding problem, boost.range can not be used
*
* the disable is needed to avoid ambiguous overloads if state_type = time_type
*/
template< class System , class StateInOut , class DerivInOut >
typename boost::disable_if< boost::is_same< StateInOut , time_type > , void >::type
do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
{
m_first_call = true;
this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt );
}
/*
* named Version 2: do_step_dxdt_impl( sys , in , dxdt , t , dt )
*
* this version is needed when this stepper is used for initializing
* multistep stepper like adams-bashforth. Hence we provide an explicitely
* named version that is not disabled. Meant for internal use only.
*/
template< class System , class StateInOut , class DerivInOut >
void do_step_dxdt_impl( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
{
m_first_call = true;
this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt );
}
/*
* version 3 : do_step( sys , in , t , out , dt )
*
* this version does not solve the forwarding problem, boost.range can not
* be used.
*
* the disable is needed to avoid ambiguous overloads if
* state_type = time_type
*/
template< class System , class StateIn , class StateOut >
typename boost::disable_if< boost::is_same< StateIn , time_type > , void >::type
do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
{
if( m_resizer.adjust_size(in, [this](auto&& arg) { return this->resize_impl<StateIn>(std::forward<decltype(arg)>(arg)); }) || m_first_call )
{
initialize( system , in , t );
}
this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , m_dxdt.m_v , dt );
}
/*
* version 4 : do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )
*
* this version does not solve the forwarding problem, boost.range can not be used
*/
template< class System, class StateIn, class DerivIn, class StateOut,
class DerivOut >
void do_step( System system, const StateIn &in, const DerivIn &dxdt_in,
time_type t, StateOut &out, DerivOut &dxdt_out, time_type dt )
{
m_first_call = true;
this->stepper().do_step_impl( system, in, dxdt_in, t, out, dxdt_out,
dt );
}
/*
* version 5 : do_step( sys , x , t , dt , xerr )
*
* the two overloads are needed in order to solve the forwarding problem
*/
template< class System , class StateInOut , class Err >
void do_step( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
{
do_step_v5( system , x , t , dt , xerr );
}
/**
* \brief Second version to solve the forwarding problem, can be called with Boost.Range as StateInOut.
*/
template< class System , class StateInOut , class Err >
void do_step( System system , const StateInOut &x , time_type t , time_type dt , Err &xerr )
{
do_step_v5( system , x , t , dt , xerr );
}
/*
* version 6 : do_step( sys , x , dxdt , t , dt , xerr )
*
* this version does not solve the forwarding problem, boost.range can not be used
*
* the disable is needed to avoid ambiguous overloads if state_type = time_type
*/
template< class System , class StateInOut , class DerivInOut , class Err >
typename boost::disable_if< boost::is_same< StateInOut , time_type > , void >::type
do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt , Err &xerr )
{
m_first_call = true;
this->stepper().do_step_impl( system , x , dxdt , t , x , dxdt , dt , xerr );
}
/*
* version 7 : do_step( sys , in , t , out , dt , xerr )
*
* this version does not solve the forwarding problem, boost.range can not be used
*/
template< class System , class StateIn , class StateOut , class Err >
void do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt , Err &xerr )
{
if( m_resizer.adjust_size(in, [this](auto&& arg) { return this->resize_impl<StateIn>(std::forward<decltype(arg)>(arg)); }) || m_first_call )
{
initialize( system , in , t );
}
this->stepper().do_step_impl( system , in , m_dxdt.m_v , t , out , m_dxdt.m_v , dt , xerr );
}
/*
* version 8 : do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )
*
* this version does not solve the forwarding problem, boost.range can not be used
*/
template< class System , class StateIn , class DerivIn , class StateOut , class DerivOut , class Err >
void do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t ,
StateOut &out , DerivOut &dxdt_out , time_type dt , Err &xerr )
{
m_first_call = true;
this->stepper().do_step_impl( system , in , dxdt_in , t , out , dxdt_out , dt , xerr );
}
template< class StateIn >
void adjust_size( const StateIn &x )
{
resize_impl( x );
}
void reset( void )
{
m_first_call = true;
}
template< class DerivIn >
void initialize( const DerivIn &deriv )
{
boost::numeric::odeint::copy( deriv , m_dxdt.m_v );
m_first_call = false;
}
template< class System , class StateIn >
void initialize( System system , const StateIn &x , time_type t )
{
typename odeint::unwrap_reference< System >::type &sys = system;
sys( x , m_dxdt.m_v , t );
m_first_call = false;
}
bool is_initialized( void ) const
{
return ! m_first_call;
}
private:
template< class System , class StateInOut >
void do_step_v1( System system , StateInOut &x , time_type t , time_type dt )
{
if( m_resizer.adjust_size(x, [this](auto&& arg) { return this->resize_impl<StateInOut>(std::forward<decltype(arg)>(arg)); }) || m_first_call )
{
initialize( system , x , t );
}
this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , m_dxdt.m_v , dt );
}
template< class System , class StateInOut , class Err >
void do_step_v5( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
{
if( m_resizer.adjust_size(x, [this](auto&& arg) { return this->resize_impl<StateInOut>(std::forward<decltype(arg)>(arg)); }) || m_first_call )
{
initialize( system , x , t );
}
this->stepper().do_step_impl( system , x , m_dxdt.m_v , t , x , m_dxdt.m_v , dt , xerr );
}
template< class StateIn >
bool resize_impl( const StateIn &x )
{
return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() );
}
stepper_type& stepper( void )
{
return *static_cast< stepper_type* >( this );
}
const stepper_type& stepper( void ) const
{
return *static_cast< const stepper_type* >( this );
}
resizer_type m_resizer;
bool m_first_call;
protected:
wrapped_deriv_type m_dxdt;
};
/******* DOXYGEN *******/
/**
* \class explicit_error_stepper_fsal_base
* \brief Base class for explicit steppers with error estimation and stepper fulfilling the FSAL (first-same-as-last)
* property. This class can be used with controlled steppers for step size control.
*
* This class serves as the base class for all explicit steppers with algebra and operations and which fulfill the FSAL
* property. In contrast to explicit_stepper_base it also estimates the error and can be used in a controlled stepper
* to provide step size control.
*
* The FSAL property means that the derivative of the system at t+dt is already used in the current step going from
* t to t +dt. Therefore, some more do_steps method can be introduced and the controlled steppers can explicitly make use
* of this property.
*
* \note This stepper provides `do_step` methods with and without error estimation. It has therefore three orders,
* one for the order of a step if the error is not estimated. The other two orders are the orders of the step and
* the error step if the error estimation is performed.
*
* explicit_error_stepper_fsal_base is used as the interface in a CRTP (currently recurring template
* pattern). In order to work correctly the parent class needs to have a method
* `do_step_impl( system , in , dxdt_in , t , out , dxdt_out , dt , xerr )`.
* explicit_error_stepper_fsal_base derives from algebra_stepper_base.
*
* This class can have an intrinsic state depending on the explicit usage of the `do_step` method. This means that some
* `do_step` methods are expected to be called in order. For example the `do_step( sys , x , t , dt , xerr )` will keep track
* of the derivative of `x` which is the internal state. The first call of this method is recognized such that one
* does not explicitly initialize the internal state, so it is safe to use this method like
*
* \code
* stepper_type stepper;
* stepper.do_step( sys , x , t , dt , xerr );
* stepper.do_step( sys , x , t , dt , xerr );
* stepper.do_step( sys , x , t , dt , xerr );
* \endcode
*
* But it is unsafe to call this method with different system functions after each other. Do do so, one must initialize the
* internal state with the `initialize` method or reset the internal state with the `reset` method.
*
* explicit_error_stepper_fsal_base provides several overloaded `do_step` methods, see the list below. Only two of them are needed
* to fulfill the Error Stepper concept. The other ones are for convenience and for better performance. Some of them
* simply update the state out-of-place, while other expect that the first derivative at `t` is passed to the stepper.
*
* - `do_step( sys , x , t , dt )` - The classical `do_step` method needed to fulfill the Error Stepper concept. The
* state is updated in-place. A type modelling a Boost.Range can be used for x.
* - `do_step( sys , x , dxdt , t , dt )` - This method updates the state x and the derivative dxdt in-place. It is expected
* that dxdt has the value of the derivative of x at time t.
* - `do_step( sys , in , t , out , dt )` - This method updates the state out-of-place, hence the result of the step
* is stored in `out`.
* - `do_step( sys , in , dxdt_in , t , out , dxdt_out , dt )` - This method updates the state and the derivative
* out-of-place. It expects that the derivative at the point `t` is explicitly passed in `dxdt_in`.
* - `do_step( sys , x , t , dt , xerr )` - This `do_step` method is needed to fulfill the Error Stepper concept. The
* state is updated in-place and an error estimate is calculated. A type modelling a Boost.Range can be used for x.
* - `do_step( sys , x , dxdt , t , dt , xerr )` - This method updates the state and the derivative in-place. It is assumed
* that the dxdt has the value of the derivative of x at time t. An error estimate is calculated.
* - `do_step( sys , in , t , out , dt , xerr )` - This method updates the state out-of-place and estimates the error
* during the step.
* - `do_step( sys , in , dxdt_in , t , out , dxdt_out , dt , xerr )` - This methods updates the state and the derivative
* out-of-place and estimates the error during the step. It is assumed the dxdt_in is derivative of in at time t.
*
* \note The system is always passed as value, which might result in poor performance if it contains data. In this
* case it can be used with `boost::ref` or `std::ref`, for example `stepper.do_step( boost::ref( sys ) , x , t , dt );`
*
* \note The time `t` is not advanced by the stepper. This has to done manually, or by the appropriate `integrate`
* routines or `iterator`s.
*
* \tparam Stepper The stepper on which this class should work. It is used via CRTP, hence explicit_stepper_base
* provides the interface for the Stepper.
* \tparam Order The order of a stepper if the stepper is used without error estimation.
* \tparam StepperOrder The order of a step if the stepper is used with error estimation. Usually Order and StepperOrder have
* the same value.
* \tparam ErrorOrder The order of the error step if the stepper is used with error estimation.
* \tparam State The state type for the stepper.
* \tparam Value The value type for the stepper. This should be a floating point type, like float,
* double, or a multiprecision type. It must not necessary be the value_type of the State. For example
* the State can be a `vector< complex< double > >` in this case the Value must be double.
* The default value is double.
* \tparam Deriv The type representing time derivatives of the state type. It is usually the same type as the
* state type, only if used with Boost.Units both types differ.
* \tparam Time The type representing the time. Usually the same type as the value type. When Boost.Units is
* used, this type has usually a unit.
* \tparam Algebra The algebra type which must fulfill the Algebra Concept.
* \tparam Operations The type for the operations which must fulfill the Operations Concept.
* \tparam Resizer The resizer policy class.
*/
/**
* \fn explicit_error_stepper_fsal_base::explicit_error_stepper_fsal_base( const algebra_type &algebra )
* \brief Constructs a explicit_stepper_fsal_base class. This constructor can be used as a default
* constructor if the algebra has a default constructor.
* \param algebra A copy of algebra is made and stored inside explicit_stepper_base.
*/
/**
* \fn explicit_error_stepper_fsal_base::order( void ) const
* \return Returns the order of the stepper if it used without error estimation.
*/
/**
* \fn explicit_error_stepper_fsal_base::stepper_order( void ) const
* \return Returns the order of a step if the stepper is used without error estimation.
*/
/**
* \fn explicit_error_stepper_fsal_base::error_order( void ) const
* \return Returns the order of an error step if the stepper is used without error estimation.
*/
/**
* \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , time_type t , time_type dt )
* \brief This method performs one step. It transforms the result in-place.
*
* \note This method uses the internal state of the stepper.
*
* \param system The system function to solve, hence the r.h.s. of the ordinary differential equation. It must fulfill the
* Simple System concept.
* \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
* \param t The value of the time, at which the step should be performed.
* \param dt The step size.
*/
/**
* \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt )
* \brief The method performs one step with the stepper passed by Stepper. Additionally to the other methods
* the derivative of x is also passed to this method. Therefore, dxdt must be evaluated initially:
*
* \code
* ode( x , dxdt , t );
* for( ... )
* {
* stepper.do_step( ode , x , dxdt , t , dt );
* t += dt;
* }
* \endcode
*
* \note This method does NOT use the initial state, since the first derivative is explicitly passed to this method.
*
* The result is updated in place in x as well as the derivative dxdt. This method is disabled if
* Time and StateInOut are of the same type. In this case the method could not be distinguished from other `do_step`
* versions.
*
* \note This method does not solve the forwarding problem.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
* \param dxdt The derivative of x at t. After calling `do_step` dxdt is updated to the new value.
* \param t The value of the time, at which the step should be performed.
* \param dt The step size.
*/
/**
* \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt )
* \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
* This method is disabled if StateIn and Time are the same type. In this case the method can not be distinguished from
* other `do_step` variants.
*
* \note This method uses the internal state of the stepper.
*
* \note This method does not solve the forwarding problem.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param in The state of the ODE which should be solved. in is not modified in this method
* \param t The value of the time, at which the step should be performed.
* \param out The result of the step is written in out.
* \param dt The step size.
*/
/**
* \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , StateOut &out , DerivOut &dxdt_out , time_type dt )
* \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
* Furthermore, the derivative of x at t is passed to the stepper and updated by the stepper to its new value at
* t+dt.
*
* \note This method does not solve the forwarding problem.
*
* \note This method does NOT use the internal state of the stepper.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param in The state of the ODE which should be solved. in is not modified in this method
* \param dxdt_in The derivative of x at t.
* \param t The value of the time, at which the step should be performed.
* \param out The result of the step is written in out.
* \param dxdt_out The updated derivative of `out` at `t+dt`.
* \param dt The step size.
*/
/**
* \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , time_type t , time_type dt , Err &xerr )
* \brief The method performs one step with the stepper passed by Stepper and estimates the error. The state of the ODE
* is updated in-place.
*
*
* \note This method uses the internal state of the stepper.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param x The state of the ODE which should be solved. x is updated by this method.
* \param t The value of the time, at which the step should be performed.
* \param dt The step size.
* \param xerr The estimation of the error is stored in xerr.
*/
/**
* \fn explicit_error_stepper_fsal_base::do_step( System system , StateInOut &x , DerivInOut &dxdt , time_type t , time_type dt , Err &xerr )
* \brief The method performs one step with the stepper passed by Stepper. Additionally to the other method
* the derivative of x is also passed to this method and updated by this method.
*
* \note This method does NOT use the internal state of the stepper.
*
* The result is updated in place in x. This method is disabled if Time and Deriv are of the same type. In this
* case the method could not be distinguished from other `do_step` versions. This method is disabled if StateInOut and
* Time are of the same type.
*
* \note This method does NOT use the internal state of the stepper.
*
* \note This method does not solve the forwarding problem.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param x The state of the ODE which should be solved. After calling do_step the result is updated in x.
* \param dxdt The derivative of x at t. After calling `do_step` this value is updated to the new value at `t+dt`.
* \param t The value of the time, at which the step should be performed.
* \param dt The step size.
* \param xerr The error estimate is stored in xerr.
*/
/**
* \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , time_type t , StateOut &out , time_type dt , Err &xerr )
* \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
* Furthermore, the error is estimated.
*
* \note This method uses the internal state of the stepper.
*
* \note This method does not solve the forwarding problem.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param in The state of the ODE which should be solved. in is not modified in this method
* \param t The value of the time, at which the step should be performed.
* \param out The result of the step is written in out.
* \param dt The step size.
* \param xerr The error estimate.
*/
/**
* \fn explicit_error_stepper_fsal_base::do_step( System system , const StateIn &in , const DerivIn &dxdt_in , time_type t , StateOut &out , DerivOut &dxdt_out , time_type dt , Err &xerr )
* \brief The method performs one step with the stepper passed by Stepper. The state of the ODE is updated out-of-place.
* Furthermore, the derivative of x at t is passed to the stepper and the error is estimated.
*
* \note This method does NOT use the internal state of the stepper.
*
* \note This method does not solve the forwarding problem.
*
* \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the
* Simple System concept.
* \param in The state of the ODE which should be solved. in is not modified in this method
* \param dxdt_in The derivative of x at t.
* \param t The value of the time, at which the step should be performed.
* \param out The result of the step is written in out.
* \param dxdt_out The new derivative at `t+dt` is written into this variable.
* \param dt The step size.
* \param xerr The error estimate.
*/
/**
* \fn explicit_error_stepper_fsal_base::adjust_size( const StateIn &x )
* \brief Adjust the size of all temporaries in the stepper manually.
* \param x A state from which the size of the temporaries to be resized is deduced.
*/
/**
* \fn explicit_error_stepper_fsal_base::reset( void )
* \brief Resets the internal state of this stepper. After calling this method it is safe to use all
* `do_step` method without explicitly initializing the stepper.
*/
/**
* \fn explicit_error_stepper_fsal_base::initialize( const DerivIn &deriv )
* \brief Initializes the internal state of the stepper.
* \param deriv The derivative of x. The next call of `do_step` expects that the derivative of `x` passed to `do_step`
* has the value of `deriv`.
*/
/**
* \fn explicit_error_stepper_fsal_base::initialize( System system , const StateIn &x , time_type t )
* \brief Initializes the internal state of the stepper.
*
* This method is equivalent to
* \code
* Deriv dxdt;
* system( x , dxdt , t );
* stepper.initialize( dxdt );
* \endcode
*
* \param system The system function for the next calls of `do_step`.
* \param x The current state of the ODE.
* \param t The current time of the ODE.
*/
/**
* \fn explicit_error_stepper_fsal_base::is_initialized( void ) const
* \brief Returns if the stepper is already initialized. If the stepper is not initialized, the first
* call of `do_step` will initialize the state of the stepper. If the stepper is already initialized
* the system function can not be safely exchanged between consecutive `do_step` calls.
*/
} // odeint
} // numeric
} // boost
#endif // BOOST_NUMERIC_ODEINT_STEPPER_BASE_EXPLICIT_ERROR_STEPPER_FSAL_BASE_HPP_INCLUDED