boost/math/distributions/detail/inv_discrete_quantile.hpp
// Copyright John Maddock 2007.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
#define BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE
#include <algorithm>
namespace boost{ namespace math{ namespace detail{
//
// Functor for root finding algorithm:
//
template <class Dist>
struct distribution_quantile_finder
{
typedef typename Dist::value_type value_type;
typedef typename Dist::policy_type policy_type;
distribution_quantile_finder(const Dist d, value_type p, bool c)
: dist(d), target(p), comp(c) {}
value_type operator()(value_type const& x)
{
return comp ? value_type(target - cdf(complement(dist, x))) : value_type(cdf(dist, x) - target);
}
private:
Dist dist;
value_type target;
bool comp;
};
//
// The purpose of adjust_bounds, is to toggle the last bit of the
// range so that both ends round to the same integer, if possible.
// If they do both round the same then we terminate the search
// for the root *very* quickly when finding an integer result.
// At the point that this function is called we know that "a" is
// below the root and "b" above it, so this change can not result
// in the root no longer being bracketed.
//
template <class Real, class Tol>
void adjust_bounds(Real& /* a */, Real& /* b */, Tol const& /* tol */){}
template <class Real>
void adjust_bounds(Real& /* a */, Real& b, tools::equal_floor const& /* tol */)
{
BOOST_MATH_STD_USING
b -= tools::epsilon<Real>() * b;
}
template <class Real>
void adjust_bounds(Real& a, Real& /* b */, tools::equal_ceil const& /* tol */)
{
BOOST_MATH_STD_USING
a += tools::epsilon<Real>() * a;
}
template <class Real>
void adjust_bounds(Real& a, Real& b, tools::equal_nearest_integer const& /* tol */)
{
BOOST_MATH_STD_USING
a += tools::epsilon<Real>() * a;
b -= tools::epsilon<Real>() * b;
}
//
// This is where all the work is done:
//
template <class Dist, class Tolerance>
typename Dist::value_type
do_inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool comp,
typename Dist::value_type guess,
const typename Dist::value_type& multiplier,
typename Dist::value_type adder,
const Tolerance& tol,
std::uintmax_t& max_iter)
{
typedef typename Dist::value_type value_type;
typedef typename Dist::policy_type policy_type;
static const char* function = "boost::math::do_inverse_discrete_quantile<%1%>";
BOOST_MATH_STD_USING
distribution_quantile_finder<Dist> f(dist, p, comp);
//
// Max bounds of the distribution:
//
value_type min_bound, max_bound;
boost::math::tie(min_bound, max_bound) = support(dist);
if(guess > max_bound)
guess = max_bound;
if(guess < min_bound)
guess = min_bound;
value_type fa = f(guess);
std::uintmax_t count = max_iter - 1;
value_type fb(fa), a(guess), b =0; // Compiler warning C4701: potentially uninitialized local variable 'b' used
if(fa == 0)
return guess;
//
// For small expected results, just use a linear search:
//
if(guess < 10)
{
b = a;
while((a < 10) && (fa * fb >= 0))
{
if(fb <= 0)
{
a = b;
b = a + 1;
if(b > max_bound)
b = max_bound;
fb = f(b);
--count;
if(fb == 0)
return b;
if(a == b)
return b; // can't go any higher!
}
else
{
b = a;
a = (std::max)(value_type(b - 1), value_type(0));
if(a < min_bound)
a = min_bound;
fa = f(a);
--count;
if(fa == 0)
return a;
if(a == b)
return a; // We can't go any lower than this!
}
}
}
//
// Try and bracket using a couple of additions first,
// we're assuming that "guess" is likely to be accurate
// to the nearest int or so:
//
else if((adder != 0) && (a + adder != a))
{
//
// If we're looking for a large result, then bump "adder" up
// by a bit to increase our chances of bracketing the root:
//
//adder = (std::max)(adder, 0.001f * guess);
if(fa < 0)
{
b = a + adder;
if(b > max_bound)
b = max_bound;
}
else
{
b = (std::max)(value_type(a - adder), value_type(0));
if(b < min_bound)
b = min_bound;
}
fb = f(b);
--count;
if(fb == 0)
return b;
if(count && (fa * fb >= 0))
{
//
// We didn't bracket the root, try
// once more:
//
a = b;
fa = fb;
if(fa < 0)
{
b = a + adder;
if(b > max_bound)
b = max_bound;
}
else
{
b = (std::max)(value_type(a - adder), value_type(0));
if(b < min_bound)
b = min_bound;
}
fb = f(b);
--count;
}
if(a > b)
{
using std::swap;
swap(a, b);
swap(fa, fb);
}
}
//
// If the root hasn't been bracketed yet, try again
// using the multiplier this time:
//
if((boost::math::sign)(fb) == (boost::math::sign)(fa))
{
if(fa < 0)
{
//
// Zero is to the right of x2, so walk upwards
// until we find it:
//
while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
{
if(count == 0)
return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", b, policy_type()); // LCOV_EXCL_LINE
a = b;
fa = fb;
b *= multiplier;
if(b > max_bound)
b = max_bound;
fb = f(b);
--count;
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
}
}
else
{
//
// Zero is to the left of a, so walk downwards
// until we find it:
//
while(((boost::math::sign)(fb) == (boost::math::sign)(fa)) && (a != b))
{
if(fabs(a) < tools::min_value<value_type>())
{
// Escape route just in case the answer is zero!
max_iter -= count;
max_iter += 1;
return 0;
}
if(count == 0)
return policies::raise_evaluation_error(function, "Unable to bracket root, last nearest value was %1%", a, policy_type()); // LCOV_EXCL_LINE
b = a;
fb = fa;
a /= multiplier;
if(a < min_bound)
a = min_bound;
fa = f(a);
--count;
BOOST_MATH_INSTRUMENT_CODE("a = " << a << " b = " << b << " fa = " << fa << " fb = " << fb << " count = " << count);
}
}
}
max_iter -= count;
if(fa == 0)
return a;
if(fb == 0)
return b;
if(a == b)
return b; // Ran out of bounds trying to bracket - there is no answer!
//
// Adjust bounds so that if we're looking for an integer
// result, then both ends round the same way:
//
adjust_bounds(a, b, tol);
//
// We don't want zero or denorm lower bounds:
//
if(a < tools::min_value<value_type>())
a = tools::min_value<value_type>();
//
// Go ahead and find the root:
//
std::pair<value_type, value_type> r = toms748_solve(f, a, b, fa, fb, tol, count, policy_type());
max_iter += count;
if (max_iter >= policies::get_max_root_iterations<policy_type>())
{
return policies::raise_evaluation_error<value_type>(function, "Unable to locate solution in a reasonable time:" // LCOV_EXCL_LINE
" either there is no answer to quantile or the answer is infinite. Current best guess is %1%", r.first, policy_type()); // LCOV_EXCL_LINE
}
BOOST_MATH_INSTRUMENT_CODE("max_iter = " << max_iter << " count = " << count);
return (r.first + r.second) / 2;
}
//
// Some special routine for rounding up and down:
// We want to check and see if we are very close to an integer, and if so test to see if
// that integer is an exact root of the cdf. We do this because our root finder only
// guarantees to find *a root*, and there can sometimes be many consecutive floating
// point values which are all roots. This is especially true if the target probability
// is very close 1.
//
template <class Dist>
inline typename Dist::value_type round_to_floor(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
{
BOOST_MATH_STD_USING
typename Dist::value_type cc = ceil(result);
typename Dist::value_type pp = cc <= support(d).second ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 1;
if(pp == p)
result = cc;
else
result = floor(result);
//
// Now find the smallest integer <= result for which we get an exact root:
//
while(result != 0)
{
cc = floor(float_prior(result));
if(cc < support(d).first)
break;
pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
if(c ? pp > p : pp < p)
break;
result = cc;
}
return result;
}
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable:4127)
#endif
template <class Dist>
inline typename Dist::value_type round_to_ceil(const Dist& d, typename Dist::value_type result, typename Dist::value_type p, bool c)
{
BOOST_MATH_STD_USING
typename Dist::value_type cc = floor(result);
typename Dist::value_type pp = cc >= support(d).first ? c ? cdf(complement(d, cc)) : cdf(d, cc) : 0;
if(pp == p)
result = cc;
else
result = ceil(result);
//
// Now find the largest integer >= result for which we get an exact root:
//
while(true)
{
cc = ceil(float_next(result));
if(cc > support(d).second)
break;
pp = c ? cdf(complement(d, cc)) : cdf(d, cc);
if(c ? pp < p : pp > p)
break;
result = cc;
}
return result;
}
#ifdef _MSC_VER
#pragma warning(pop)
#endif
//
// Now finally are the public API functions.
// There is one overload for each policy,
// each one is responsible for selecting the correct
// termination condition, and rounding the result
// to an int where required.
//
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
typename Dist::value_type p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::real>&,
std::uintmax_t& max_iter)
{
if(p > 0.5)
{
p = 1 - p;
c = !c;
}
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
return do_inverse_discrete_quantile(
dist,
p,
c,
guess,
multiplier,
adder,
tools::eps_tolerance<typename Dist::value_type>(policies::digits<typename Dist::value_type, typename Dist::policy_type>()),
max_iter);
}
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_outwards>&,
std::uintmax_t& max_iter)
{
typedef typename Dist::value_type value_type;
BOOST_MATH_STD_USING
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
//
// What happens next depends on whether we're looking for an
// upper or lower quantile:
//
if(pp < 0.5f)
return round_to_floor(dist, do_inverse_discrete_quantile(
dist,
p,
c,
(guess < 1 ? value_type(1) : (value_type)floor(guess)),
multiplier,
adder,
tools::equal_floor(),
max_iter), p, c);
// else:
return round_to_ceil(dist, do_inverse_discrete_quantile(
dist,
p,
c,
(value_type)ceil(guess),
multiplier,
adder,
tools::equal_ceil(),
max_iter), p, c);
}
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_inwards>&,
std::uintmax_t& max_iter)
{
typedef typename Dist::value_type value_type;
BOOST_MATH_STD_USING
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
//
// What happens next depends on whether we're looking for an
// upper or lower quantile:
//
if(pp < 0.5f)
return round_to_ceil(dist, do_inverse_discrete_quantile(
dist,
p,
c,
ceil(guess),
multiplier,
adder,
tools::equal_ceil(),
max_iter), p, c);
// else:
return round_to_floor(dist, do_inverse_discrete_quantile(
dist,
p,
c,
(guess < 1 ? value_type(1) : floor(guess)),
multiplier,
adder,
tools::equal_floor(),
max_iter), p, c);
}
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_down>&,
std::uintmax_t& max_iter)
{
typedef typename Dist::value_type value_type;
BOOST_MATH_STD_USING
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
return round_to_floor(dist, do_inverse_discrete_quantile(
dist,
p,
c,
(guess < 1 ? value_type(1) : floor(guess)),
multiplier,
adder,
tools::equal_floor(),
max_iter), p, c);
}
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_up>&,
std::uintmax_t& max_iter)
{
BOOST_MATH_STD_USING
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
return round_to_ceil(dist, do_inverse_discrete_quantile(
dist,
p,
c,
ceil(guess),
multiplier,
adder,
tools::equal_ceil(),
max_iter), p, c);
}
template <class Dist>
inline typename Dist::value_type
inverse_discrete_quantile(
const Dist& dist,
const typename Dist::value_type& p,
bool c,
const typename Dist::value_type& guess,
const typename Dist::value_type& multiplier,
const typename Dist::value_type& adder,
const policies::discrete_quantile<policies::integer_round_nearest>&,
std::uintmax_t& max_iter)
{
typedef typename Dist::value_type value_type;
BOOST_MATH_STD_USING
typename Dist::value_type pp = c ? 1 - p : p;
if(pp <= pdf(dist, 0))
return 0;
//
// Note that we adjust the guess to the nearest half-integer:
// this increase the chances that we will bracket the root
// with two results that both round to the same integer quickly.
//
return round_to_floor(dist, do_inverse_discrete_quantile(
dist,
p,
c,
(guess < 0.5f ? value_type(1.5f) : floor(guess + 0.5f) + 0.5f),
multiplier,
adder,
tools::equal_nearest_integer(),
max_iter) + 0.5f, p, c);
}
}}} // namespaces
#endif // BOOST_MATH_DISTRIBUTIONS_DETAIL_INV_DISCRETE_QUANTILE