boost/graph/planar_canonical_ordering.hpp
//=======================================================================
// Copyright (c) Aaron Windsor 2007
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//=======================================================================
#ifndef __PLANAR_CANONICAL_ORDERING_HPP__
#define __PLANAR_CANONICAL_ORDERING_HPP__
#include <vector>
#include <list>
#include <boost/config.hpp>
#include <boost/next_prior.hpp>
#include <boost/graph/graph_traits.hpp>
#include <boost/graph/properties.hpp>
#include <boost/property_map/property_map.hpp>
namespace boost
{
namespace detail
{
enum planar_canonical_ordering_state
{
PCO_PROCESSED,
PCO_UNPROCESSED,
PCO_ONE_NEIGHBOR_PROCESSED,
PCO_READY_TO_BE_PROCESSED
};
}
template < typename Graph, typename PlanarEmbedding, typename OutputIterator,
typename VertexIndexMap >
void planar_canonical_ordering(const Graph& g, PlanarEmbedding embedding,
OutputIterator ordering, VertexIndexMap vm)
{
typedef typename graph_traits< Graph >::vertex_descriptor vertex_t;
typedef typename graph_traits< Graph >::edge_descriptor edge_t;
typedef
typename graph_traits< Graph >::adjacency_iterator adjacency_iterator_t;
typedef typename property_traits< PlanarEmbedding >::value_type
embedding_value_t;
typedef typename embedding_value_t::const_iterator embedding_iterator_t;
typedef iterator_property_map< typename std::vector< vertex_t >::iterator,
VertexIndexMap >
vertex_to_vertex_map_t;
typedef iterator_property_map<
typename std::vector< std::size_t >::iterator, VertexIndexMap >
vertex_to_size_t_map_t;
std::vector< vertex_t > processed_neighbor_vector(num_vertices(g));
vertex_to_vertex_map_t processed_neighbor(
processed_neighbor_vector.begin(), vm);
std::vector< std::size_t > status_vector(
num_vertices(g), detail::PCO_UNPROCESSED);
vertex_to_size_t_map_t status(status_vector.begin(), vm);
std::list< vertex_t > ready_to_be_processed;
vertex_t first_vertex = *vertices(g).first;
vertex_t second_vertex = first_vertex;
adjacency_iterator_t ai, ai_end;
for (boost::tie(ai, ai_end) = adjacent_vertices(first_vertex, g);
ai != ai_end; ++ai)
{
if (*ai == first_vertex)
continue;
second_vertex = *ai;
break;
}
ready_to_be_processed.push_back(first_vertex);
status[first_vertex] = detail::PCO_READY_TO_BE_PROCESSED;
ready_to_be_processed.push_back(second_vertex);
status[second_vertex] = detail::PCO_READY_TO_BE_PROCESSED;
while (!ready_to_be_processed.empty())
{
vertex_t u = ready_to_be_processed.front();
ready_to_be_processed.pop_front();
if (status[u] != detail::PCO_READY_TO_BE_PROCESSED
&& u != second_vertex)
continue;
embedding_iterator_t ei, ei_start, ei_end;
embedding_iterator_t next_edge_itr, prior_edge_itr;
ei_start = embedding[u].begin();
ei_end = embedding[u].end();
prior_edge_itr = prior(ei_end);
while (source(*prior_edge_itr, g) == target(*prior_edge_itr, g))
prior_edge_itr = prior(prior_edge_itr);
for (ei = ei_start; ei != ei_end; ++ei)
{
edge_t e(*ei); // e = (u,v)
next_edge_itr
= boost::next(ei) == ei_end ? ei_start : boost::next(ei);
vertex_t v = source(e, g) == u ? target(e, g) : source(e, g);
vertex_t prior_vertex = source(*prior_edge_itr, g) == u
? target(*prior_edge_itr, g)
: source(*prior_edge_itr, g);
vertex_t next_vertex = source(*next_edge_itr, g) == u
? target(*next_edge_itr, g)
: source(*next_edge_itr, g);
// Need prior_vertex, u, v, and next_vertex to all be
// distinct. This is possible, since the input graph is
// triangulated. It'll be true all the time in a simple
// graph, but loops and parallel edges cause some complications.
if (prior_vertex == v || prior_vertex == u)
{
prior_edge_itr = ei;
continue;
}
// Skip any self-loops
if (u == v)
continue;
// Move next_edge_itr (and next_vertex) forwards
// past any loops or parallel edges
while (next_vertex == v || next_vertex == u)
{
next_edge_itr = boost::next(next_edge_itr) == ei_end
? ei_start
: boost::next(next_edge_itr);
next_vertex = source(*next_edge_itr, g) == u
? target(*next_edge_itr, g)
: source(*next_edge_itr, g);
}
if (status[v] == detail::PCO_UNPROCESSED)
{
status[v] = detail::PCO_ONE_NEIGHBOR_PROCESSED;
processed_neighbor[v] = u;
}
else if (status[v] == detail::PCO_ONE_NEIGHBOR_PROCESSED)
{
vertex_t x = processed_neighbor[v];
// are edges (v,u) and (v,x) adjacent in the planar
// embedding? if so, set status[v] = 1. otherwise, set
// status[v] = 2.
if ((next_vertex == x
&& !(first_vertex == u && second_vertex == x))
|| (prior_vertex == x
&& !(first_vertex == x && second_vertex == u)))
{
status[v] = detail::PCO_READY_TO_BE_PROCESSED;
}
else
{
status[v] = detail::PCO_READY_TO_BE_PROCESSED + 1;
}
}
else if (status[v] > detail::PCO_ONE_NEIGHBOR_PROCESSED)
{
// check the two edges before and after (v,u) in the planar
// embedding, and update status[v] accordingly
bool processed_before = false;
if (status[prior_vertex] == detail::PCO_PROCESSED)
processed_before = true;
bool processed_after = false;
if (status[next_vertex] == detail::PCO_PROCESSED)
processed_after = true;
if (!processed_before && !processed_after)
++status[v];
else if (processed_before && processed_after)
--status[v];
}
if (status[v] == detail::PCO_READY_TO_BE_PROCESSED)
ready_to_be_processed.push_back(v);
prior_edge_itr = ei;
}
status[u] = detail::PCO_PROCESSED;
*ordering = u;
++ordering;
}
}
template < typename Graph, typename PlanarEmbedding, typename OutputIterator >
void planar_canonical_ordering(
const Graph& g, PlanarEmbedding embedding, OutputIterator ordering)
{
planar_canonical_ordering(g, embedding, ordering, get(vertex_index, g));
}
} // namespace boost
#endif //__PLANAR_CANONICAL_ORDERING_HPP__