boost/compute/algorithm/detail/scan_on_gpu.hpp
//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_ALGORITHM_DETAIL_SCAN_ON_GPU_HPP
#define BOOST_COMPUTE_ALGORITHM_DETAIL_SCAN_ON_GPU_HPP
#include <boost/compute/kernel.hpp>
#include <boost/compute/detail/meta_kernel.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/detail/iterator_range_size.hpp>
#include <boost/compute/memory/local_buffer.hpp>
#include <boost/compute/iterator/buffer_iterator.hpp>
namespace boost {
namespace compute {
namespace detail {
template<class InputIterator, class OutputIterator, class BinaryOperator>
class local_scan_kernel : public meta_kernel
{
public:
local_scan_kernel(InputIterator first,
InputIterator last,
OutputIterator result,
bool exclusive,
BinaryOperator op)
: meta_kernel("local_scan")
{
typedef typename std::iterator_traits<InputIterator>::value_type T;
(void) last;
bool checked = true;
m_block_sums_arg = add_arg<T *>(memory_object::global_memory, "block_sums");
m_scratch_arg = add_arg<T *>(memory_object::local_memory, "scratch");
m_block_size_arg = add_arg<const cl_uint>("block_size");
m_count_arg = add_arg<const cl_uint>("count");
m_init_value_arg = add_arg<const T>("init");
// work-item parameters
*this <<
"const uint gid = get_global_id(0);\n" <<
"const uint lid = get_local_id(0);\n";
// check against data size
if(checked){
*this <<
"if(gid < count){\n";
}
// copy values from input to local memory
if(exclusive){
*this <<
decl<const T>("local_init") << "= (gid == 0) ? init : 0;\n" <<
"if(lid == 0){ scratch[lid] = local_init; }\n" <<
"else { scratch[lid] = " << first[expr<cl_uint>("gid-1")] << "; }\n";
}
else{
*this <<
"scratch[lid] = " << first[expr<cl_uint>("gid")] << ";\n";
}
if(checked){
*this <<
"}\n"
"else {\n" <<
" scratch[lid] = 0;\n" <<
"}\n";
}
// wait for all threads to read from input
*this <<
"barrier(CLK_LOCAL_MEM_FENCE);\n";
// perform scan
*this <<
"for(uint i = 1; i < block_size; i <<= 1){\n" <<
" " << decl<const T>("x") << " = lid >= i ? scratch[lid-i] : 0;\n" <<
" barrier(CLK_LOCAL_MEM_FENCE);\n" <<
" if(lid >= i){\n" <<
" scratch[lid] = " << op(var<T>("scratch[lid]"), var<T>("x")) << ";\n" <<
" }\n" <<
" barrier(CLK_LOCAL_MEM_FENCE);\n" <<
"}\n";
// copy results to output
if(checked){
*this <<
"if(gid < count){\n";
}
*this <<
result[expr<cl_uint>("gid")] << " = scratch[lid];\n";
if(checked){
*this << "}\n";
}
// store sum for the block
if(exclusive){
*this <<
"if(lid == block_size - 1 && gid < count) {\n" <<
" block_sums[get_group_id(0)] = " <<
op(first[expr<cl_uint>("gid")], var<T>("scratch[lid]")) <<
";\n" <<
"}\n";
}
else {
*this <<
"if(lid == block_size - 1){\n" <<
" block_sums[get_group_id(0)] = scratch[lid];\n" <<
"}\n";
}
}
size_t m_block_sums_arg;
size_t m_scratch_arg;
size_t m_block_size_arg;
size_t m_count_arg;
size_t m_init_value_arg;
};
template<class T, class BinaryOperator>
class write_scanned_output_kernel : public meta_kernel
{
public:
write_scanned_output_kernel(BinaryOperator op)
: meta_kernel("write_scanned_output")
{
bool checked = true;
m_output_arg = add_arg<T *>(memory_object::global_memory, "output");
m_block_sums_arg = add_arg<const T *>(memory_object::global_memory, "block_sums");
m_count_arg = add_arg<const cl_uint>("count");
// work-item parameters
*this <<
"const uint gid = get_global_id(0);\n" <<
"const uint block_id = get_group_id(0);\n";
// check against data size
if(checked){
*this << "if(gid < count){\n";
}
// write output
*this <<
"output[gid] = " <<
op(var<T>("block_sums[block_id]"), var<T>("output[gid] ")) << ";\n";
if(checked){
*this << "}\n";
}
}
size_t m_output_arg;
size_t m_block_sums_arg;
size_t m_count_arg;
};
template<class InputIterator>
inline size_t pick_scan_block_size(InputIterator first, InputIterator last)
{
size_t count = iterator_range_size(first, last);
if(count == 0) { return 0; }
else if(count <= 1) { return 1; }
else if(count <= 2) { return 2; }
else if(count <= 4) { return 4; }
else if(count <= 8) { return 8; }
else if(count <= 16) { return 16; }
else if(count <= 32) { return 32; }
else if(count <= 64) { return 64; }
else if(count <= 128) { return 128; }
else { return 256; }
}
template<class InputIterator, class OutputIterator, class T, class BinaryOperator>
inline OutputIterator scan_impl(InputIterator first,
InputIterator last,
OutputIterator result,
bool exclusive,
T init,
BinaryOperator op,
command_queue &queue)
{
typedef typename
std::iterator_traits<InputIterator>::value_type
input_type;
typedef typename
std::iterator_traits<InputIterator>::difference_type
difference_type;
typedef typename
std::iterator_traits<OutputIterator>::value_type
output_type;
const context &context = queue.get_context();
const size_t count = detail::iterator_range_size(first, last);
size_t block_size = pick_scan_block_size(first, last);
size_t block_count = count / block_size;
if(block_count * block_size < count){
block_count++;
}
::boost::compute::vector<input_type> block_sums(block_count, context);
// zero block sums
input_type zero;
std::memset(&zero, 0, sizeof(input_type));
::boost::compute::fill(block_sums.begin(), block_sums.end(), zero, queue);
// local scan
local_scan_kernel<InputIterator, OutputIterator, BinaryOperator>
local_scan_kernel(first, last, result, exclusive, op);
::boost::compute::kernel kernel = local_scan_kernel.compile(context);
kernel.set_arg(local_scan_kernel.m_scratch_arg, local_buffer<input_type>(block_size));
kernel.set_arg(local_scan_kernel.m_block_sums_arg, block_sums);
kernel.set_arg(local_scan_kernel.m_block_size_arg, static_cast<cl_uint>(block_size));
kernel.set_arg(local_scan_kernel.m_count_arg, static_cast<cl_uint>(count));
kernel.set_arg(local_scan_kernel.m_init_value_arg, static_cast<output_type>(init));
queue.enqueue_1d_range_kernel(kernel,
0,
block_count * block_size,
block_size);
// inclusive scan block sums
if(block_count > 1){
scan_impl(block_sums.begin(),
block_sums.end(),
block_sums.begin(),
false,
init,
op,
queue
);
}
// add block sums to each block
if(block_count > 1){
write_scanned_output_kernel<input_type, BinaryOperator>
write_output_kernel(op);
kernel = write_output_kernel.compile(context);
kernel.set_arg(write_output_kernel.m_output_arg, result.get_buffer());
kernel.set_arg(write_output_kernel.m_block_sums_arg, block_sums);
kernel.set_arg(write_output_kernel.m_count_arg, static_cast<cl_uint>(count));
queue.enqueue_1d_range_kernel(kernel,
block_size,
block_count * block_size,
block_size);
}
return result + static_cast<difference_type>(count);
}
template<class InputIterator, class OutputIterator, class T, class BinaryOperator>
inline OutputIterator dispatch_scan(InputIterator first,
InputIterator last,
OutputIterator result,
bool exclusive,
T init,
BinaryOperator op,
command_queue &queue)
{
return scan_impl(first, last, result, exclusive, init, op, queue);
}
template<class InputIterator, class T, class BinaryOperator>
inline InputIterator dispatch_scan(InputIterator first,
InputIterator last,
InputIterator result,
bool exclusive,
T init,
BinaryOperator op,
command_queue &queue)
{
typedef typename std::iterator_traits<InputIterator>::value_type value_type;
if(first == result){
// scan input in-place
const context &context = queue.get_context();
// make a temporary copy the input
size_t count = iterator_range_size(first, last);
vector<value_type> tmp(count, context);
copy(first, last, tmp.begin(), queue);
// scan from temporary values
return scan_impl(tmp.begin(), tmp.end(), first, exclusive, init, op, queue);
}
else {
// scan input to output
return scan_impl(first, last, result, exclusive, init, op, queue);
}
}
template<class InputIterator, class OutputIterator, class T, class BinaryOperator>
inline OutputIterator scan_on_gpu(InputIterator first,
InputIterator last,
OutputIterator result,
bool exclusive,
T init,
BinaryOperator op,
command_queue &queue)
{
if(first == last){
return result;
}
return dispatch_scan(first, last, result, exclusive, init, op, queue);
}
} // end detail namespace
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_ALGORITHM_DETAIL_SCAN_ON_GPU_HPP