boost/asio/detail/impl/kqueue_reactor.ipp
//
// detail/impl/kqueue_reactor.ipp
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
//
// Copyright (c) 2003-2024 Christopher M. Kohlhoff (chris at kohlhoff dot com)
// Copyright (c) 2005 Stefan Arentz (stefan at soze dot com)
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
#ifndef BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP
#define BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP
#if defined(_MSC_VER) && (_MSC_VER >= 1200)
# pragma once
#endif // defined(_MSC_VER) && (_MSC_VER >= 1200)
#include <boost/asio/detail/config.hpp>
#if defined(BOOST_ASIO_HAS_KQUEUE)
#include <boost/asio/detail/kqueue_reactor.hpp>
#include <boost/asio/detail/scheduler.hpp>
#include <boost/asio/detail/throw_error.hpp>
#include <boost/asio/error.hpp>
#if defined(__NetBSD__)
# include <sys/param.h>
#endif
#include <boost/asio/detail/push_options.hpp>
#if defined(__NetBSD__) && __NetBSD_Version__ < 999001500
# define BOOST_ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \
EV_SET(ev, ident, filt, flags, fflags, data, \
reinterpret_cast<intptr_t>(static_cast<void*>(udata)))
#else
# define BOOST_ASIO_KQUEUE_EV_SET(ev, ident, filt, flags, fflags, data, udata) \
EV_SET(ev, ident, filt, flags, fflags, data, udata)
#endif
namespace boost {
namespace asio {
namespace detail {
kqueue_reactor::kqueue_reactor(boost::asio::execution_context& ctx)
: execution_context_service_base<kqueue_reactor>(ctx),
scheduler_(use_service<scheduler>(ctx)),
mutex_(BOOST_ASIO_CONCURRENCY_HINT_IS_LOCKING(
REACTOR_REGISTRATION, scheduler_.concurrency_hint())),
kqueue_fd_(do_kqueue_create()),
interrupter_(),
shutdown_(false),
registered_descriptors_mutex_(mutex_.enabled())
{
struct kevent events[1];
BOOST_ASIO_KQUEUE_EV_SET(&events[0], interrupter_.read_descriptor(),
EVFILT_READ, EV_ADD, 0, 0, &interrupter_);
if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1)
{
boost::system::error_code error(errno,
boost::asio::error::get_system_category());
boost::asio::detail::throw_error(error);
}
}
kqueue_reactor::~kqueue_reactor()
{
close(kqueue_fd_);
}
void kqueue_reactor::shutdown()
{
mutex::scoped_lock lock(mutex_);
shutdown_ = true;
lock.unlock();
op_queue<operation> ops;
while (descriptor_state* state = registered_descriptors_.first())
{
for (int i = 0; i < max_ops; ++i)
ops.push(state->op_queue_[i]);
state->shutdown_ = true;
registered_descriptors_.free(state);
}
timer_queues_.get_all_timers(ops);
scheduler_.abandon_operations(ops);
}
void kqueue_reactor::notify_fork(
boost::asio::execution_context::fork_event fork_ev)
{
if (fork_ev == boost::asio::execution_context::fork_child)
{
// The kqueue descriptor is automatically closed in the child.
kqueue_fd_ = -1;
kqueue_fd_ = do_kqueue_create();
interrupter_.recreate();
struct kevent events[2];
BOOST_ASIO_KQUEUE_EV_SET(&events[0], interrupter_.read_descriptor(),
EVFILT_READ, EV_ADD, 0, 0, &interrupter_);
if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
boost::asio::detail::throw_error(ec, "kqueue interrupter registration");
}
// Re-register all descriptors with kqueue.
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
for (descriptor_state* state = registered_descriptors_.first();
state != 0; state = state->next_)
{
if (state->num_kevents_ > 0)
{
BOOST_ASIO_KQUEUE_EV_SET(&events[0], state->descriptor_,
EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, state);
BOOST_ASIO_KQUEUE_EV_SET(&events[1], state->descriptor_,
EVFILT_WRITE, EV_ADD | EV_CLEAR, 0, 0, state);
if (::kevent(kqueue_fd_, events, state->num_kevents_, 0, 0, 0) == -1)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
boost::asio::detail::throw_error(ec, "kqueue re-registration");
}
}
}
}
}
void kqueue_reactor::init_task()
{
scheduler_.init_task();
}
int kqueue_reactor::register_descriptor(socket_type descriptor,
kqueue_reactor::per_descriptor_data& descriptor_data)
{
descriptor_data = allocate_descriptor_state();
BOOST_ASIO_HANDLER_REACTOR_REGISTRATION((
context(), static_cast<uintmax_t>(descriptor),
reinterpret_cast<uintmax_t>(descriptor_data)));
mutex::scoped_lock lock(descriptor_data->mutex_);
descriptor_data->descriptor_ = descriptor;
descriptor_data->num_kevents_ = 0;
descriptor_data->shutdown_ = false;
return 0;
}
int kqueue_reactor::register_internal_descriptor(
int op_type, socket_type descriptor,
kqueue_reactor::per_descriptor_data& descriptor_data, reactor_op* op)
{
descriptor_data = allocate_descriptor_state();
BOOST_ASIO_HANDLER_REACTOR_REGISTRATION((
context(), static_cast<uintmax_t>(descriptor),
reinterpret_cast<uintmax_t>(descriptor_data)));
mutex::scoped_lock lock(descriptor_data->mutex_);
descriptor_data->descriptor_ = descriptor;
descriptor_data->num_kevents_ = 1;
descriptor_data->shutdown_ = false;
descriptor_data->op_queue_[op_type].push(op);
struct kevent events[1];
BOOST_ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ,
EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
if (::kevent(kqueue_fd_, events, 1, 0, 0, 0) == -1)
return errno;
return 0;
}
void kqueue_reactor::move_descriptor(socket_type,
kqueue_reactor::per_descriptor_data& target_descriptor_data,
kqueue_reactor::per_descriptor_data& source_descriptor_data)
{
target_descriptor_data = source_descriptor_data;
source_descriptor_data = 0;
}
void kqueue_reactor::call_post_immediate_completion(
operation* op, bool is_continuation, const void* self)
{
static_cast<const kqueue_reactor*>(self)->post_immediate_completion(
op, is_continuation);
}
void kqueue_reactor::start_op(int op_type, socket_type descriptor,
kqueue_reactor::per_descriptor_data& descriptor_data, reactor_op* op,
bool is_continuation, bool allow_speculative,
void (*on_immediate)(operation*, bool, const void*),
const void* immediate_arg)
{
if (!descriptor_data)
{
op->ec_ = boost::asio::error::bad_descriptor;
on_immediate(op, is_continuation, immediate_arg);
return;
}
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (descriptor_data->shutdown_)
{
on_immediate(op, is_continuation, immediate_arg);
return;
}
if (descriptor_data->op_queue_[op_type].empty())
{
static const int num_kevents[max_ops] = { 1, 2, 1 };
if (allow_speculative
&& (op_type != read_op
|| descriptor_data->op_queue_[except_op].empty()))
{
if (op->perform())
{
descriptor_lock.unlock();
on_immediate(op, is_continuation, immediate_arg);
return;
}
if (descriptor_data->num_kevents_ < num_kevents[op_type])
{
struct kevent events[2];
BOOST_ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ,
EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
BOOST_ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE,
EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
if (::kevent(kqueue_fd_, events, num_kevents[op_type], 0, 0, 0) != -1)
{
descriptor_data->num_kevents_ = num_kevents[op_type];
}
else
{
op->ec_ = boost::system::error_code(errno,
boost::asio::error::get_system_category());
on_immediate(op, is_continuation, immediate_arg);
return;
}
}
}
else
{
if (descriptor_data->num_kevents_ < num_kevents[op_type])
descriptor_data->num_kevents_ = num_kevents[op_type];
struct kevent events[2];
BOOST_ASIO_KQUEUE_EV_SET(&events[0], descriptor, EVFILT_READ,
EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
BOOST_ASIO_KQUEUE_EV_SET(&events[1], descriptor, EVFILT_WRITE,
EV_ADD | EV_CLEAR, 0, 0, descriptor_data);
::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0);
}
}
descriptor_data->op_queue_[op_type].push(op);
scheduler_.work_started();
}
void kqueue_reactor::cancel_ops(socket_type,
kqueue_reactor::per_descriptor_data& descriptor_data)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_lock.unlock();
scheduler_.post_deferred_completions(ops);
}
void kqueue_reactor::cancel_ops_by_key(socket_type,
kqueue_reactor::per_descriptor_data& descriptor_data,
int op_type, void* cancellation_key)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
op_queue<operation> ops;
op_queue<reactor_op> other_ops;
while (reactor_op* op = descriptor_data->op_queue_[op_type].front())
{
descriptor_data->op_queue_[op_type].pop();
if (op->cancellation_key_ == cancellation_key)
{
op->ec_ = boost::asio::error::operation_aborted;
ops.push(op);
}
else
other_ops.push(op);
}
descriptor_data->op_queue_[op_type].push(other_ops);
descriptor_lock.unlock();
scheduler_.post_deferred_completions(ops);
}
void kqueue_reactor::deregister_descriptor(socket_type descriptor,
kqueue_reactor::per_descriptor_data& descriptor_data, bool closing)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (!descriptor_data->shutdown_)
{
if (closing)
{
// The descriptor will be automatically removed from the kqueue when it
// is closed.
}
else
{
struct kevent events[2];
BOOST_ASIO_KQUEUE_EV_SET(&events[0], descriptor,
EVFILT_READ, EV_DELETE, 0, 0, 0);
BOOST_ASIO_KQUEUE_EV_SET(&events[1], descriptor,
EVFILT_WRITE, EV_DELETE, 0, 0, 0);
::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0);
}
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
{
while (reactor_op* op = descriptor_data->op_queue_[i].front())
{
op->ec_ = boost::asio::error::operation_aborted;
descriptor_data->op_queue_[i].pop();
ops.push(op);
}
}
descriptor_data->descriptor_ = -1;
descriptor_data->shutdown_ = true;
descriptor_lock.unlock();
BOOST_ASIO_HANDLER_REACTOR_DEREGISTRATION((
context(), static_cast<uintmax_t>(descriptor),
reinterpret_cast<uintmax_t>(descriptor_data)));
scheduler_.post_deferred_completions(ops);
// Leave descriptor_data set so that it will be freed by the subsequent
// call to cleanup_descriptor_data.
}
else
{
// We are shutting down, so prevent cleanup_descriptor_data from freeing
// the descriptor_data object and let the destructor free it instead.
descriptor_data = 0;
}
}
void kqueue_reactor::deregister_internal_descriptor(socket_type descriptor,
kqueue_reactor::per_descriptor_data& descriptor_data)
{
if (!descriptor_data)
return;
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (!descriptor_data->shutdown_)
{
struct kevent events[2];
BOOST_ASIO_KQUEUE_EV_SET(&events[0], descriptor,
EVFILT_READ, EV_DELETE, 0, 0, 0);
BOOST_ASIO_KQUEUE_EV_SET(&events[1], descriptor,
EVFILT_WRITE, EV_DELETE, 0, 0, 0);
::kevent(kqueue_fd_, events, descriptor_data->num_kevents_, 0, 0, 0);
op_queue<operation> ops;
for (int i = 0; i < max_ops; ++i)
ops.push(descriptor_data->op_queue_[i]);
descriptor_data->descriptor_ = -1;
descriptor_data->shutdown_ = true;
descriptor_lock.unlock();
BOOST_ASIO_HANDLER_REACTOR_DEREGISTRATION((
context(), static_cast<uintmax_t>(descriptor),
reinterpret_cast<uintmax_t>(descriptor_data)));
// Leave descriptor_data set so that it will be freed by the subsequent
// call to cleanup_descriptor_data.
}
else
{
// We are shutting down, so prevent cleanup_descriptor_data from freeing
// the descriptor_data object and let the destructor free it instead.
descriptor_data = 0;
}
}
void kqueue_reactor::cleanup_descriptor_data(
per_descriptor_data& descriptor_data)
{
if (descriptor_data)
{
free_descriptor_state(descriptor_data);
descriptor_data = 0;
}
}
void kqueue_reactor::run(long usec, op_queue<operation>& ops)
{
mutex::scoped_lock lock(mutex_);
// Determine how long to block while waiting for events.
timespec timeout_buf = { 0, 0 };
timespec* timeout = usec ? get_timeout(usec, timeout_buf) : &timeout_buf;
lock.unlock();
// Block on the kqueue descriptor.
struct kevent events[128];
int num_events = kevent(kqueue_fd_, 0, 0, events, 128, timeout);
#if defined(BOOST_ASIO_ENABLE_HANDLER_TRACKING)
// Trace the waiting events.
for (int i = 0; i < num_events; ++i)
{
void* ptr = reinterpret_cast<void*>(events[i].udata);
if (ptr != &interrupter_)
{
unsigned event_mask = 0;
switch (events[i].filter)
{
case EVFILT_READ:
event_mask |= BOOST_ASIO_HANDLER_REACTOR_READ_EVENT;
break;
case EVFILT_WRITE:
event_mask |= BOOST_ASIO_HANDLER_REACTOR_WRITE_EVENT;
break;
}
if ((events[i].flags & (EV_ERROR | EV_OOBAND)) != 0)
event_mask |= BOOST_ASIO_HANDLER_REACTOR_ERROR_EVENT;
BOOST_ASIO_HANDLER_REACTOR_EVENTS((context(),
reinterpret_cast<uintmax_t>(ptr), event_mask));
}
}
#endif // defined(BOOST_ASIO_ENABLE_HANDLER_TRACKING)
// Dispatch the waiting events.
for (int i = 0; i < num_events; ++i)
{
void* ptr = reinterpret_cast<void*>(events[i].udata);
if (ptr == &interrupter_)
{
interrupter_.reset();
}
else
{
descriptor_state* descriptor_data = static_cast<descriptor_state*>(ptr);
mutex::scoped_lock descriptor_lock(descriptor_data->mutex_);
if (events[i].filter == EVFILT_WRITE
&& descriptor_data->num_kevents_ == 2
&& descriptor_data->op_queue_[write_op].empty())
{
// Some descriptor types, like serial ports, don't seem to support
// EV_CLEAR with EVFILT_WRITE. Since we have no pending write
// operations we'll remove the EVFILT_WRITE registration here so that
// we don't end up in a tight spin.
struct kevent delete_events[1];
BOOST_ASIO_KQUEUE_EV_SET(&delete_events[0],
descriptor_data->descriptor_, EVFILT_WRITE, EV_DELETE, 0, 0, 0);
::kevent(kqueue_fd_, delete_events, 1, 0, 0, 0);
descriptor_data->num_kevents_ = 1;
}
// Exception operations must be processed first to ensure that any
// out-of-band data is read before normal data.
#if defined(__NetBSD__)
static const unsigned int filter[max_ops] =
#else
static const int filter[max_ops] =
#endif
{ EVFILT_READ, EVFILT_WRITE, EVFILT_READ };
for (int j = max_ops - 1; j >= 0; --j)
{
if (events[i].filter == filter[j])
{
if (j != except_op || events[i].flags & EV_OOBAND)
{
while (reactor_op* op = descriptor_data->op_queue_[j].front())
{
if (events[i].flags & EV_ERROR)
{
op->ec_ = boost::system::error_code(
static_cast<int>(events[i].data),
boost::asio::error::get_system_category());
descriptor_data->op_queue_[j].pop();
ops.push(op);
}
if (op->perform())
{
descriptor_data->op_queue_[j].pop();
ops.push(op);
}
else
break;
}
}
}
}
}
}
lock.lock();
timer_queues_.get_ready_timers(ops);
}
void kqueue_reactor::interrupt()
{
interrupter_.interrupt();
}
int kqueue_reactor::do_kqueue_create()
{
int fd = ::kqueue();
if (fd == -1)
{
boost::system::error_code ec(errno,
boost::asio::error::get_system_category());
boost::asio::detail::throw_error(ec, "kqueue");
}
return fd;
}
kqueue_reactor::descriptor_state* kqueue_reactor::allocate_descriptor_state()
{
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
return registered_descriptors_.alloc(BOOST_ASIO_CONCURRENCY_HINT_IS_LOCKING(
REACTOR_IO, scheduler_.concurrency_hint()));
}
void kqueue_reactor::free_descriptor_state(kqueue_reactor::descriptor_state* s)
{
mutex::scoped_lock descriptors_lock(registered_descriptors_mutex_);
registered_descriptors_.free(s);
}
void kqueue_reactor::do_add_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.insert(&queue);
}
void kqueue_reactor::do_remove_timer_queue(timer_queue_base& queue)
{
mutex::scoped_lock lock(mutex_);
timer_queues_.erase(&queue);
}
timespec* kqueue_reactor::get_timeout(long usec, timespec& ts)
{
// By default we will wait no longer than 5 minutes. This will ensure that
// any changes to the system clock are detected after no longer than this.
const long max_usec = 5 * 60 * 1000 * 1000;
usec = timer_queues_.wait_duration_usec(
(usec < 0 || max_usec < usec) ? max_usec : usec);
ts.tv_sec = usec / 1000000;
ts.tv_nsec = (usec % 1000000) * 1000;
return &ts;
}
} // namespace detail
} // namespace asio
} // namespace boost
#undef BOOST_ASIO_KQUEUE_EV_SET
#include <boost/asio/detail/pop_options.hpp>
#endif // defined(BOOST_ASIO_HAS_KQUEUE)
#endif // BOOST_ASIO_DETAIL_IMPL_KQUEUE_REACTOR_IPP