libs/math/example/bernoulli_example.cpp
// Copyright Paul A. Bristow 2013.
// Copyright Nakhar Agrawal 2013.
// Copyright John Maddock 2013.
// Copyright Christopher Kormanyos 2013.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#pragma warning (disable : 4100) // unreferenced formal parameter.
#pragma warning (disable : 4127) // conditional expression is constant.
//#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
#include <boost/multiprecision/cpp_dec_float.hpp>
#include <boost/math/special_functions/bernoulli.hpp>
#include <iostream>
/* First 50 from 2 to 100 inclusive: */
/* TABLE[N[BernoulliB[n], 200], {n,2,100,2}] */
//SC_(0.1666666666666666666666666666666666666666),
//SC_(-0.0333333333333333333333333333333333333333),
//SC_(0.0238095238095238095238095238095238095238),
//SC_(-0.0333333333333333333333333333333333333333),
//SC_(0.0757575757575757575757575757575757575757),
//SC_(-0.2531135531135531135531135531135531135531),
//SC_(1.1666666666666666666666666666666666666666),
//SC_(-7.0921568627450980392156862745098039215686),
//SC_(54.9711779448621553884711779448621553884711),
int main()
{
//[bernoulli_example_1
/*`A simple example computes the value of B[sub 4] where the return type is `double`,
note that the argument to bernoulli_b2n is ['2] not ['4] since it computes B[sub 2N].
*/
try
{ // It is always wise to use try'n'catch blocks around Boost.Math functions
// so that any informative error messages can be displayed in the catch block.
std::cout
<< std::setprecision(std::numeric_limits<double>::digits10)
<< boost::math::bernoulli_b2n<double>(2) << std::endl;
/*`So B[sub 4] == -1/30 == -0.0333333333333333
If we use Boost.Multiprecision and its 50 decimal digit floating-point type `cpp_dec_float_50`,
we can calculate the value of much larger numbers like B[sub 200]
and also obtain much higher precision.
*/
std::cout
<< std::setprecision(std::numeric_limits<boost::multiprecision::cpp_dec_float_50>::digits10)
<< boost::math::bernoulli_b2n<boost::multiprecision::cpp_dec_float_50>(100) << std::endl;
//] //[/bernoulli_example_1]
//[bernoulli_example_2
/*`We can compute and save all the float-precision Bernoulli numbers from one call.
*/
std::vector<float> bn; // Space for 32-bit `float` precision Bernoulli numbers.
// Start with Bernoulli number 0.
boost::math::bernoulli_b2n<float>(0, 32, std::back_inserter(bn)); // Fill vector with even Bernoulli numbers.
for(size_t i = 0; i < bn.size(); i++)
{ // Show vector of even Bernoulli numbers, showing all significant decimal digits.
std::cout << std::setprecision(std::numeric_limits<float>::digits10)
<< i*2 << ' '
<< bn[i]
<< std::endl;
}
//] //[/bernoulli_example_2]
}
catch(const std::exception& ex)
{
std::cout << "Thrown Exception caught: " << ex.what() << std::endl;
}
//[bernoulli_example_3
/*`Of course, for any floating-point type, there is a maximum Bernoulli number that can be computed
before it overflows the exponent.
By default policy, if we try to compute too high a Bernoulli number, an exception will be thrown.
*/
try
{
std::cout
<< std::setprecision(std::numeric_limits<float>::digits10)
<< "Bernoulli number " << 33 * 2 <<std::endl;
std::cout << boost::math::bernoulli_b2n<float>(33) << std::endl;
}
catch (std::exception ex)
{
std::cout << "Thrown Exception caught: " << ex.what() << std::endl;
}
/*`
and we will get a helpful error message (provided try'n'catch blocks are used).
*/
//] //[/bernoulli_example_3]
//[bernoulli_example_4
/*For example:
*/
std::cout << "boost::math::max_bernoulli_b2n<float>::value = " << boost::math::max_bernoulli_b2n<float>::value << std::endl;
std::cout << "Maximum Bernoulli number using float is " << boost::math::bernoulli_b2n<float>( boost::math::max_bernoulli_b2n<float>::value) << std::endl;
std::cout << "boost::math::max_bernoulli_b2n<double>::value = " << boost::math::max_bernoulli_b2n<double>::value << std::endl;
std::cout << "Maximum Bernoulli number using double is " << boost::math::bernoulli_b2n<double>( boost::math::max_bernoulli_b2n<double>::value) << std::endl;
//] //[/bernoulli_example_4]
//[tangent_example_1
/*`We can compute and save a few Tangent numbers.
*/
std::vector<float> tn; // Space for some `float` precision Tangent numbers.
// Start with Bernoulli number 0.
boost::math::tangent_t2n<float>(1, 6, std::back_inserter(tn)); // Fill vector with even Tangent numbers.
for(size_t i = 0; i < tn.size(); i++)
{ // Show vector of even Tangent numbers, showing all significant decimal digits.
std::cout << std::setprecision(std::numeric_limits<float>::digits10)
<< " "
<< tn[i];
}
std::cout << std::endl;
//] [/tangent_example_1]
// 1, 2, 16, 272, 7936, 353792, 22368256, 1903757312
} // int main()
/*
//[bernoulli_output_1
-3.6470772645191354362138308865549944904868234686191e+215
//] //[/bernoulli_output_1]
//[bernoulli_output_2
0 1
2 0.166667
4 -0.0333333
6 0.0238095
8 -0.0333333
10 0.0757576
12 -0.253114
14 1.16667
16 -7.09216
18 54.9712
20 -529.124
22 6192.12
24 -86580.3
26 1.42552e+006
28 -2.72982e+007
30 6.01581e+008
32 -1.51163e+010
34 4.29615e+011
36 -1.37117e+013
38 4.88332e+014
40 -1.92966e+016
42 8.41693e+017
44 -4.03381e+019
46 2.11507e+021
48 -1.20866e+023
50 7.50087e+024
52 -5.03878e+026
54 3.65288e+028
56 -2.84988e+030
58 2.38654e+032
60 -2.14e+034
62 2.0501e+036
//] //[/bernoulli_output_2]
//[bernoulli_output_3
Bernoulli number 66
Thrown Exception caught: Error in function boost::math::bernoulli_b2n<float>(n):
Overflow evaluating function at 33
//] //[/bernoulli_output_3]
//[bernoulli_output_4
boost::math::max_bernoulli_b2n<float>::value = 32
Maximum Bernoulli number using float is -2.0938e+038
boost::math::max_bernoulli_b2n<double>::value = 129
Maximum Bernoulli number using double is 1.33528e+306
//] //[/bernoulli_output_4]
//[tangent_output_1
1 2 16 272 7936 353792
//] [/tangent_output_1]
*/