Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

libs/graph/example/bipartite_example.cpp

/**
 *
 * Copyright (c) 2010 Matthias Walter (xammy@xammy.homelinux.net)
 *
 * Authors: Matthias Walter
 *
 * Distributed under the Boost Software License, Version 1.0. (See
 * accompanying file LICENSE_1_0.txt or copy at
 * http://www.boost.org/LICENSE_1_0.txt)
 *
 */

#include <iostream>
#include <boost/graph/adjacency_list.hpp>
#include <boost/graph/bipartite.hpp>

using namespace boost;

/// Example to test for bipartiteness and print the certificates.

template < typename Graph > void print_bipartite(const Graph& g)
{
    typedef graph_traits< Graph > traits;
    typename traits::vertex_iterator vertex_iter, vertex_end;

    /// Most simple interface just tests for bipartiteness.

    bool bipartite = is_bipartite(g);

    if (bipartite)
    {
        typedef std::vector< default_color_type > partition_t;
        typedef
            typename property_map< Graph, vertex_index_t >::type index_map_t;
        typedef iterator_property_map< partition_t::iterator, index_map_t >
            partition_map_t;

        partition_t partition(num_vertices(g));
        partition_map_t partition_map(partition.begin(), get(vertex_index, g));

        /// A second interface yields a bipartition in a color map, if the graph
        /// is bipartite.

        is_bipartite(g, get(vertex_index, g), partition_map);

        for (boost::tie(vertex_iter, vertex_end) = vertices(g);
             vertex_iter != vertex_end; ++vertex_iter)
        {
            std::cout
                << "Vertex " << *vertex_iter << " has color "
                << (get(partition_map, *vertex_iter)
                               == color_traits< default_color_type >::white()
                           ? "white"
                           : "black")
                << std::endl;
        }
    }
    else
    {
        typedef std::vector< typename traits::vertex_descriptor >
            vertex_vector_t;
        vertex_vector_t odd_cycle;

        /// A third interface yields an odd-cycle if the graph is not bipartite.

        find_odd_cycle(g, get(vertex_index, g), std::back_inserter(odd_cycle));

        std::cout << "Odd cycle consists of the vertices:";
        for (size_t i = 0; i < odd_cycle.size(); ++i)
        {
            std::cout << " " << odd_cycle[i];
        }
        std::cout << std::endl;
    }
}

int main(int argc, char** argv)
{
    typedef adjacency_list< vecS, vecS, undirectedS > vector_graph_t;
    typedef std::pair< int, int > E;

    /**
     * Create the graph drawn below.
     *
     *       0 - 1 - 2
     *       |       |
     *   3 - 4 - 5 - 6
     *  /      \   /
     *  |        7
     *  |        |
     *  8 - 9 - 10
     **/

    E bipartite_edges[]
        = { E(0, 1), E(0, 4), E(1, 2), E(2, 6), E(3, 4), E(3, 8), E(4, 5),
              E(4, 7), E(5, 6), E(6, 7), E(7, 10), E(8, 9), E(9, 10) };
    vector_graph_t bipartite_vector_graph(&bipartite_edges[0],
        &bipartite_edges[0] + sizeof(bipartite_edges) / sizeof(E), 11);

    /**
     * Create the graph drawn below.
     *
     *       2 - 1 - 0
     *       |       |
     *   3 - 6 - 5 - 4
     *  /      \   /
     *  |        7
     *  |       /
     *  8 ---- 9
     *
     **/

    E non_bipartite_edges[] = { E(0, 1), E(0, 4), E(1, 2), E(2, 6), E(3, 6),
        E(3, 8), E(4, 5), E(4, 7), E(5, 6), E(6, 7), E(7, 9), E(8, 9) };
    vector_graph_t non_bipartite_vector_graph(&non_bipartite_edges[0],
        &non_bipartite_edges[0] + sizeof(non_bipartite_edges) / sizeof(E), 10);

    /// Call test routine for a bipartite and a non-bipartite graph.

    print_bipartite(bipartite_vector_graph);

    print_bipartite(non_bipartite_vector_graph);

    return 0;
}