boost/numeric/ublas/storage.hpp
//
// Copyright (c) 2000-2002
// Joerg Walter, Mathias Koch
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
//
// The authors gratefully acknowledge the support of
// GeNeSys mbH & Co. KG in producing this work.
//
#ifndef BOOST_UBLAS_STORAGE_H
#define BOOST_UBLAS_STORAGE_H
#include <algorithm>
#ifdef BOOST_UBLAS_SHALLOW_ARRAY_ADAPTOR
#include <boost/shared_array.hpp>
#endif
#include <boost/core/allocator_access.hpp>
#include <boost/serialization/array.hpp>
#include <boost/serialization/collection_size_type.hpp>
#include <boost/serialization/nvp.hpp>
#include <boost/numeric/ublas/exception.hpp>
#include <boost/numeric/ublas/traits.hpp>
#include <boost/numeric/ublas/detail/iterator.hpp>
namespace boost { namespace numeric { namespace ublas {
// Base class for Storage Arrays - see the Barton Nackman trick
template<class E>
class storage_array:
private nonassignable {
};
// Unbounded array - with allocator
template<class T, class ALLOC>
class unbounded_array:
public storage_array<unbounded_array<T, ALLOC> > {
typedef unbounded_array<T, ALLOC> self_type;
public:
typedef ALLOC allocator_type;
typedef typename boost::allocator_size_type<ALLOC>::type size_type;
typedef typename boost::allocator_difference_type<ALLOC>::type difference_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef const T *const_pointer;
typedef T *pointer;
typedef const_pointer const_iterator;
typedef pointer iterator;
// Construction and destruction
explicit BOOST_UBLAS_INLINE
unbounded_array (const ALLOC &a = ALLOC()):
alloc_ (a), size_ (0) {
data_ = 0;
}
explicit BOOST_UBLAS_INLINE
unbounded_array (size_type size, const ALLOC &a = ALLOC()):
alloc_(a), size_ (size) {
if (size_) {
data_ = alloc_.allocate (size_);
//Disabled warning C4127 because the conditional expression is constant
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4127)
#endif
if (! detail::has_trivial_constructor<T>::value) {
#ifdef _MSC_VER
#pragma warning(pop)
#endif
for (pointer d = data_; d != data_ + size_; ++d)
boost::allocator_construct(alloc_, d);
}
}
else
data_ = 0;
}
// No value initialised, but still be default constructed
BOOST_UBLAS_INLINE
unbounded_array (size_type size, const value_type &init, const ALLOC &a = ALLOC()):
alloc_ (a), size_ (size) {
if (size_) {
data_ = alloc_.allocate (size_);
std::uninitialized_fill (begin(), end(), init);
}
else
data_ = 0;
}
BOOST_UBLAS_INLINE
unbounded_array (const unbounded_array &c):
storage_array<unbounded_array<T, ALLOC> >(),
alloc_ (c.alloc_), size_ (c.size_) {
if (size_) {
data_ = alloc_.allocate (size_);
std::uninitialized_copy (c.begin(), c.end(), begin());
}
else
data_ = 0;
}
#ifdef BOOST_UBLAS_CPP_GE_2011
BOOST_UBLAS_INLINE
unbounded_array (unbounded_array &&c) :
storage_array<unbounded_array<T, ALLOC> >(),
alloc_ (std::move(c.alloc_)), size_ (c.size_), data_(c.data_)
{
c.size_ = 0;
c.data_ = nullptr;
}
#endif
BOOST_UBLAS_INLINE
~unbounded_array () {
if (size_) {
//Disabled warning C4127 because the conditional expression is constant
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4127)
#endif
if (! detail::has_trivial_destructor<T>::value) {
#ifdef _MSC_VER
#pragma warning(pop)
#endif
// std::_Destroy (begin(), end(), alloc_);
const iterator i_end = end();
for (iterator i = begin (); i != i_end; ++i) {
iterator_destroy (i);
}
}
alloc_.deallocate (data_, size_);
}
}
// Resizing
private:
BOOST_UBLAS_INLINE
void resize_internal (const size_type size, const value_type init, const bool preserve) {
if (size != size_) {
pointer p_data = data_;
if (size) {
data_ = alloc_.allocate (size);
if (preserve) {
pointer si = p_data;
pointer di = data_;
if (size < size_) {
for (; di != data_ + size; ++di) {
boost::allocator_construct(alloc_, di, *si);
++si;
}
}
else {
for (; si != p_data + size_; ++si) {
boost::allocator_construct(alloc_, di, *si);
++di;
}
for (; di != data_ + size; ++di) {
boost::allocator_construct(alloc_, di, init);
}
}
}
else {
//Disabled warning C4127 because the conditional expression is constant
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4127)
#endif
if (! detail::has_trivial_constructor<T>::value) {
#ifdef _MSC_VER
#pragma warning(pop)
#endif
for (pointer di = data_; di != data_ + size; ++di)
boost::allocator_construct(alloc_, di);
}
}
}
if (size_) {
//Disabled warning C4127 because the conditional expression is constant
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4127)
#endif
if (! detail::has_trivial_destructor<T>::value) {
#ifdef _MSC_VER
#pragma warning(pop)
#endif
for (pointer si = p_data; si != p_data + size_; ++si)
boost::allocator_destroy(alloc_, si);
}
alloc_.deallocate (p_data, size_);
}
if (!size)
data_ = 0;
size_ = size;
}
}
public:
BOOST_UBLAS_INLINE
void resize (size_type size) {
resize_internal (size, value_type (), false);
}
BOOST_UBLAS_INLINE
void resize (size_type size, value_type init) {
resize_internal (size, init, true);
}
// Random Access Container
BOOST_UBLAS_INLINE
size_type max_size () const {
return boost::allocator_max_size(alloc_);
}
BOOST_UBLAS_INLINE
bool empty () const {
return size_ == 0;
}
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return data_ [i];
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return data_ [i];
}
// Assignment
BOOST_UBLAS_INLINE
unbounded_array &operator = (const unbounded_array &a) {
if (this != &a) {
resize (a.size_);
std::copy (a.data_, a.data_ + a.size_, data_);
}
return *this;
}
BOOST_UBLAS_INLINE
unbounded_array &assign_temporary (unbounded_array &a) {
swap (a);
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (unbounded_array &a) {
if (this != &a) {
std::swap (size_, a.size_);
std::swap (data_, a.data_);
}
}
BOOST_UBLAS_INLINE
friend void swap (unbounded_array &a1, unbounded_array &a2) {
a1.swap (a2);
}
BOOST_UBLAS_INLINE
const_iterator begin () const {
return data_;
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return data_ + size_;
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
BOOST_UBLAS_INLINE
iterator begin () {
return data_;
}
BOOST_UBLAS_INLINE
iterator end () {
return data_ + size_;
}
// Reverse iterators
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
// Allocator
allocator_type get_allocator () {
return alloc_;
}
private:
friend class boost::serialization::access;
// Serialization
template<class Archive>
void serialize(Archive & ar, const unsigned int /*version*/)
{
serialization::collection_size_type s(size_);
ar & serialization::make_nvp("size",s);
if ( Archive::is_loading::value ) {
resize(s);
}
ar & serialization::make_array(data_, s);
}
private:
// Handle explict destroy on a (possibly indexed) iterator
BOOST_UBLAS_INLINE
static void iterator_destroy (iterator &i) {
(void)(i);
(&(*i)) -> ~value_type ();
}
ALLOC alloc_;
size_type size_;
pointer data_;
};
// Bounded array - with allocator for size_type and difference_type
template<class T, std::size_t N, class ALLOC>
class bounded_array:
public storage_array<bounded_array<T, N, ALLOC> > {
typedef bounded_array<T, N, ALLOC> self_type;
public:
// No allocator_type as ALLOC is not used for allocation
typedef typename boost::allocator_size_type<ALLOC>::type size_type;
typedef typename boost::allocator_difference_type<ALLOC>::type difference_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef const T *const_pointer;
typedef T *pointer;
typedef const_pointer const_iterator;
typedef pointer iterator;
// Construction and destruction
BOOST_UBLAS_INLINE
bounded_array ():
size_ (0) /*, data_ ()*/ { // size 0 - use bounded_vector to default construct with size N
}
explicit BOOST_UBLAS_INLINE
bounded_array (size_type size):
size_ (size) /*, data_ ()*/ {
BOOST_UBLAS_CHECK (size_ <= N, bad_size ());
// data_ (an array) elements are already default constructed
}
BOOST_UBLAS_INLINE
bounded_array (size_type size, const value_type &init):
size_ (size) /*, data_ ()*/ {
BOOST_UBLAS_CHECK (size_ <= N, bad_size ());
// ISSUE elements should be value constructed here, but we must fill instead as already default constructed
std::fill (begin(), end(), init) ;
}
BOOST_UBLAS_INLINE
bounded_array (const bounded_array &c):
size_ (c.size_) {
// ISSUE elements should be copy constructed here, but we must copy instead as already default constructed
std::copy (c.begin(), c.end(), begin());
}
// Resizing
BOOST_UBLAS_INLINE
void resize (size_type size) {
BOOST_UBLAS_CHECK (size <= N, bad_size ());
size_ = size;
}
BOOST_UBLAS_INLINE
void resize (size_type size, value_type init) {
BOOST_UBLAS_CHECK (size <= N, bad_size ());
if (size > size_)
std::fill (data_ + size_, data_ + size, init);
size_ = size;
}
// Random Access Container
BOOST_UBLAS_INLINE
size_type max_size () const {
return N;
}
BOOST_UBLAS_INLINE
bool empty () const {
return size_ == 0;
}
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return data_ [i];
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return data_ [i];
}
// Assignment
BOOST_UBLAS_INLINE
bounded_array &operator = (const bounded_array &a) {
if (this != &a) {
resize (a.size_);
std::copy (a.data_, a.data_ + a.size_, data_);
}
return *this;
}
BOOST_UBLAS_INLINE
bounded_array &assign_temporary (bounded_array &a) {
*this = a;
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (bounded_array &a) {
if (this != &a) {
std::swap (size_, a.size_);
std::swap_ranges (data_, data_ + (std::max) (size_, a.size_), a.data_);
}
}
BOOST_UBLAS_INLINE
friend void swap (bounded_array &a1, bounded_array &a2) {
a1.swap (a2);
}
BOOST_UBLAS_INLINE
const_iterator begin () const {
return data_;
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return data_ + size_;
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
BOOST_UBLAS_INLINE
iterator begin () {
return data_;
}
BOOST_UBLAS_INLINE
iterator end () {
return data_ + size_;
}
// Reverse iterators
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
private:
// Serialization
friend class boost::serialization::access;
template<class Archive>
void serialize(Archive & ar, const unsigned int /*version*/)
{
serialization::collection_size_type s(size_);
ar & serialization::make_nvp("size", s);
if ( Archive::is_loading::value ) {
if (s > N) bad_size("too large size in bounded_array::load()\n").raise();
resize(s);
}
ar & serialization::make_array(data_, s);
}
private:
size_type size_;
// MSVC does not like arrays of size 0 in base classes. Hence, this conditionally changes the size to 1
#ifdef _MSC_VER
BOOST_UBLAS_BOUNDED_ARRAY_ALIGN value_type data_ [(N>0)?N:1];
#else
BOOST_UBLAS_BOUNDED_ARRAY_ALIGN value_type data_ [N];
#endif
};
// Array adaptor with normal deep copy semantics of elements
template<class T>
class array_adaptor:
public storage_array<array_adaptor<T> > {
typedef array_adaptor<T> self_type;
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef const T *const_pointer;
typedef T *pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
array_adaptor ():
size_ (0), own_ (true), data_ (new value_type [0]) {
}
explicit BOOST_UBLAS_INLINE
array_adaptor (size_type size):
size_ (size), own_ (true), data_ (new value_type [size]) {
}
BOOST_UBLAS_INLINE
array_adaptor (size_type size, const value_type &init):
size_ (size), own_ (true), data_ (new value_type [size]) {
std::fill (data_, data_ + size_, init);
}
BOOST_UBLAS_INLINE
array_adaptor (size_type size, pointer data):
size_ (size), own_ (false), data_ (data) {}
template <size_t N>
BOOST_UBLAS_INLINE array_adaptor (T (&data)[N]):
size_ (N), own_ (false), data_ (data) {}
BOOST_UBLAS_INLINE
array_adaptor (const array_adaptor &a):
storage_array<self_type> (),
size_ (a.size_), own_ (true), data_ (new value_type [a.size_]) {
*this = a;
}
BOOST_UBLAS_INLINE
~array_adaptor () {
if (own_) {
delete [] data_;
}
}
// Resizing
private:
BOOST_UBLAS_INLINE
void resize_internal (size_type size, value_type init, bool preserve = true) {
if (size != size_) {
pointer data = new value_type [size];
if (preserve) {
std::copy (data_, data_ + (std::min) (size, size_), data);
std::fill (data + (std::min) (size, size_), data + size, init);
}
if (own_)
delete [] data_;
size_ = size;
own_ = true;
data_ = data;
}
}
BOOST_UBLAS_INLINE
void resize_internal (size_type size, pointer data, value_type init, bool preserve = true) {
if (data != data_) {
if (preserve) {
std::copy (data_, data_ + (std::min) (size, size_), data);
std::fill (data + (std::min) (size, size_), data + size, init);
}
if (own_)
delete [] data_;
own_ = false;
data_ = data;
}
else {
std::fill (data + (std::min) (size, size_), data + size, init);
}
size_ = size;
}
public:
BOOST_UBLAS_INLINE
void resize (size_type size) {
resize_internal (size, value_type (), false);
}
BOOST_UBLAS_INLINE
void resize (size_type size, value_type init) {
resize_internal (size, init, true);
}
BOOST_UBLAS_INLINE
void resize (size_type size, pointer data) {
resize_internal (size, data, value_type (), false);
}
BOOST_UBLAS_INLINE
void resize (size_type size, pointer data, value_type init) {
resize_internal (size, data, init, true);
}
template <size_t N>
BOOST_UBLAS_INLINE void resize (T (&data)[N]) {
resize_internal (N, data, value_type (), false);
}
template <size_t N>
BOOST_UBLAS_INLINE void resize (T (&data)[N], value_type init) {
resize_internal (N, data, init, true);
}
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return data_ [i];
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return data_ [i];
}
// Assignment
BOOST_UBLAS_INLINE
array_adaptor &operator = (const array_adaptor &a) {
if (this != &a) {
resize (a.size_);
std::copy (a.data_, a.data_ + a.size_, data_);
}
return *this;
}
BOOST_UBLAS_INLINE
array_adaptor &assign_temporary (array_adaptor &a) {
if (own_ && a.own_)
swap (a);
else
*this = a;
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (array_adaptor &a) {
if (this != &a) {
std::swap (size_, a.size_);
std::swap (own_, a.own_);
std::swap (data_, a.data_);
}
}
BOOST_UBLAS_INLINE
friend void swap (array_adaptor &a1, array_adaptor &a2) {
a1.swap (a2);
}
// Iterators simply are pointers.
typedef const_pointer const_iterator;
BOOST_UBLAS_INLINE
const_iterator begin () const {
return data_;
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return data_ + size_;
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
typedef pointer iterator;
BOOST_UBLAS_INLINE
iterator begin () {
return data_;
}
BOOST_UBLAS_INLINE
iterator end () {
return data_ + size_;
}
// Reverse iterators
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
private:
size_type size_;
bool own_;
pointer data_;
};
#ifdef BOOST_UBLAS_SHALLOW_ARRAY_ADAPTOR
// Array adaptor with shallow (reference) copy semantics of elements.
// shared_array is used to maintain reference counts.
// This class breaks the normal copy semantics for a storage container and is very dangerous!
template<class T>
class shallow_array_adaptor:
public storage_array<shallow_array_adaptor<T> > {
typedef shallow_array_adaptor<T> self_type;
template<class TT>
struct leaker {
typedef void result_type;
typedef TT *argument_type;
BOOST_UBLAS_INLINE
result_type operator () (argument_type /* x */) {}
};
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef const T &const_reference;
typedef T &reference;
typedef const T *const_pointer;
typedef T *pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
shallow_array_adaptor ():
size_ (0), own_ (true), data_ (new value_type [0]) {
}
explicit BOOST_UBLAS_INLINE
shallow_array_adaptor (size_type size):
size_ (size), own_ (true), data_ (new value_type [size]) {
}
BOOST_UBLAS_INLINE
shallow_array_adaptor (size_type size, const value_type &init):
size_ (size), own_ (true), data_ (new value_type [size]) {
std::fill (data_.get (), data_.get () + size_, init);
}
BOOST_UBLAS_INLINE
shallow_array_adaptor (size_type size, pointer data):
size_ (size), own_ (false), data_ (data, leaker<value_type> ()) {}
template <size_t N>
BOOST_UBLAS_INLINE
shallow_array_adaptor (T (&data)[N]):
size_ (N), own_ (false), data_ (data, leaker<value_type> ()) {}
BOOST_UBLAS_INLINE
shallow_array_adaptor (const shallow_array_adaptor &a):
storage_array<self_type> (),
size_ (a.size_), own_ (a.own_), data_ (a.data_) {}
BOOST_UBLAS_INLINE
~shallow_array_adaptor () {
}
// Resizing
private:
BOOST_UBLAS_INLINE
void resize_internal (size_type size, value_type init, bool preserve = true) {
if (size != size_) {
shared_array<value_type> data (new value_type [size]);
if (preserve) {
std::copy (data_.get (), data_.get () + (std::min) (size, size_), data.get ());
std::fill (data.get () + (std::min) (size, size_), data.get () + size, init);
}
size_ = size;
own_ = true;
data_ = data;
}
}
BOOST_UBLAS_INLINE
void resize_internal (size_type size, pointer data, value_type init, bool preserve = true) {
if (preserve) {
std::copy (data_.get (), data_.get () + (std::min) (size, size_), data);
std::fill (data + (std::min) (size, size_), data + size, init);
}
size_ = size;
own_ = false;
data_.reset(data, leaker<value_type> ());
}
public:
BOOST_UBLAS_INLINE
void resize (size_type size) {
resize_internal (size, value_type (), false);
}
BOOST_UBLAS_INLINE
void resize (size_type size, value_type init) {
resize_internal (size, init, true);
}
BOOST_UBLAS_INLINE
void resize (size_type size, pointer data) {
resize_internal (size, data, value_type (), false);
}
BOOST_UBLAS_INLINE
void resize (size_type size, pointer data, value_type init) {
resize_internal (size, data, init, true);
}
template <size_t N>
BOOST_UBLAS_INLINE
void resize (T (&data)[N]) {
resize_internal (N, data, value_type (), false);
}
template <size_t N>
BOOST_UBLAS_INLINE
void resize (T (&data)[N], value_type init) {
resize_internal (N, data, init, true);
}
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return data_ [i];
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return data_ [i];
}
// Assignment
BOOST_UBLAS_INLINE
shallow_array_adaptor &operator = (const shallow_array_adaptor &a) {
if (this != &a) {
resize (a.size_);
std::copy (a.data_.get (), a.data_.get () + a.size_, data_.get ());
}
return *this;
}
BOOST_UBLAS_INLINE
shallow_array_adaptor &assign_temporary (shallow_array_adaptor &a) {
if (own_ && a.own_)
swap (a);
else
*this = a;
return *this;
}
// Swapping
BOOST_UBLAS_INLINE
void swap (shallow_array_adaptor &a) {
if (this != &a) {
std::swap (size_, a.size_);
std::swap (own_, a.own_);
std::swap (data_, a.data_);
}
}
BOOST_UBLAS_INLINE
friend void swap (shallow_array_adaptor &a1, shallow_array_adaptor &a2) {
a1.swap (a2);
}
// Iterators simply are pointers.
typedef const_pointer const_iterator;
BOOST_UBLAS_INLINE
const_iterator begin () const {
return data_.get ();
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return data_.get () + size_;
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
typedef pointer iterator;
BOOST_UBLAS_INLINE
iterator begin () {
return data_.get ();
}
BOOST_UBLAS_INLINE
iterator end () {
return data_.get () + size_;
}
// Reverse iterators
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
typedef std::reverse_iterator<iterator> reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
reverse_iterator rbegin () {
return reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
reverse_iterator rend () {
return reverse_iterator (begin ());
}
private:
size_type size_;
bool own_;
shared_array<value_type> data_;
};
#endif
// Range class
template <class Z, class D>
class basic_range {
typedef basic_range<Z, D> self_type;
public:
typedef Z size_type;
typedef D difference_type;
typedef size_type value_type;
typedef value_type const_reference;
typedef const_reference reference;
typedef const value_type *const_pointer;
typedef value_type *pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
basic_range ():
start_ (0), size_ (0) {}
BOOST_UBLAS_INLINE
basic_range (size_type start, size_type stop):
start_ (start), size_ (stop - start) {
BOOST_UBLAS_CHECK (start_ <= stop, bad_index ());
}
BOOST_UBLAS_INLINE
size_type start () const {
return start_;
}
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
// Random Access Container
BOOST_UBLAS_INLINE
size_type max_size () const {
return size_;
}
BOOST_UBLAS_INLINE
bool empty () const {
return size_ == 0;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return start_ + i;
}
// Composition
BOOST_UBLAS_INLINE
basic_range compose (const basic_range &r) const {
return basic_range (start_ + r.start_, start_ + r.start_ + r.size_);
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const basic_range &r) const {
return start_ == r.start_ && size_ == r.size_;
}
BOOST_UBLAS_INLINE
bool operator != (const basic_range &r) const {
return ! (*this == r);
}
// Iterator types
private:
// Use and index
typedef size_type const_subiterator_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_const_iterator<self_type, std::random_access_iterator_tag> const_iterator;
#else
class const_iterator:
public container_const_reference<basic_range>,
public random_access_iterator_base<std::random_access_iterator_tag,
const_iterator, value_type> {
public:
typedef typename basic_range::value_type value_type;
typedef typename basic_range::difference_type difference_type;
typedef typename basic_range::const_reference reference;
typedef typename basic_range::const_pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<basic_range> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator (const basic_range &r, const const_subiterator_type &it):
container_const_reference<basic_range> (r), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
BOOST_UBLAS_CHECK (it_ > 0, bad_index ());
-- it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator += (difference_type n) {
BOOST_UBLAS_CHECK (n >= 0 || it_ >= size_type(-n), bad_index ());
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -= (difference_type n) {
BOOST_UBLAS_CHECK (n <= 0 || it_ >= size_type(n), bad_index ());
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator &it) const {
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK ((*this) ().start () <= it_, bad_index ());
BOOST_UBLAS_CHECK (it_ < (*this) ().start () + (*this) ().size (), bad_index ());
return it_;
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
BOOST_UBLAS_CHECK ((*this) ().start () <= it_, bad_index ());
BOOST_UBLAS_CHECK (it_ < (*this) ().start () + (*this) ().size (), bad_index ());
return it_ - (*this) ().start ();
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
// Comeau recommends...
this->assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) () == it (), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) () == it (), external_logic ());
return it_ < it.it_;
}
private:
const_subiterator_type it_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return const_iterator (*this, start_);
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return const_iterator (*this, start_ + size_);
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
// Reverse iterator
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
basic_range preprocess (size_type size) const {
if (this != &all_)
return *this;
return basic_range (0, size);
}
static
BOOST_UBLAS_INLINE
const basic_range &all () {
return all_;
}
private:
size_type start_;
size_type size_;
static const basic_range all_;
};
template <class Z, class D>
const basic_range<Z,D> basic_range<Z,D>::all_ (0, size_type (-1));
// Slice class
template <class Z, class D>
class basic_slice {
typedef basic_slice<Z, D> self_type;
public:
typedef Z size_type;
typedef D difference_type;
typedef size_type value_type;
typedef value_type const_reference;
typedef const_reference reference;
typedef const value_type *const_pointer;
typedef value_type *pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
basic_slice ():
start_ (0), stride_ (0), size_ (0) {}
BOOST_UBLAS_INLINE
basic_slice (size_type start, difference_type stride, size_type size):
start_ (start), stride_ (stride), size_ (size) {}
BOOST_UBLAS_INLINE
size_type start () const {
return start_;
}
BOOST_UBLAS_INLINE
difference_type stride () const {
return stride_;
}
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
// Random Access Container
BOOST_UBLAS_INLINE
size_type max_size () const {
return size_;
}
BOOST_UBLAS_INLINE
bool empty () const {
return size_ == 0;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
BOOST_UBLAS_CHECK (stride_ >= 0 || start_ >= i * -stride_, bad_index ());
return start_ + i * stride_;
}
// Composition
BOOST_UBLAS_INLINE
basic_slice compose (const basic_range<size_type, difference_type> &r) const {
BOOST_UBLAS_CHECK (stride_ >=0 || start_ >= -stride_ * r.start(), bad_index ());
return basic_slice (start_ + stride_ * r.start (), stride_, r.size ());
}
BOOST_UBLAS_INLINE
basic_slice compose (const basic_slice &s) const {
BOOST_UBLAS_CHECK (stride_ >=0 || start_ >= -stride_ * s.start_, bad_index ());
return basic_slice (start_ + stride_ * s.start_, stride_ * s.stride_, s.size_);
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const basic_slice &s) const {
return start_ == s.start_ && stride_ == s.stride_ && size_ == s.size_;
}
BOOST_UBLAS_INLINE
bool operator != (const basic_slice &s) const {
return ! (*this == s);
}
// Iterator types
private:
// Use and index
typedef size_type const_subiterator_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_const_iterator<self_type, std::random_access_iterator_tag> const_iterator;
#else
class const_iterator:
public container_const_reference<basic_slice>,
public random_access_iterator_base<std::random_access_iterator_tag,
const_iterator, value_type> {
public:
typedef typename basic_slice::value_type value_type;
typedef typename basic_slice::difference_type difference_type;
typedef typename basic_slice::const_reference reference;
typedef typename basic_slice::const_pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<basic_slice> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator (const basic_slice &s, const const_subiterator_type &it):
container_const_reference<basic_slice> (s), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
BOOST_UBLAS_CHECK (it_ > 0, bad_index ());
--it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator += (difference_type n) {
BOOST_UBLAS_CHECK (n >= 0 || it_ >= size_type(-n), bad_index ());
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -= (difference_type n) {
BOOST_UBLAS_CHECK (n <= 0 || it_ >= size_type(n), bad_index ());
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator &it) const {
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
BOOST_UBLAS_CHECK (it_ < (*this) ().size (), bad_index ());
return (*this) ().start () + it_* (*this) ().stride ();
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
BOOST_UBLAS_CHECK (it_ < (*this) ().size (), bad_index ());
return it_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
// Comeau recommends...
this->assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) () == it (), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) () == it (), external_logic ());
return it_ < it.it_;
}
private:
const_subiterator_type it_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return const_iterator (*this, 0);
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return const_iterator (*this, size_);
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
// Reverse iterator
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
basic_slice preprocess (size_type size) const {
if (this != &all_)
return *this;
return basic_slice (0, 1, size);
}
static
BOOST_UBLAS_INLINE
const basic_slice &all () {
return all_;
}
private:
size_type start_;
difference_type stride_;
size_type size_;
static const basic_slice all_;
};
template <class Z, class D>
const basic_slice<Z,D> basic_slice<Z,D>::all_ (0, 1, size_type (-1));
// Indirect array class
template<class A>
class indirect_array {
typedef indirect_array<A> self_type;
public:
typedef A array_type;
typedef const A const_array_type;
typedef typename A::size_type size_type;
typedef typename A::difference_type difference_type;
typedef typename A::value_type value_type;
typedef typename A::const_reference const_reference;
typedef typename A::reference reference;
typedef typename A::const_pointer const_pointer;
typedef typename A::pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
indirect_array ():
size_ (), data_ () {}
explicit BOOST_UBLAS_INLINE
indirect_array (size_type size):
size_ (size), data_ (size) {}
BOOST_UBLAS_INLINE
indirect_array (size_type size, const array_type &data):
size_ (size), data_ (data) {}
BOOST_UBLAS_INLINE
indirect_array (pointer start, pointer stop):
size_ (stop - start), data_ (stop - start) {
std::copy (start, stop, data_.begin ());
}
BOOST_UBLAS_INLINE
size_type size () const {
return size_;
}
BOOST_UBLAS_INLINE
const_array_type data () const {
return data_;
}
BOOST_UBLAS_INLINE
array_type data () {
return data_;
}
// Random Access Container
BOOST_UBLAS_INLINE
size_type max_size () const {
return size_;
}
BOOST_UBLAS_INLINE
bool empty () const {
return data_.size () == 0;
}
// Element access
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return data_ [i];
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
BOOST_UBLAS_CHECK (i < size_, bad_index ());
return data_ [i];
}
BOOST_UBLAS_INLINE
const_reference operator [] (size_type i) const {
return (*this) (i);
}
BOOST_UBLAS_INLINE
reference operator [] (size_type i) {
return (*this) (i);
}
// Composition
BOOST_UBLAS_INLINE
indirect_array compose (const basic_range<size_type, difference_type> &r) const {
BOOST_UBLAS_CHECK (r.start () + r.size () <= size_, bad_size ());
array_type data (r.size ());
for (size_type i = 0; i < r.size (); ++ i)
data [i] = data_ [r.start () + i];
return indirect_array (r.size (), data);
}
BOOST_UBLAS_INLINE
indirect_array compose (const basic_slice<size_type, difference_type> &s) const {
BOOST_UBLAS_CHECK (s.start () + s.stride () * (s.size () - (s.size () > 0)) <= size (), bad_size ());
array_type data (s.size ());
for (size_type i = 0; i < s.size (); ++ i)
data [i] = data_ [s.start () + s.stride () * i];
return indirect_array (s.size (), data);
}
BOOST_UBLAS_INLINE
indirect_array compose (const indirect_array &ia) const {
array_type data (ia.size_);
for (size_type i = 0; i < ia.size_; ++ i) {
BOOST_UBLAS_CHECK (ia.data_ [i] <= size_, bad_size ());
data [i] = data_ [ia.data_ [i]];
}
return indirect_array (ia.size_, data);
}
// Comparison
template<class OA>
BOOST_UBLAS_INLINE
bool operator == (const indirect_array<OA> &ia) const {
if (size_ != ia.size_)
return false;
for (size_type i = 0; i < BOOST_UBLAS_SAME (size_, ia.size_); ++ i)
if (data_ [i] != ia.data_ [i])
return false;
return true;
}
template<class OA>
BOOST_UBLAS_INLINE
bool operator != (const indirect_array<OA> &ia) const {
return ! (*this == ia);
}
// Iterator types
private:
// Use a index difference
typedef difference_type const_subiterator_type;
public:
#ifdef BOOST_UBLAS_USE_INDEXED_ITERATOR
typedef indexed_const_iterator<indirect_array, std::random_access_iterator_tag> const_iterator;
#else
class const_iterator:
public container_const_reference<indirect_array>,
public random_access_iterator_base<std::random_access_iterator_tag,
const_iterator, value_type> {
public:
typedef typename indirect_array::value_type value_type;
typedef typename indirect_array::difference_type difference_type;
typedef typename indirect_array::const_reference reference;
typedef typename indirect_array::const_pointer pointer;
// Construction and destruction
BOOST_UBLAS_INLINE
const_iterator ():
container_const_reference<indirect_array> (), it_ () {}
BOOST_UBLAS_INLINE
const_iterator (const indirect_array &ia, const const_subiterator_type &it):
container_const_reference<indirect_array> (ia), it_ (it) {}
// Arithmetic
BOOST_UBLAS_INLINE
const_iterator &operator ++ () {
++ it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -- () {
-- it_;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator += (difference_type n) {
it_ += n;
return *this;
}
BOOST_UBLAS_INLINE
const_iterator &operator -= (difference_type n) {
it_ -= n;
return *this;
}
BOOST_UBLAS_INLINE
difference_type operator - (const const_iterator &it) const {
return it_ - it.it_;
}
// Dereference
BOOST_UBLAS_INLINE
const_reference operator * () const {
return (*this) () (it_);
}
BOOST_UBLAS_INLINE
const_reference operator [] (difference_type n) const {
return *(*this + n);
}
// Index
BOOST_UBLAS_INLINE
size_type index () const {
return it_;
}
// Assignment
BOOST_UBLAS_INLINE
const_iterator &operator = (const const_iterator &it) {
// Comeau recommends...
this->assign (&it ());
it_ = it.it_;
return *this;
}
// Comparison
BOOST_UBLAS_INLINE
bool operator == (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) () == it (), external_logic ());
return it_ == it.it_;
}
BOOST_UBLAS_INLINE
bool operator < (const const_iterator &it) const {
BOOST_UBLAS_CHECK ((*this) () == it (), external_logic ());
return it_ < it.it_;
}
private:
const_subiterator_type it_;
};
#endif
BOOST_UBLAS_INLINE
const_iterator begin () const {
return const_iterator (*this, 0);
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end () const {
return const_iterator (*this, size_);
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
// Reverse iterator
typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
BOOST_UBLAS_INLINE
const_reverse_iterator rbegin () const {
return const_reverse_iterator (end ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crbegin () const {
return rbegin ();
}
BOOST_UBLAS_INLINE
const_reverse_iterator rend () const {
return const_reverse_iterator (begin ());
}
BOOST_UBLAS_INLINE
const_reverse_iterator crend () const {
return rend ();
}
BOOST_UBLAS_INLINE
indirect_array preprocess (size_type size) const {
if (this != &all_)
return *this;
indirect_array ia (size);
for (size_type i = 0; i < size; ++ i)
ia (i) = i;
return ia;
}
static
BOOST_UBLAS_INLINE
const indirect_array &all () {
return all_;
}
private:
size_type size_;
array_type data_;
static const indirect_array all_;
};
template<class A>
const indirect_array<A> indirect_array<A>::all_;
// Gunter Winkler contributed the classes index_pair, index_pair_array,
// index_triple and index_triple_array to enable inplace sort of parallel arrays.
template <class V>
class index_pair :
public container_reference<V> {
typedef index_pair<V> self_type;
public:
typedef typename V::size_type size_type;
BOOST_UBLAS_INLINE
index_pair(V& v, size_type i) :
container_reference<V>(v), i_(i),
v1_(v.data1_[i]), v2_(v.data2_[i]),
dirty_(false), is_copy_(false) {}
BOOST_UBLAS_INLINE
index_pair(const self_type& rhs) :
container_reference<V>(rhs()), i_(0),
v1_(rhs.v1_), v2_(rhs.v2_),
dirty_(false), is_copy_(true) {}
BOOST_UBLAS_INLINE
~index_pair() {
if (dirty_ && (!is_copy_) ) {
(*this)().data1_[i_] = v1_;
(*this)().data2_[i_] = v2_;
}
}
BOOST_UBLAS_INLINE
self_type& operator=(const self_type& rhs) {
v1_ = rhs.v1_;
v2_ = rhs.v2_;
dirty_ = true;
return *this;
}
BOOST_UBLAS_INLINE
void swap(self_type& rhs) {
self_type tmp(rhs);
rhs = *this;
*this = tmp;
}
BOOST_UBLAS_INLINE
friend void swap(self_type& lhs, self_type& rhs) {
lhs.swap(rhs);
}
friend void swap(self_type lhs, self_type rhs) { // For gcc 4.8 and c++11
lhs.swap(rhs);
}
BOOST_UBLAS_INLINE
bool equal(const self_type& rhs) const {
return (v1_ == rhs.v1_);
}
BOOST_UBLAS_INLINE
bool less(const self_type& rhs) const {
return (v1_ < rhs.v1_);
}
BOOST_UBLAS_INLINE
friend bool operator == (const self_type& lhs, const self_type& rhs) {
return lhs.equal(rhs);
}
BOOST_UBLAS_INLINE
friend bool operator != (const self_type& lhs, const self_type& rhs) {
return !lhs.equal(rhs);
}
BOOST_UBLAS_INLINE
friend bool operator < (const self_type& lhs, const self_type& rhs) {
return lhs.less(rhs);
}
BOOST_UBLAS_INLINE
friend bool operator >= (const self_type& lhs, const self_type& rhs) {
return !lhs.less(rhs);
}
BOOST_UBLAS_INLINE
friend bool operator > (const self_type& lhs, const self_type& rhs) {
return rhs.less(lhs);
}
BOOST_UBLAS_INLINE
friend bool operator <= (const self_type& lhs, const self_type& rhs) {
return !rhs.less(lhs);
}
private:
size_type i_;
typename V::value1_type v1_;
typename V::value2_type v2_;
bool dirty_;
bool is_copy_;
};
template <class V1, class V2>
class index_pair_array:
private boost::noncopyable {
typedef index_pair_array<V1, V2> self_type;
public:
typedef typename V1::value_type value1_type;
typedef typename V2::value_type value2_type;
typedef typename V1::size_type size_type;
typedef typename V1::difference_type difference_type;
typedef index_pair<self_type> value_type;
// There is nothing that can be referenced directly. Always return a copy of the index_pair
typedef value_type reference;
typedef const value_type const_reference;
BOOST_UBLAS_INLINE
index_pair_array(size_type size, V1& data1, V2& data2) :
size_(size),data1_(data1),data2_(data2) {}
BOOST_UBLAS_INLINE
size_type size() const {
return size_;
}
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
return value_type((*this), i);
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
return value_type((*this), i);
}
typedef indexed_iterator<self_type, std::random_access_iterator_tag> iterator;
typedef indexed_const_iterator<self_type, std::random_access_iterator_tag> const_iterator;
BOOST_UBLAS_INLINE
iterator begin() {
return iterator( (*this), 0);
}
BOOST_UBLAS_INLINE
iterator end() {
return iterator( (*this), size());
}
BOOST_UBLAS_INLINE
const_iterator begin() const {
return const_iterator( (*this), 0);
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end() const {
return const_iterator( (*this), size());
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
// unnecessary function:
BOOST_UBLAS_INLINE
bool equal(size_type i1, size_type i2) const {
return data1_[i1] == data1_[i2];
}
BOOST_UBLAS_INLINE
bool less(size_type i1, size_type i2) const {
return data1_[i1] < data1_[i2];
}
// gives a large speedup
BOOST_UBLAS_INLINE
friend void iter_swap(const iterator& lhs, const iterator& rhs) {
const size_type i1 = lhs.index();
const size_type i2 = rhs.index();
std::swap(lhs().data1_[i1], rhs().data1_[i2]);
std::swap(lhs().data2_[i1], rhs().data2_[i2]);
}
private:
size_type size_;
V1& data1_;
V2& data2_;
// friend class value_type;
friend class index_pair<self_type>;
};
template <class M>
class index_triple :
public container_reference<M> {
typedef index_triple<M> self_type;
public:
typedef typename M::size_type size_type;
BOOST_UBLAS_INLINE
index_triple(M& m, size_type i) :
container_reference<M>(m), i_(i),
v1_(m.data1_[i]), v2_(m.data2_[i]), v3_(m.data3_[i]),
dirty_(false), is_copy_(false) {}
BOOST_UBLAS_INLINE
index_triple(const self_type& rhs) :
container_reference<M>(rhs()), i_(0),
v1_(rhs.v1_), v2_(rhs.v2_), v3_(rhs.v3_),
dirty_(false), is_copy_(true) {}
BOOST_UBLAS_INLINE
~index_triple() {
if (dirty_ && (!is_copy_) ) {
(*this)().data1_[i_] = v1_;
(*this)().data2_[i_] = v2_;
(*this)().data3_[i_] = v3_;
}
}
BOOST_UBLAS_INLINE
self_type& operator=(const self_type& rhs) {
v1_ = rhs.v1_;
v2_ = rhs.v2_;
v3_ = rhs.v3_;
dirty_ = true;
return *this;
}
BOOST_UBLAS_INLINE
void swap(self_type& rhs) {
self_type tmp(rhs);
rhs = *this;
*this = tmp;
}
BOOST_UBLAS_INLINE
friend void swap(self_type& lhs, self_type& rhs) {
lhs.swap(rhs);
}
friend void swap(self_type lhs, self_type rhs) { // For gcc 4.8 and c++11
lhs.swap(rhs);
}
BOOST_UBLAS_INLINE
bool equal(const self_type& rhs) const {
return ((v1_ == rhs.v1_) && (v2_ == rhs.v2_));
}
BOOST_UBLAS_INLINE
bool less(const self_type& rhs) const {
return ((v1_ < rhs.v1_) ||
(v1_ == rhs.v1_ && v2_ < rhs.v2_));
}
BOOST_UBLAS_INLINE
friend bool operator == (const self_type& lhs, const self_type& rhs) {
return lhs.equal(rhs);
}
BOOST_UBLAS_INLINE
friend bool operator != (const self_type& lhs, const self_type& rhs) {
return !lhs.equal(rhs);
}
BOOST_UBLAS_INLINE
friend bool operator < (const self_type& lhs, const self_type& rhs) {
return lhs.less(rhs);
}
BOOST_UBLAS_INLINE
friend bool operator >= (const self_type& lhs, const self_type& rhs) {
return !lhs.less(rhs);
}
BOOST_UBLAS_INLINE
friend bool operator > (const self_type& lhs, const self_type& rhs) {
return rhs.less(lhs);
}
BOOST_UBLAS_INLINE
friend bool operator <= (const self_type& lhs, const self_type& rhs) {
return !rhs.less(lhs);
}
private:
size_type i_;
typename M::value1_type v1_;
typename M::value2_type v2_;
typename M::value3_type v3_;
bool dirty_;
bool is_copy_;
};
template <class V1, class V2, class V3>
class index_triple_array:
private boost::noncopyable {
typedef index_triple_array<V1, V2, V3> self_type;
public:
typedef typename V1::value_type value1_type;
typedef typename V2::value_type value2_type;
typedef typename V3::value_type value3_type;
typedef typename V1::size_type size_type;
typedef typename V1::difference_type difference_type;
typedef index_triple<self_type> value_type;
// There is nothing that can be referenced directly. Always return a copy of the index_triple
typedef value_type reference;
typedef const value_type const_reference;
BOOST_UBLAS_INLINE
index_triple_array(size_type size, V1& data1, V2& data2, V3& data3) :
size_(size),data1_(data1),data2_(data2),data3_(data3) {}
BOOST_UBLAS_INLINE
size_type size() const {
return size_;
}
BOOST_UBLAS_INLINE
const_reference operator () (size_type i) const {
return value_type((*this), i);
}
BOOST_UBLAS_INLINE
reference operator () (size_type i) {
return value_type((*this), i);
}
typedef indexed_iterator<self_type, std::random_access_iterator_tag> iterator;
typedef indexed_const_iterator<self_type, std::random_access_iterator_tag> const_iterator;
BOOST_UBLAS_INLINE
iterator begin() {
return iterator( (*this), 0);
}
BOOST_UBLAS_INLINE
iterator end() {
return iterator( (*this), size());
}
BOOST_UBLAS_INLINE
const_iterator begin() const {
return const_iterator( (*this), 0);
}
BOOST_UBLAS_INLINE
const_iterator cbegin () const {
return begin ();
}
BOOST_UBLAS_INLINE
const_iterator end() const {
return const_iterator( (*this), size());
}
BOOST_UBLAS_INLINE
const_iterator cend () const {
return end ();
}
// unnecessary function:
BOOST_UBLAS_INLINE
bool equal(size_type i1, size_type i2) const {
return ((data1_[i1] == data1_[i2]) && (data2_[i1] == data2_[i2]));
}
BOOST_UBLAS_INLINE
bool less(size_type i1, size_type i2) const {
return ((data1_[i1] < data1_[i2]) ||
(data1_[i1] == data1_[i2] && data2_[i1] < data2_[i2]));
}
// gives a large speedup
BOOST_UBLAS_INLINE
friend void iter_swap(const iterator& lhs, const iterator& rhs) {
const size_type i1 = lhs.index();
const size_type i2 = rhs.index();
std::swap(lhs().data1_[i1], rhs().data1_[i2]);
std::swap(lhs().data2_[i1], rhs().data2_[i2]);
std::swap(lhs().data3_[i1], rhs().data3_[i2]);
}
private:
size_type size_;
V1& data1_;
V2& data2_;
V3& data3_;
// friend class value_type;
friend class index_triple<self_type>;
};
}}}
#endif