boost/math/special_functions/ellint_1.hpp
// Copyright (c) 2006 Xiaogang Zhang
// Copyright (c) 2006 John Maddock
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// History:
// XZ wrote the original of this file as part of the Google
// Summer of Code 2006. JM modified it to fit into the
// Boost.Math conceptual framework better, and to ensure
// that the code continues to work no matter how many digits
// type T has.
#ifndef BOOST_MATH_ELLINT_1_HPP
#define BOOST_MATH_ELLINT_1_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/ellint_rf.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/tools/workaround.hpp>
#include <boost/math/special_functions/round.hpp>
// Elliptic integrals (complete and incomplete) of the first kind
// Carlson, Numerische Mathematik, vol 33, 1 (1979)
namespace boost { namespace math {
template <class T1, class T2, class Policy>
typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol);
namespace detail{
template <typename T, typename Policy>
T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 0> const&);
template <typename T, typename Policy>
T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 1> const&);
template <typename T, typename Policy>
T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 2> const&);
// Elliptic integral (Legendre form) of the first kind
template <typename T, typename Policy>
T ellint_f_imp(T phi, T k, const Policy& pol)
{
BOOST_MATH_STD_USING
using namespace boost::math::tools;
using namespace boost::math::constants;
static const char* function = "boost::math::ellint_f<%1%>(%1%,%1%)";
BOOST_MATH_INSTRUMENT_VARIABLE(phi);
BOOST_MATH_INSTRUMENT_VARIABLE(k);
BOOST_MATH_INSTRUMENT_VARIABLE(function);
bool invert = false;
if(phi < 0)
{
BOOST_MATH_INSTRUMENT_VARIABLE(phi);
phi = fabs(phi);
invert = true;
}
T result;
if(phi >= tools::max_value<T>())
{
// Need to handle infinity as a special case:
result = policies::raise_overflow_error<T>(function, nullptr, pol);
BOOST_MATH_INSTRUMENT_VARIABLE(result);
}
else if(phi > 1 / tools::epsilon<T>())
{
// Phi is so large that phi%pi is necessarily zero (or garbage),
// just return the second part of the duplication formula:
typedef std::integral_constant<int,
std::is_floating_point<T>::value&& std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 54) ? 0 :
std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 64) ? 1 : 2
> precision_tag_type;
result = 2 * phi * ellint_k_imp(k, pol, precision_tag_type()) / constants::pi<T>();
BOOST_MATH_INSTRUMENT_VARIABLE(result);
}
else
{
// Carlson's algorithm works only for |phi| <= pi/2,
// use the integrand's periodicity to normalize phi
//
// Xiaogang's original code used a cast to long long here
// but that fails if T has more digits than a long long,
// so rewritten to use fmod instead:
//
BOOST_MATH_INSTRUMENT_CODE("pi/2 = " << constants::pi<T>() / 2);
T rphi = boost::math::tools::fmod_workaround(phi, T(constants::half_pi<T>()));
BOOST_MATH_INSTRUMENT_VARIABLE(rphi);
T m = boost::math::round((phi - rphi) / constants::half_pi<T>());
BOOST_MATH_INSTRUMENT_VARIABLE(m);
int s = 1;
if(boost::math::tools::fmod_workaround(m, T(2)) > T(0.5))
{
m += 1;
s = -1;
rphi = constants::half_pi<T>() - rphi;
BOOST_MATH_INSTRUMENT_VARIABLE(rphi);
}
T sinp = sin(rphi);
sinp *= sinp;
if (sinp * k * k >= 1)
{
return policies::raise_domain_error<T>(function,
"Got k^2 * sin^2(phi) = %1%, but the function requires this < 1", sinp * k * k, pol);
}
T cosp = cos(rphi);
cosp *= cosp;
BOOST_MATH_INSTRUMENT_VARIABLE(sinp);
BOOST_MATH_INSTRUMENT_VARIABLE(cosp);
if(sinp > tools::min_value<T>())
{
BOOST_MATH_ASSERT(rphi != 0); // precondition, can't be true if sin(rphi) != 0.
//
// Use http://dlmf.nist.gov/19.25#E5, note that
// c-1 simplifies to cot^2(rphi) which avoid cancellation:
//
T c = 1 / sinp;
result = static_cast<T>(s * ellint_rf_imp(T(cosp / sinp), T(c - k * k), c, pol));
}
else
result = s * sin(rphi);
BOOST_MATH_INSTRUMENT_VARIABLE(result);
if(m != 0)
{
typedef std::integral_constant<int,
std::is_floating_point<T>::value&& std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 54) ? 0 :
std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 64) ? 1 : 2
> precision_tag_type;
result += m * ellint_k_imp(k, pol, precision_tag_type());
BOOST_MATH_INSTRUMENT_VARIABLE(result);
}
}
return invert ? T(-result) : result;
}
// Complete elliptic integral (Legendre form) of the first kind
template <typename T, typename Policy>
T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 2> const&)
{
BOOST_MATH_STD_USING
using namespace boost::math::tools;
static const char* function = "boost::math::ellint_k<%1%>(%1%)";
if (abs(k) > 1)
{
return policies::raise_domain_error<T>(function, "Got k = %1%, function requires |k| <= 1", k, pol);
}
if (abs(k) == 1)
{
return policies::raise_overflow_error<T>(function, nullptr, pol);
}
T x = 0;
T y = 1 - k * k;
T z = 1;
T value = ellint_rf_imp(x, y, z, pol);
return value;
}
//
// Special versions for double and 80-bit long double precision,
// double precision versions use the coefficients from:
// "Fast computation of complete elliptic integrals and Jacobian elliptic functions",
// Celestial Mechanics and Dynamical Astronomy, April 2012.
//
// Higher precision coefficients for 80-bit long doubles can be calculated
// using for example:
// Table[N[SeriesCoefficient[ EllipticK [ m ], { m, 875/1000, i} ], 20], {i, 0, 24}]
// and checking the value of the first neglected term with:
// N[SeriesCoefficient[ EllipticK [ m ], { m, 875/1000, 24} ], 20] * (2.5/100)^24
//
// For m > 0.9 we don't use the method of the paper above, but simply call our
// existing routines. The routine used in the above paper was tried (and is
// archived in the code below), but was found to have slightly higher error rates.
//
template <typename T, typename Policy>
BOOST_MATH_FORCEINLINE T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 0> const&)
{
using std::abs;
using namespace boost::math::tools;
T m = k * k;
switch (static_cast<int>(m * 20))
{
case 0:
case 1:
//if (m < 0.1)
{
constexpr T coef[] =
{
static_cast<T>(1.591003453790792180),
static_cast<T>(0.416000743991786912),
static_cast<T>(0.245791514264103415),
static_cast<T>(0.179481482914906162),
static_cast<T>(0.144556057087555150),
static_cast<T>(0.123200993312427711),
static_cast<T>(0.108938811574293531),
static_cast<T>(0.098853409871592910),
static_cast<T>(0.091439629201749751),
static_cast<T>(0.085842591595413900),
static_cast<T>(0.081541118718303215),
static_cast<T>(0.078199656811256481910)
};
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.05));
}
case 2:
case 3:
//else if (m < 0.2)
{
constexpr T coef[] =
{
static_cast<T>(1.635256732264579992),
static_cast<T>(0.471190626148732291),
static_cast<T>(0.309728410831499587),
static_cast<T>(0.252208311773135699),
static_cast<T>(0.226725623219684650),
static_cast<T>(0.215774446729585976),
static_cast<T>(0.213108771877348910),
static_cast<T>(0.216029124605188282),
static_cast<T>(0.223255831633057896),
static_cast<T>(0.234180501294209925),
static_cast<T>(0.248557682972264071),
static_cast<T>(0.266363809892617521)
};
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.15));
}
case 4:
case 5:
//else if (m < 0.3)
{
constexpr T coef[] =
{
static_cast<T>(1.685750354812596043),
static_cast<T>(0.541731848613280329),
static_cast<T>(0.401524438390690257),
static_cast<T>(0.369642473420889090),
static_cast<T>(0.376060715354583645),
static_cast<T>(0.405235887085125919),
static_cast<T>(0.453294381753999079),
static_cast<T>(0.520518947651184205),
static_cast<T>(0.609426039204995055),
static_cast<T>(0.724263522282908870),
static_cast<T>(0.871013847709812357),
static_cast<T>(1.057652872753547036)
};
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.25));
}
case 6:
case 7:
//else if (m < 0.4)
{
constexpr T coef[] =
{
static_cast<T>(1.744350597225613243),
static_cast<T>(0.634864275371935304),
static_cast<T>(0.539842564164445538),
static_cast<T>(0.571892705193787391),
static_cast<T>(0.670295136265406100),
static_cast<T>(0.832586590010977199),
static_cast<T>(1.073857448247933265),
static_cast<T>(1.422091460675497751),
static_cast<T>(1.920387183402304829),
static_cast<T>(2.632552548331654201),
static_cast<T>(3.652109747319039160),
static_cast<T>(5.115867135558865806),
static_cast<T>(7.224080007363877411)
};
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.35));
}
case 8:
case 9:
//else if (m < 0.5)
{
constexpr T coef[] =
{
static_cast<T>(1.813883936816982644),
static_cast<T>(0.763163245700557246),
static_cast<T>(0.761928605321595831),
static_cast<T>(0.951074653668427927),
static_cast<T>(1.315180671703161215),
static_cast<T>(1.928560693477410941),
static_cast<T>(2.937509342531378755),
static_cast<T>(4.594894405442878062),
static_cast<T>(7.330071221881720772),
static_cast<T>(11.87151259742530180),
static_cast<T>(19.45851374822937738),
static_cast<T>(32.20638657246426863),
static_cast<T>(53.73749198700554656),
static_cast<T>(90.27388602940998849)
};
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.45));
}
case 10:
case 11:
//else if (m < 0.6)
{
constexpr T coef[] =
{
static_cast<T>(1.898924910271553526),
static_cast<T>(0.950521794618244435),
static_cast<T>(1.151077589959015808),
static_cast<T>(1.750239106986300540),
static_cast<T>(2.952676812636875180),
static_cast<T>(5.285800396121450889),
static_cast<T>(9.832485716659979747),
static_cast<T>(18.78714868327559562),
static_cast<T>(36.61468615273698145),
static_cast<T>(72.45292395127771801),
static_cast<T>(145.1079577347069102),
static_cast<T>(293.4786396308497026),
static_cast<T>(598.3851815055010179),
static_cast<T>(1228.420013075863451),
static_cast<T>(2536.529755382764488)
};
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.55));
}
case 12:
case 13:
//else if (m < 0.7)
{
constexpr T coef[] =
{
static_cast<T>(2.007598398424376302),
static_cast<T>(1.248457231212347337),
static_cast<T>(1.926234657076479729),
static_cast<T>(3.751289640087587680),
static_cast<T>(8.119944554932045802),
static_cast<T>(18.66572130873555361),
static_cast<T>(44.60392484291437063),
static_cast<T>(109.5092054309498377),
static_cast<T>(274.2779548232413480),
static_cast<T>(697.5598008606326163),
static_cast<T>(1795.716014500247129),
static_cast<T>(4668.381716790389910),
static_cast<T>(12235.76246813664335),
static_cast<T>(32290.17809718320818),
static_cast<T>(85713.07608195964685),
static_cast<T>(228672.1890493117096),
static_cast<T>(612757.2711915852774)
};
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.65));
}
case 14:
case 15:
//else if (m < static_cast<T>(0.8))
{
constexpr T coef[] =
{
static_cast<T>(2.156515647499643235),
static_cast<T>(1.791805641849463243),
static_cast<T>(3.826751287465713147),
static_cast<T>(10.38672468363797208),
static_cast<T>(31.40331405468070290),
static_cast<T>(100.9237039498695416),
static_cast<T>(337.3268282632272897),
static_cast<T>(1158.707930567827917),
static_cast<T>(4060.990742193632092),
static_cast<T>(14454.00184034344795),
static_cast<T>(52076.66107599404803),
static_cast<T>(189493.6591462156887),
static_cast<T>(695184.5762413896145),
static_cast<T>(2567994.048255284686),
static_cast<T>(9541921.966748386322),
static_cast<T>(35634927.44218076174),
static_cast<T>(133669298.4612040871),
static_cast<T>(503352186.6866284541),
static_cast<T>(1901975729.538660119),
static_cast<T>(7208915015.330103756)
};
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.75));
}
case 16:
//else if (m < static_cast<T>(0.85))
{
constexpr T coef[] =
{
static_cast<T>(2.318122621712510589),
static_cast<T>(2.616920150291232841),
static_cast<T>(7.897935075731355823),
static_cast<T>(30.50239715446672327),
static_cast<T>(131.4869365523528456),
static_cast<T>(602.9847637356491617),
static_cast<T>(2877.024617809972641),
static_cast<T>(14110.51991915180325),
static_cast<T>(70621.44088156540229),
static_cast<T>(358977.2665825309926),
static_cast<T>(1847238.263723971684),
static_cast<T>(9600515.416049214109),
static_cast<T>(50307677.08502366879),
static_cast<T>(265444188.6527127967),
static_cast<T>(1408862325.028702687),
static_cast<T>(7515687935.373774627)
};
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.825));
}
case 17:
//else if (m < static_cast<T>(0.90))
{
constexpr T coef[] =
{
static_cast<T>(2.473596173751343912),
static_cast<T>(3.727624244118099310),
static_cast<T>(15.60739303554930496),
static_cast<T>(84.12850842805887747),
static_cast<T>(506.9818197040613935),
static_cast<T>(3252.277058145123644),
static_cast<T>(21713.24241957434256),
static_cast<T>(149037.0451890932766),
static_cast<T>(1043999.331089990839),
static_cast<T>(7427974.817042038995),
static_cast<T>(53503839.67558661151),
static_cast<T>(389249886.9948708474),
static_cast<T>(2855288351.100810619),
static_cast<T>(21090077038.76684053),
static_cast<T>(156699833947.7902014),
static_cast<T>(1170222242422.439893),
static_cast<T>(8777948323668.937971),
static_cast<T>(66101242752484.95041),
static_cast<T>(499488053713388.7989),
static_cast<T>(37859743397240299.20)
};
return boost::math::tools::evaluate_polynomial(coef, m - static_cast<T>(0.875));
}
default:
//
// This handles all cases where m > 0.9,
// including all error handling:
//
return ellint_k_imp(k, pol, std::integral_constant<int, 2>());
#if 0
else
{
T lambda_prime = (1 - sqrt(k)) / (2 * (1 + sqrt(k)));
T k_prime = ellint_k(sqrt((1 - k) * (1 + k))); // K(m')
T lambda_prime_4th = boost::math::pow<4>(lambda_prime);
T q_prime = ((((((20910 * lambda_prime_4th) + 1707) * lambda_prime_4th + 150) * lambda_prime_4th + 15) * lambda_prime_4th + 2) * lambda_prime_4th + 1) * lambda_prime;
/*T q_prime_2 = lambda_prime
+ 2 * boost::math::pow<5>(lambda_prime)
+ 15 * boost::math::pow<9>(lambda_prime)
+ 150 * boost::math::pow<13>(lambda_prime)
+ 1707 * boost::math::pow<17>(lambda_prime)
+ 20910 * boost::math::pow<21>(lambda_prime);*/
return -log(q_prime) * k_prime / boost::math::constants::pi<T>();
}
#endif
}
}
template <typename T, typename Policy>
BOOST_MATH_FORCEINLINE T ellint_k_imp(T k, const Policy& pol, std::integral_constant<int, 1> const&)
{
using std::abs;
using namespace boost::math::tools;
T m = k * k;
switch (static_cast<int>(m * 20))
{
case 0:
case 1:
{
constexpr T coef[] =
{
1.5910034537907921801L,
0.41600074399178691174L,
0.24579151426410341536L,
0.17948148291490616181L,
0.14455605708755514976L,
0.12320099331242771115L,
0.10893881157429353105L,
0.098853409871592910399L,
0.091439629201749751268L,
0.085842591595413899672L,
0.081541118718303214749L,
0.078199656811256481910L,
0.075592617535422415648L,
0.073562939365441925050L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.05L);
}
case 2:
case 3:
{
constexpr T coef[] =
{
1.6352567322645799924L,
0.47119062614873229055L,
0.30972841083149958708L,
0.25220831177313569923L,
0.22672562321968464974L,
0.21577444672958597588L,
0.21310877187734890963L,
0.21602912460518828154L,
0.22325583163305789567L,
0.23418050129420992492L,
0.24855768297226407136L,
0.26636380989261752077L,
0.28772845215611466775L,
0.31290024539780334906L,
0.34223105446381299902L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.15L);
}
case 4:
case 5:
{
constexpr T coef[] =
{
1.6857503548125960429L,
0.54173184861328032882L,
0.40152443839069025682L,
0.36964247342088908995L,
0.37606071535458364462L,
0.40523588708512591863L,
0.45329438175399907924L,
0.52051894765118420473L,
0.60942603920499505544L,
0.72426352228290886975L,
0.87101384770981235737L,
1.0576528727535470365L,
1.2945970872087764321L,
1.5953368253888783747L,
1.9772844873556364793L,
2.4628890581910021287L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.25L);
}
case 6:
case 7:
{
constexpr T coef[] =
{
1.7443505972256132429L,
0.63486427537193530383L,
0.53984256416444553751L,
0.57189270519378739093L,
0.67029513626540610034L,
0.83258659001097719939L,
1.0738574482479332654L,
1.4220914606754977514L,
1.9203871834023048288L,
2.6325525483316542006L,
3.6521097473190391602L,
5.1158671355588658061L,
7.2240800073638774108L,
10.270306349944787227L,
14.685616935355757348L,
21.104114212004582734L,
30.460132808575799413L,
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.35L);
}
case 8:
case 9:
{
constexpr T coef[] =
{
1.8138839368169826437L,
0.76316324570055724607L,
0.76192860532159583095L,
0.95107465366842792679L,
1.3151806717031612153L,
1.9285606934774109412L,
2.9375093425313787550L,
4.5948944054428780618L,
7.3300712218817207718L,
11.871512597425301798L,
19.458513748229377383L,
32.206386572464268628L,
53.737491987005546559L,
90.273886029409988491L,
152.53312130253275268L,
259.02388747148299086L,
441.78537518096201946L,
756.39903981567380952L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.45L);
}
case 10:
case 11:
{
constexpr T coef[] =
{
1.8989249102715535257L,
0.95052179461824443490L,
1.1510775899590158079L,
1.7502391069863005399L,
2.9526768126368751802L,
5.2858003961214508892L,
9.8324857166599797471L,
18.787148683275595622L,
36.614686152736981447L,
72.452923951277718013L,
145.10795773470691023L,
293.47863963084970259L,
598.38518150550101790L,
1228.4200130758634505L,
2536.5297553827644880L,
5263.9832725075189576L,
10972.138126273491753L,
22958.388550988306870L,
48203.103373625406989L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.55L);
}
case 12:
case 13:
{
constexpr T coef[] =
{
2.0075983984243763017L,
1.2484572312123473371L,
1.9262346570764797287L,
3.7512896400875876798L,
8.1199445549320458022L,
18.665721308735553611L,
44.603924842914370633L,
109.50920543094983774L,
274.27795482324134804L,
697.55980086063261629L,
1795.7160145002471293L,
4668.3817167903899100L,
12235.762468136643348L,
32290.178097183208178L,
85713.076081959646847L,
228672.18904931170958L,
612757.27119158527740L,
1.6483233976504668314e6L,
4.4492251046211960936e6L,
1.2046317340783185238e7L,
3.2705187507963254185e7L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.65L);
}
case 14:
case 15:
{
constexpr T coef[] =
{
2.1565156474996432354L,
1.7918056418494632425L,
3.8267512874657131470L,
10.386724683637972080L,
31.403314054680702901L,
100.92370394986954165L,
337.32682826322728966L,
1158.7079305678279173L,
4060.9907421936320917L,
14454.001840343447947L,
52076.661075994048028L,
189493.65914621568866L,
695184.57624138961450L,
2.5679940482552846861e6L,
9.5419219667483863221e6L,
3.5634927442180761743e7L,
1.3366929846120408712e8L,
5.0335218668662845411e8L,
1.9019757295386601192e9L,
7.2089150153301037563e9L,
2.7398741806339510931e10L,
1.0439286724885300495e11L,
3.9864875581513728207e11L,
1.5254661585564745591e12L,
5.8483259088850315936e12
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.75L);
}
case 16:
{
constexpr T coef[] =
{
2.3181226217125105894L,
2.6169201502912328409L,
7.8979350757313558232L,
30.502397154466723270L,
131.48693655235284561L,
602.98476373564916170L,
2877.0246178099726410L,
14110.519919151803247L,
70621.440881565402289L,
358977.26658253099258L,
1.8472382637239716844e6L,
9.6005154160492141090e6L,
5.0307677085023668786e7L,
2.6544418865271279673e8L,
1.4088623250287026866e9L,
7.5156879353737746270e9L,
4.0270783964955246149e10L,
2.1662089325801126339e11L,
1.1692489201929996116e12L,
6.3306543358985679881e12
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.825L);
}
case 17:
{
constexpr T coef[] =
{
2.4735961737513439120L,
3.7276242441180993105L,
15.607393035549304964L,
84.128508428058877470L,
506.98181970406139349L,
3252.2770581451236438L,
21713.242419574342564L,
149037.04518909327662L,
1.0439993310899908390e6L,
7.4279748170420389947e6L,
5.3503839675586611510e7L,
3.8924988699487084738e8L,
2.8552883511008106195e9L,
2.1090077038766840525e10L,
1.5669983394779020136e11L,
1.1702222424224398927e12L,
8.7779483236689379709e12L,
6.6101242752484950408e13L,
4.9948805371338879891e14L,
3.7859743397240299201e15L,
2.8775996123036112296e16L,
2.1926346839925760143e17L,
1.6744985438468349361e18L,
1.2814410112866546052e19L,
9.8249807041031260167e19
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.875L);
}
default:
//
// All cases where m > 0.9
// including all error handling:
//
return ellint_k_imp(k, pol, std::integral_constant<int, 2>());
}
}
template <typename T, typename Policy>
BOOST_MATH_FORCEINLINE typename tools::promote_args<T>::type ellint_1(T k, const Policy& pol, const std::true_type&)
{
typedef typename tools::promote_args<T>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef std::integral_constant<int,
#if defined(__clang_major__) && (__clang_major__ == 7)
2
#else
std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 54) ? 0 :
std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 64) ? 1 : 2
#endif
> precision_tag_type;
return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_k_imp(static_cast<value_type>(k), pol, precision_tag_type()), "boost::math::ellint_1<%1%>(%1%)");
}
template <class T1, class T2>
BOOST_MATH_FORCEINLINE typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const std::false_type&)
{
return boost::math::ellint_1(k, phi, policies::policy<>());
}
}
// Complete elliptic integral (Legendre form) of the first kind
template <typename T>
BOOST_MATH_FORCEINLINE typename tools::promote_args<T>::type ellint_1(T k)
{
return ellint_1(k, policies::policy<>());
}
// Elliptic integral (Legendre form) of the first kind
template <class T1, class T2, class Policy>
BOOST_MATH_FORCEINLINE typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi, const Policy& pol) // LCOV_EXCL_LINE gcc misses this but sees the function body, strange!
{
typedef typename tools::promote_args<T1, T2>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_f_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::ellint_1<%1%>(%1%,%1%)");
}
template <class T1, class T2>
BOOST_MATH_FORCEINLINE typename tools::promote_args<T1, T2>::type ellint_1(T1 k, T2 phi)
{
typedef typename policies::is_policy<T2>::type tag_type;
return detail::ellint_1(k, phi, tag_type());
}
}} // namespaces
#endif // BOOST_MATH_ELLINT_1_HPP