boost/container/detail/tree.hpp
//////////////////////////////////////////////////////////////////////////////
//
// (C) Copyright Ion Gaztanaga 2005-2015. Distributed under the Boost
// Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// See http://www.boost.org/libs/container for documentation.
//
//////////////////////////////////////////////////////////////////////////////
#ifndef BOOST_CONTAINER_TREE_HPP
#define BOOST_CONTAINER_TREE_HPP
#ifndef BOOST_CONFIG_HPP
# include <boost/config.hpp>
#endif
#if defined(BOOST_HAS_PRAGMA_ONCE)
# pragma once
#endif
#include <boost/container/detail/config_begin.hpp>
#include <boost/container/detail/workaround.hpp>
// container
#include <boost/container/allocator_traits.hpp>
#include <boost/container/container_fwd.hpp>
#include <boost/container/options.hpp>
#include <boost/container/node_handle.hpp>
// container/detail
#include <boost/container/detail/algorithm.hpp> //algo_equal(), algo_lexicographical_compare
#include <boost/container/detail/compare_functors.hpp>
#include <boost/container/detail/destroyers.hpp>
#include <boost/container/detail/iterator.hpp>
#include <boost/container/detail/iterators.hpp>
#include <boost/container/detail/node_alloc_holder.hpp>
#include <boost/container/detail/pair.hpp>
#include <boost/container/detail/type_traits.hpp>
// intrusive
#include <boost/intrusive/pointer_traits.hpp>
#include <boost/intrusive/rbtree.hpp>
#include <boost/intrusive/avltree.hpp>
#include <boost/intrusive/splaytree.hpp>
#include <boost/intrusive/sgtree.hpp>
// intrusive/detail
#include <boost/intrusive/detail/minimal_pair_header.hpp> //pair
#include <boost/intrusive/detail/tree_value_compare.hpp> //tree_value_compare
// move
#include <boost/move/utility_core.hpp>
// move/detail
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#include <boost/move/detail/fwd_macros.hpp>
#endif
#include <boost/move/detail/move_helpers.hpp>
#include <boost/move/detail/force_ptr.hpp>
#include <boost/container/detail/std_fwd.hpp>
namespace boost {
namespace container {
namespace dtl {
using boost::intrusive::tree_value_compare;
template<class VoidPointer, boost::container::tree_type_enum tree_type_value, bool OptimizeSize>
struct intrusive_tree_hook;
template<class VoidPointer, bool OptimizeSize>
struct intrusive_tree_hook<VoidPointer, boost::container::red_black_tree, OptimizeSize>
{
typedef typename dtl::bi::make_set_base_hook
< dtl::bi::void_pointer<VoidPointer>
, dtl::bi::link_mode<dtl::bi::normal_link>
, dtl::bi::optimize_size<OptimizeSize>
>::type type;
};
template<class VoidPointer, bool OptimizeSize>
struct intrusive_tree_hook<VoidPointer, boost::container::avl_tree, OptimizeSize>
{
typedef typename dtl::bi::make_avl_set_base_hook
< dtl::bi::void_pointer<VoidPointer>
, dtl::bi::link_mode<dtl::bi::normal_link>
, dtl::bi::optimize_size<OptimizeSize>
>::type type;
};
template<class VoidPointer, bool OptimizeSize>
struct intrusive_tree_hook<VoidPointer, boost::container::scapegoat_tree, OptimizeSize>
{
typedef typename dtl::bi::make_bs_set_base_hook
< dtl::bi::void_pointer<VoidPointer>
, dtl::bi::link_mode<dtl::bi::normal_link>
>::type type;
};
template<class VoidPointer, bool OptimizeSize>
struct intrusive_tree_hook<VoidPointer, boost::container::splay_tree, OptimizeSize>
{
typedef typename dtl::bi::make_bs_set_base_hook
< dtl::bi::void_pointer<VoidPointer>
, dtl::bi::link_mode<dtl::bi::normal_link>
>::type type;
};
//This trait is used to type-pun std::pair because in C++03
//compilers std::pair is useless for C++11 features
template<class T>
struct tree_internal_data_type
{
typedef T type;
};
template<class T1, class T2>
struct tree_internal_data_type< std::pair<T1, T2> >
{
typedef pair<typename boost::move_detail::remove_const<T1>::type, T2> type;
};
template <class T, class VoidPointer, boost::container::tree_type_enum tree_type_value, bool OptimizeSize>
struct iiterator_node_value_type< base_node<T, intrusive_tree_hook<VoidPointer, tree_type_value, OptimizeSize>, true > >
{
typedef T type;
};
template<class Node, class Icont>
class insert_equal_end_hint_functor
{
Icont &icont_;
public:
BOOST_CONTAINER_FORCEINLINE insert_equal_end_hint_functor(Icont &icont)
: icont_(icont)
{}
BOOST_CONTAINER_FORCEINLINE void operator()(Node &n)
{ this->icont_.insert_equal(this->icont_.cend(), n); }
};
template<class Node, class Icont>
class push_back_functor
{
Icont &icont_;
public:
BOOST_CONTAINER_FORCEINLINE push_back_functor(Icont &icont)
: icont_(icont)
{}
BOOST_CONTAINER_FORCEINLINE void operator()(Node &n)
{ this->icont_.push_back(n); }
};
}//namespace dtl {
namespace dtl {
template< class NodeType
, class KeyOfNode
, class KeyCompare
, class HookType
, boost::container::tree_type_enum tree_type_value>
struct intrusive_tree_dispatch;
template<class NodeType, class KeyOfNode, class KeyCompare, class HookType>
struct intrusive_tree_dispatch
<NodeType, KeyOfNode, KeyCompare, HookType, boost::container::red_black_tree>
{
typedef typename dtl::bi::make_rbtree
<NodeType
,dtl::bi::key_of_value<KeyOfNode>
,dtl::bi::compare<KeyCompare>
,dtl::bi::base_hook<HookType>
,dtl::bi::constant_time_size<true>
>::type type;
};
template<class NodeType, class KeyOfNode, class KeyCompare, class HookType>
struct intrusive_tree_dispatch
<NodeType, KeyOfNode, KeyCompare, HookType, boost::container::avl_tree>
{
typedef typename dtl::bi::make_avltree
<NodeType
,dtl::bi::key_of_value<KeyOfNode>
,dtl::bi::compare<KeyCompare>
,dtl::bi::base_hook<HookType>
,dtl::bi::constant_time_size<true>
>::type type;
};
template<class NodeType, class KeyOfNode, class KeyCompare, class HookType>
struct intrusive_tree_dispatch
<NodeType, KeyOfNode, KeyCompare, HookType, boost::container::scapegoat_tree>
{
typedef typename dtl::bi::make_sgtree
<NodeType
,dtl::bi::key_of_value<KeyOfNode>
,dtl::bi::compare<KeyCompare>
,dtl::bi::base_hook<HookType>
,dtl::bi::floating_point<true>
>::type type;
};
template<class NodeType, class KeyOfNode, class KeyCompare, class HookType>
struct intrusive_tree_dispatch
<NodeType, KeyOfNode, KeyCompare, HookType, boost::container::splay_tree>
{
typedef typename dtl::bi::make_splaytree
<NodeType
,dtl::bi::key_of_value<KeyOfNode>
,dtl::bi::compare<KeyCompare>
,dtl::bi::base_hook<HookType>
,dtl::bi::constant_time_size<true>
>::type type;
};
template < class Allocator
, class KeyOfValue
, class KeyCompare
, boost::container::tree_type_enum tree_type_value
, bool OptimizeSize>
struct intrusive_tree_type
{
private:
typedef typename boost::container::
allocator_traits<Allocator>::value_type value_type;
typedef typename boost::container::
allocator_traits<Allocator>::void_pointer void_pointer;
typedef base_node<value_type, intrusive_tree_hook
<void_pointer, tree_type_value, OptimizeSize>, true > node_t;
//Deducing the hook type from node_t (e.g. node_t::hook_type) would
//provoke an early instantiation of node_t that could ruin recursive
//tree definitions, so retype the complete type to avoid any problem.
typedef typename intrusive_tree_hook
<void_pointer, tree_type_value
, OptimizeSize>::type hook_type;
typedef key_of_node
<node_t, KeyOfValue> key_of_node_t;
public:
typedef typename intrusive_tree_dispatch
< node_t
, key_of_node_t
, KeyCompare
, hook_type
, tree_type_value>::type type;
};
//Trait to detect manually rebalanceable tree types
template<boost::container::tree_type_enum tree_type_value>
struct is_manually_balanceable
{ static const bool value = true; };
template<> struct is_manually_balanceable<red_black_tree>
{ static const bool value = false; };
template<> struct is_manually_balanceable<avl_tree>
{ static const bool value = false; };
//Proxy traits to implement different operations depending on the
//is_manually_balanceable<>::value
template< boost::container::tree_type_enum tree_type_value
, bool IsManuallyRebalanceable = is_manually_balanceable<tree_type_value>::value>
struct intrusive_tree_proxy
{
template<class Icont>
BOOST_CONTAINER_FORCEINLINE static void rebalance(Icont &) {}
};
template<boost::container::tree_type_enum tree_type_value>
struct intrusive_tree_proxy<tree_type_value, true>
{
template<class Icont>
BOOST_CONTAINER_FORCEINLINE static void rebalance(Icont &c)
{ c.rebalance(); }
};
} //namespace dtl {
namespace dtl {
//This functor will be used with Intrusive clone functions to obtain
//already allocated nodes from a intrusive container instead of
//allocating new ones. When the intrusive container runs out of nodes
//the node holder is used instead.
template<class AllocHolder, bool DoMove>
class RecyclingCloner
{
typedef typename AllocHolder::intrusive_container intrusive_container;
typedef typename AllocHolder::Node node_t;
typedef typename AllocHolder::NodePtr node_ptr_type;
public:
RecyclingCloner(AllocHolder &holder, intrusive_container &itree)
: m_holder(holder), m_icont(itree)
{}
BOOST_CONTAINER_FORCEINLINE static void do_assign(node_ptr_type p, node_t &other, bool_<true>)
{ p->do_move_assign(other.get_real_data()); }
BOOST_CONTAINER_FORCEINLINE static void do_assign(node_ptr_type p, const node_t &other, bool_<false>)
{ p->do_assign(other.get_real_data()); }
node_ptr_type operator()
(typename dtl::if_c<DoMove, node_t &, const node_t&>::type other) const
{
if(node_ptr_type p = m_icont.unlink_leftmost_without_rebalance()){
//First recycle a node (this can't throw)
BOOST_CONTAINER_TRY{
//This can throw
this->do_assign(p, other, bool_<DoMove>());
return p;
}
BOOST_CONTAINER_CATCH(...){
//If there is an exception destroy the whole source
m_holder.destroy_node(p);
while((p = m_icont.unlink_leftmost_without_rebalance())){
m_holder.destroy_node(p);
}
BOOST_CONTAINER_RETHROW
}
BOOST_CONTAINER_CATCH_END
}
else{
return m_holder.create_node(boost::move(other.get_real_data()));
}
}
AllocHolder &m_holder;
intrusive_container &m_icont;
};
template<class Options>
struct get_tree_opt
{
typedef Options type;
};
template<>
struct get_tree_opt<void>
{
typedef tree_assoc_defaults type;
};
template<class, class KeyOfValue>
struct tree_key_of_value
{
typedef KeyOfValue type;
};
template<class T>
struct tree_key_of_value<T, void>
{
typedef dtl::identity<T> type;
};
template<class T1, class T2>
struct tree_key_of_value<std::pair<T1, T2>, int>
{
typedef dtl::select1st<T1> type;
};
template<class T1, class T2>
struct tree_key_of_value<boost::container::dtl::pair<T1, T2>, int>
{
typedef dtl::select1st<T1> type;
};
template <class T, class KeyOfValue, class Compare, class Allocator, class Options>
struct make_intrusive_tree_type
: dtl::intrusive_tree_type
< typename real_allocator<T, Allocator>::type
, typename tree_key_of_value<T, KeyOfValue>::type
, Compare
, get_tree_opt<Options>::type::tree_type
, get_tree_opt<Options>::type::optimize_size
>
{};
template <class T, class KeyOfValue, class Compare, class Allocator, class Options>
class tree
: public dtl::node_alloc_holder
< typename real_allocator<T, Allocator>::type
, typename make_intrusive_tree_type<T, KeyOfValue, Compare, Allocator, Options>::type
>
{
typedef tree < T, KeyOfValue
, Compare, Allocator, Options> ThisType;
public:
typedef typename real_allocator<T, Allocator>::type allocator_type;
private:
typedef allocator_traits<allocator_type> allocator_traits_t;
typedef typename tree_key_of_value<T, KeyOfValue>::type key_of_value_t;
typedef tree_value_compare
< typename allocator_traits_t::pointer
, Compare
, key_of_value_t> ValComp;
typedef typename get_tree_opt<Options>::type options_type;
typedef typename make_intrusive_tree_type
<T, KeyOfValue, Compare, Allocator, Options>::type Icont;
typedef dtl::node_alloc_holder
<allocator_type, Icont> AllocHolder;
typedef typename AllocHolder::NodePtr NodePtr;
typedef typename AllocHolder::NodeAlloc NodeAlloc;
typedef boost::container::
allocator_traits<NodeAlloc> allocator_traits_type;
typedef typename AllocHolder::ValAlloc ValAlloc;
typedef typename AllocHolder::Node Node;
typedef typename Icont::iterator iiterator;
typedef typename Icont::const_iterator iconst_iterator;
typedef dtl::allocator_node_destroyer<NodeAlloc> Destroyer;
typedef typename AllocHolder::alloc_version alloc_version;
typedef intrusive_tree_proxy<options_type::tree_type> intrusive_tree_proxy_t;
BOOST_COPYABLE_AND_MOVABLE(tree)
public:
typedef typename dtl::remove_const
<typename key_of_value_t::type>::type key_type;
typedef T value_type;
typedef Compare key_compare;
typedef ValComp value_compare;
typedef typename boost::container::
allocator_traits<allocator_type>::pointer pointer;
typedef typename boost::container::
allocator_traits<allocator_type>::const_pointer const_pointer;
typedef typename boost::container::
allocator_traits<allocator_type>::reference reference;
typedef typename boost::container::
allocator_traits<allocator_type>::const_reference const_reference;
typedef typename boost::container::
allocator_traits<allocator_type>::size_type size_type;
typedef typename boost::container::
allocator_traits<allocator_type>::difference_type difference_type;
typedef dtl::iterator_from_iiterator
<iiterator, false> iterator;
typedef dtl::iterator_from_iiterator
<iiterator, true > const_iterator;
typedef boost::container::reverse_iterator
<iterator> reverse_iterator;
typedef boost::container::reverse_iterator
<const_iterator> const_reverse_iterator;
typedef node_handle
< NodeAlloc, void> node_type;
typedef insert_return_type_base
<iterator, node_type> insert_return_type;
typedef NodeAlloc stored_allocator_type;
private:
typedef key_node_pred<key_compare, key_of_value_t, Node> KeyNodeCompare;
public:
BOOST_CONTAINER_FORCEINLINE tree()
: AllocHolder()
{}
BOOST_CONTAINER_FORCEINLINE explicit tree(const key_compare& comp)
: AllocHolder(ValComp(comp))
{}
BOOST_CONTAINER_FORCEINLINE explicit tree(const key_compare& comp, const allocator_type& a)
: AllocHolder(ValComp(comp), a)
{}
BOOST_CONTAINER_FORCEINLINE explicit tree(const allocator_type& a)
: AllocHolder(a)
{}
template <class InputIterator>
tree(bool unique_insertion, InputIterator first, InputIterator last)
: AllocHolder(value_compare(key_compare()))
{
this->tree_construct(unique_insertion, first, last);
//AllocHolder clears in case of exception
}
template <class InputIterator>
tree(bool unique_insertion, InputIterator first, InputIterator last, const key_compare& comp)
: AllocHolder(value_compare(comp))
{
this->tree_construct(unique_insertion, first, last);
//AllocHolder clears in case of exception
}
template <class InputIterator>
tree(bool unique_insertion, InputIterator first, InputIterator last, const key_compare& comp, const allocator_type& a)
: AllocHolder(value_compare(comp), a)
{
this->tree_construct(unique_insertion, first, last);
//AllocHolder clears in case of exception
}
//construct with ordered range
template <class InputIterator>
tree( ordered_range_t, InputIterator first, InputIterator last)
: AllocHolder(value_compare(key_compare()))
{
this->tree_construct(ordered_range_t(), first, last);
}
template <class InputIterator>
tree( ordered_range_t, InputIterator first, InputIterator last, const key_compare& comp)
: AllocHolder(value_compare(comp))
{
this->tree_construct(ordered_range_t(), first, last);
}
template <class InputIterator>
tree( ordered_range_t, InputIterator first, InputIterator last
, const key_compare& comp, const allocator_type& a)
: AllocHolder(value_compare(comp), a)
{
this->tree_construct(ordered_range_t(), first, last);
}
private:
template <class InputIterator>
void tree_construct(bool unique_insertion, InputIterator first, InputIterator last)
{
//Use cend() as hint to achieve linear time for
//ordered ranges as required by the standard
//for the constructor
if(unique_insertion){
const const_iterator end_it(this->cend());
for ( ; first != last; ++first){
this->insert_unique_hint_convertible(end_it, *first);
}
}
else{
this->tree_construct_non_unique(first, last);
}
}
template <class InputIterator>
void tree_construct_non_unique(InputIterator first, InputIterator last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename dtl::enable_if_or
< void
, dtl::is_same<alloc_version, version_1>
, dtl::is_input_iterator<InputIterator>
>::type * = 0
#endif
)
{
//Use cend() as hint to achieve linear time for
//ordered ranges as required by the standard
//for the constructor
const const_iterator end_it(this->cend());
for ( ; first != last; ++first){
this->insert_equal_hint_convertible(end_it, *first);
}
}
template <class InputIterator>
void tree_construct_non_unique(InputIterator first, InputIterator last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename dtl::disable_if_or
< void
, dtl::is_same<alloc_version, version_1>
, dtl::is_input_iterator<InputIterator>
>::type * = 0
#endif
)
{
//Optimized allocation and construction
this->allocate_many_and_construct
( first, boost::container::iterator_udistance(first, last)
, insert_equal_end_hint_functor<Node, Icont>(this->icont()));
}
template <class InputIterator>
void tree_construct( ordered_range_t, InputIterator first, InputIterator last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename dtl::disable_if_or
< void
, dtl::is_same<alloc_version, version_1>
, dtl::is_input_iterator<InputIterator>
>::type * = 0
#endif
)
{
//Optimized allocation and construction
this->allocate_many_and_construct
( first, boost::container::iterator_udistance(first, last)
, dtl::push_back_functor<Node, Icont>(this->icont()));
//AllocHolder clears in case of exception
}
template <class InputIterator>
void tree_construct( ordered_range_t, InputIterator first, InputIterator last
#if !defined(BOOST_CONTAINER_DOXYGEN_INVOKED)
, typename dtl::enable_if_or
< void
, dtl::is_same<alloc_version, version_1>
, dtl::is_input_iterator<InputIterator>
>::type * = 0
#endif
)
{
for ( ; first != last; ++first){
this->push_back_impl(*first);
}
}
public:
BOOST_CONTAINER_FORCEINLINE tree(const tree& x)
: AllocHolder(x, x.value_comp())
{
this->icont().clone_from
(x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc()));
}
BOOST_CONTAINER_FORCEINLINE tree(BOOST_RV_REF(tree) x)
BOOST_NOEXCEPT_IF(boost::container::dtl::is_nothrow_move_constructible<Compare>::value)
: AllocHolder(BOOST_MOVE_BASE(AllocHolder, x), x.value_comp())
{}
BOOST_CONTAINER_FORCEINLINE tree(const tree& x, const allocator_type &a)
: AllocHolder(x.value_comp(), a)
{
this->icont().clone_from
(x.icont(), typename AllocHolder::cloner(*this), Destroyer(this->node_alloc()));
//AllocHolder clears in case of exception
}
tree(BOOST_RV_REF(tree) x, const allocator_type &a)
: AllocHolder(x.value_comp(), a)
{
if(this->node_alloc() == x.node_alloc()){
this->icont().swap(x.icont());
}
else{
this->icont().clone_from
(boost::move(x.icont()), typename AllocHolder::move_cloner(*this), Destroyer(this->node_alloc()));
}
//AllocHolder clears in case of exception
}
BOOST_CONTAINER_FORCEINLINE ~tree()
{} //AllocHolder clears the tree
tree& operator=(BOOST_COPY_ASSIGN_REF(tree) x)
{
if (BOOST_LIKELY(this != &x)) {
NodeAlloc &this_alloc = this->get_stored_allocator();
const NodeAlloc &x_alloc = x.get_stored_allocator();
dtl::bool_<allocator_traits<NodeAlloc>::
propagate_on_container_copy_assignment::value> flag;
if(flag && this_alloc != x_alloc){
this->clear();
}
this->AllocHolder::copy_assign_alloc(x);
//Transfer all the nodes to a temporary tree
//If anything goes wrong, all the nodes will be destroyed
//automatically
Icont other_tree(::boost::move(this->icont()));
//Now recreate the source tree reusing nodes stored by other_tree
this->icont().clone_from
(x.icont()
, RecyclingCloner<AllocHolder, false>(*this, other_tree)
, Destroyer(this->node_alloc()));
//If there are remaining nodes, destroy them
NodePtr p;
while((p = other_tree.unlink_leftmost_without_rebalance())){
AllocHolder::destroy_node(p);
}
}
return *this;
}
tree& operator=(BOOST_RV_REF(tree) x)
BOOST_NOEXCEPT_IF( (allocator_traits_type::propagate_on_container_move_assignment::value ||
allocator_traits_type::is_always_equal::value) &&
boost::container::dtl::is_nothrow_move_assignable<Compare>::value)
{
if (BOOST_LIKELY(this != &x)) {
NodeAlloc &this_alloc = this->node_alloc();
NodeAlloc &x_alloc = x.node_alloc();
const bool propagate_alloc = allocator_traits<NodeAlloc>::
propagate_on_container_move_assignment::value;
const bool allocators_equal = this_alloc == x_alloc; (void)allocators_equal;
//Resources can be transferred if both allocators are
//going to be equal after this function (either propagated or already equal)
if(propagate_alloc || allocators_equal){
//Destroy
this->clear();
//Move allocator if needed
this->AllocHolder::move_assign_alloc(x);
//Obtain resources
this->icont() = boost::move(x.icont());
}
//Else do a one by one move
else{
//Transfer all the nodes to a temporary tree
//If anything goes wrong, all the nodes will be destroyed
//automatically
Icont other_tree(::boost::move(this->icont()));
//Now recreate the source tree reusing nodes stored by other_tree
this->icont().clone_from
(::boost::move(x.icont())
, RecyclingCloner<AllocHolder, true>(*this, other_tree)
, Destroyer(this->node_alloc()));
//If there are remaining nodes, destroy them
NodePtr p;
while((p = other_tree.unlink_leftmost_without_rebalance())){
AllocHolder::destroy_node(p);
}
}
}
return *this;
}
public:
// accessors:
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
value_compare value_comp() const
{ return value_compare(this->key_comp()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
key_compare key_comp() const
{ return this->icont().key_comp(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
allocator_type get_allocator() const
{ return allocator_type(this->node_alloc()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const stored_allocator_type &get_stored_allocator() const
{ return this->node_alloc(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
stored_allocator_type &get_stored_allocator()
{ return this->node_alloc(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
iterator begin()
{ return iterator(this->icont().begin()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_iterator begin() const
{ return this->cbegin(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
iterator end()
{ return iterator(this->icont().end()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_iterator end() const
{ return this->cend(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
reverse_iterator rbegin()
{ return reverse_iterator(end()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reverse_iterator rbegin() const
{ return this->crbegin(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
reverse_iterator rend()
{ return reverse_iterator(begin()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reverse_iterator rend() const
{ return this->crend(); }
//! <b>Effects</b>: Returns a const_iterator to the first element contained in the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_iterator cbegin() const
{ return const_iterator(this->non_const_icont().begin()); }
//! <b>Effects</b>: Returns a const_iterator to the end of the container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_iterator cend() const
{ return const_iterator(this->non_const_icont().end()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the beginning
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reverse_iterator crbegin() const
{ return const_reverse_iterator(cend()); }
//! <b>Effects</b>: Returns a const_reverse_iterator pointing to the end
//! of the reversed container.
//!
//! <b>Throws</b>: Nothing.
//!
//! <b>Complexity</b>: Constant.
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_reverse_iterator crend() const
{ return const_reverse_iterator(cbegin()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
bool empty() const
{ return !this->size(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
size_type size() const
{ return this->icont().size(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
size_type max_size() const
{ return AllocHolder::max_size(); }
BOOST_CONTAINER_FORCEINLINE void swap(ThisType& x)
BOOST_NOEXCEPT_IF( allocator_traits_type::is_always_equal::value
&& boost::container::dtl::is_nothrow_swappable<Compare>::value )
{ AllocHolder::swap(x); }
public:
typedef typename Icont::insert_commit_data insert_commit_data;
// insert/erase
std::pair<iterator,bool> insert_unique_check
(const key_type& key, insert_commit_data &data)
{
std::pair<iiterator, bool> ret =
this->icont().insert_unique_check(key, data);
return std::pair<iterator, bool>(iterator(ret.first), ret.second);
}
std::pair<iterator,bool> insert_unique_check
(const_iterator hint, const key_type& key, insert_commit_data &data)
{
BOOST_ASSERT((priv_is_linked)(hint));
std::pair<iiterator, bool> ret =
this->icont().insert_unique_check(hint.get(), key, data);
return std::pair<iterator, bool>(iterator(ret.first), ret.second);
}
template<class MovableConvertible>
iterator insert_unique_commit
(BOOST_FWD_REF(MovableConvertible) v, insert_commit_data &data)
{
NodePtr tmp = AllocHolder::create_node(boost::forward<MovableConvertible>(v));
scoped_node_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc());
iterator ret(this->icont().insert_unique_commit(*tmp, data));
destroy_deallocator.release();
return ret;
}
template<class MovableConvertible>
std::pair<iterator,bool> insert_unique_convertible(BOOST_FWD_REF(MovableConvertible) v)
{
insert_commit_data data;
std::pair<iterator,bool> ret =
this->insert_unique_check(key_of_value_t()(v), data);
if(ret.second){
ret.first = this->insert_unique_commit(boost::forward<MovableConvertible>(v), data);
}
return ret;
}
template<class MovableConvertible>
iterator insert_unique_hint_convertible(const_iterator hint, BOOST_FWD_REF(MovableConvertible) v)
{
BOOST_ASSERT((priv_is_linked)(hint));
insert_commit_data data;
std::pair<iterator,bool> ret =
this->insert_unique_check(hint, key_of_value_t()(v), data);
if(!ret.second)
return ret.first;
return this->insert_unique_commit(boost::forward<MovableConvertible>(v), data);
}
private:
template<class KeyConvertible, class M>
iiterator priv_insert_or_assign_commit
(BOOST_FWD_REF(KeyConvertible) key, BOOST_FWD_REF(M) obj, insert_commit_data &data)
{
NodePtr tmp = AllocHolder::create_node(boost::forward<KeyConvertible>(key), boost::forward<M>(obj));
scoped_node_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc());
iiterator ret(this->icont().insert_unique_commit(*tmp, data));
destroy_deallocator.release();
return ret;
}
bool priv_is_linked(const_iterator const position) const
{
iiterator const cur(position.get());
return cur == this->icont().end() ||
cur == this->icont().root() ||
iiterator(cur).go_parent().go_left() == cur ||
iiterator(cur).go_parent().go_right() == cur;
}
template<class MovableConvertible>
void push_back_impl(BOOST_FWD_REF(MovableConvertible) v)
{
NodePtr tmp(AllocHolder::create_node(boost::forward<MovableConvertible>(v)));
//push_back has no-throw guarantee so avoid any deallocator/destroyer
this->icont().push_back(*tmp);
}
std::pair<iterator, bool> emplace_unique_node(NodePtr p)
{
value_type &v = p->get_data();
insert_commit_data data;
scoped_node_destroy_deallocator<NodeAlloc> destroy_deallocator(p, this->node_alloc());
std::pair<iterator,bool> ret =
this->insert_unique_check(key_of_value_t()(v), data);
if(!ret.second){
return ret;
}
//No throw insertion part, release rollback
destroy_deallocator.release();
return std::pair<iterator,bool>
( iterator(this->icont().insert_unique_commit(*p, data))
, true );
}
iterator emplace_hint_unique_node(const_iterator hint, NodePtr p)
{
BOOST_ASSERT((priv_is_linked)(hint));
value_type &v = p->get_data();
insert_commit_data data;
std::pair<iterator,bool> ret =
this->insert_unique_check(hint, key_of_value_t()(v), data);
if(!ret.second){
//Destroy unneeded node
Destroyer(this->node_alloc())(p);
return ret.first;
}
return iterator(this->icont().insert_unique_commit(*p, data));
}
public:
#if !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
template <class... Args>
BOOST_CONTAINER_FORCEINLINE std::pair<iterator, bool> emplace_unique(BOOST_FWD_REF(Args)... args)
{ return this->emplace_unique_node(AllocHolder::create_node(boost::forward<Args>(args)...)); }
template <class... Args>
BOOST_CONTAINER_FORCEINLINE iterator emplace_hint_unique(const_iterator hint, BOOST_FWD_REF(Args)... args)
{ return this->emplace_hint_unique_node(hint, AllocHolder::create_node(boost::forward<Args>(args)...)); }
template <class... Args>
iterator emplace_equal(BOOST_FWD_REF(Args)... args)
{
NodePtr tmp(AllocHolder::create_node(boost::forward<Args>(args)...));
scoped_node_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc());
iterator ret(this->icont().insert_equal(this->icont().end(), *tmp));
destroy_deallocator.release();
return ret;
}
template <class... Args>
iterator emplace_hint_equal(const_iterator hint, BOOST_FWD_REF(Args)... args)
{
BOOST_ASSERT((priv_is_linked)(hint));
NodePtr tmp(AllocHolder::create_node(boost::forward<Args>(args)...));
scoped_node_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc());
iterator ret(this->icont().insert_equal(hint.get(), *tmp));
destroy_deallocator.release();
return ret;
}
template <class KeyType, class... Args>
BOOST_CONTAINER_FORCEINLINE std::pair<iterator, bool> try_emplace
(const_iterator hint, BOOST_FWD_REF(KeyType) key, BOOST_FWD_REF(Args)... args)
{
insert_commit_data data;
const key_type & k = key; //Support emulated rvalue references
std::pair<iiterator, bool> ret =
hint == const_iterator() ? this->icont().insert_unique_check( k, data)
: this->icont().insert_unique_check(hint.get(), k, data);
if(ret.second){
ret.first = this->icont().insert_unique_commit
(*AllocHolder::create_node(try_emplace_t(), boost::forward<KeyType>(key), boost::forward<Args>(args)...), data);
}
return std::pair<iterator, bool>(iterator(ret.first), ret.second);
}
#else // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
#define BOOST_CONTAINER_TREE_EMPLACE_CODE(N) \
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
std::pair<iterator, bool> emplace_unique(BOOST_MOVE_UREF##N)\
{ return this->emplace_unique_node(AllocHolder::create_node(BOOST_MOVE_FWD##N)); }\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
iterator emplace_hint_unique(const_iterator hint BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{ return this->emplace_hint_unique_node(hint, AllocHolder::create_node(BOOST_MOVE_FWD##N)); }\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
iterator emplace_equal(BOOST_MOVE_UREF##N)\
{\
NodePtr tmp(AllocHolder::create_node(BOOST_MOVE_FWD##N));\
scoped_node_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc());\
iterator ret(this->icont().insert_equal(this->icont().end(), *tmp));\
destroy_deallocator.release();\
return ret;\
}\
\
BOOST_MOVE_TMPL_LT##N BOOST_MOVE_CLASS##N BOOST_MOVE_GT##N \
iterator emplace_hint_equal(const_iterator hint BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
BOOST_ASSERT((priv_is_linked)(hint));\
NodePtr tmp(AllocHolder::create_node(BOOST_MOVE_FWD##N));\
scoped_node_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc());\
iterator ret(this->icont().insert_equal(hint.get(), *tmp));\
destroy_deallocator.release();\
return ret;\
}\
\
template <class KeyType BOOST_MOVE_I##N BOOST_MOVE_CLASS##N>\
BOOST_CONTAINER_FORCEINLINE std::pair<iterator, bool>\
try_emplace(const_iterator hint, BOOST_FWD_REF(KeyType) key BOOST_MOVE_I##N BOOST_MOVE_UREF##N)\
{\
insert_commit_data data;\
const key_type & k = key;\
std::pair<iiterator, bool> ret =\
hint == const_iterator() ? this->icont().insert_unique_check( k, data)\
: this->icont().insert_unique_check(hint.get(), k, data);\
if(ret.second){\
ret.first = this->icont().insert_unique_commit\
(*AllocHolder::create_node(try_emplace_t(), boost::forward<KeyType>(key) BOOST_MOVE_I##N BOOST_MOVE_FWD##N), data);\
}\
return std::pair<iterator, bool>(iterator(ret.first), ret.second);\
}\
//
BOOST_MOVE_ITERATE_0TO9(BOOST_CONTAINER_TREE_EMPLACE_CODE)
#undef BOOST_CONTAINER_TREE_EMPLACE_CODE
#endif // !defined(BOOST_NO_CXX11_VARIADIC_TEMPLATES)
//BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG(insert_unique, value_type, iterator, this->insert_unique_hint_convertible, const_iterator, const_iterator)
template <class InputIterator>
void insert_unique_range(InputIterator first, InputIterator last)
{
for( ; first != last; ++first)
this->insert_unique_convertible(*first);
}
template<class MovableConvertible>
iterator insert_equal_convertible(BOOST_FWD_REF(MovableConvertible) v)
{
NodePtr tmp(AllocHolder::create_node(boost::forward<MovableConvertible>(v)));
scoped_node_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc());
iterator ret(this->icont().insert_equal(this->icont().end(), *tmp));
destroy_deallocator.release();
return ret;
}
template<class MovableConvertible>
iterator insert_equal_hint_convertible(const_iterator hint, BOOST_FWD_REF(MovableConvertible) v)
{
BOOST_ASSERT((priv_is_linked)(hint));
NodePtr tmp(AllocHolder::create_node(boost::forward<MovableConvertible>(v)));
scoped_node_destroy_deallocator<NodeAlloc> destroy_deallocator(tmp, this->node_alloc());
iterator ret(this->icont().insert_equal(hint.get(), *tmp));
destroy_deallocator.release();
return ret;
}
BOOST_MOVE_CONVERSION_AWARE_CATCH_1ARG
(insert_equal, value_type, iterator, this->insert_equal_hint_convertible, const_iterator, const_iterator)
template <class InputIterator>
void insert_equal_range(InputIterator first, InputIterator last)
{
for( ; first != last; ++first)
this->insert_equal_convertible(*first);
}
template<class KeyType, class M>
std::pair<iterator, bool> insert_or_assign(const_iterator hint, BOOST_FWD_REF(KeyType) key, BOOST_FWD_REF(M) obj)
{
insert_commit_data data;
const key_type & k = key; //Support emulated rvalue references
std::pair<iiterator, bool> ret =
hint == const_iterator() ? this->icont().insert_unique_check(k, data)
: this->icont().insert_unique_check(hint.get(), k, data);
if(ret.second){
ret.first = this->priv_insert_or_assign_commit(boost::forward<KeyType>(key), boost::forward<M>(obj), data);
}
else{
ret.first->get_data().second = boost::forward<M>(obj);
}
return std::pair<iterator, bool>(iterator(ret.first), ret.second);
}
iterator erase(const_iterator position)
{
BOOST_ASSERT(position != this->cend() && (priv_is_linked)(position));
return iterator(this->icont().erase_and_dispose(position.get(), Destroyer(this->node_alloc())));
}
BOOST_CONTAINER_FORCEINLINE size_type erase(const key_type& k)
{ return AllocHolder::erase_key(k, alloc_version()); }
size_type erase_unique(const key_type& k)
{
iterator i = this->find(k);
size_type ret = static_cast<size_type>(i != this->end());
if (ret)
this->erase(i);
return ret;
}
iterator erase(const_iterator first, const_iterator last)
{
BOOST_ASSERT(first == last || (first != this->cend() && (priv_is_linked)(first)));
BOOST_ASSERT(first == last || (priv_is_linked)(last));
return iterator(AllocHolder::erase_range(first.get(), last.get(), alloc_version()));
}
node_type extract(const key_type& k)
{
iterator const it = this->find(k);
if(this->end() != it){
return this->extract(it);
}
return node_type();
}
node_type extract(const_iterator position)
{
BOOST_ASSERT(position != this->cend() && (priv_is_linked)(position));
iiterator const iit(position.get());
this->icont().erase(iit);
return node_type(iit.operator->(), this->node_alloc());
}
insert_return_type insert_unique_node(BOOST_RV_REF_BEG_IF_CXX11 node_type BOOST_RV_REF_END_IF_CXX11 nh)
{
return this->insert_unique_node(this->end(), boost::move(nh));
}
insert_return_type insert_unique_node(const_iterator hint, BOOST_RV_REF_BEG_IF_CXX11 node_type BOOST_RV_REF_END_IF_CXX11 nh)
{
insert_return_type irt; //inserted == false, node.empty()
if(!nh.empty()){
insert_commit_data data;
std::pair<iterator,bool> ret =
this->insert_unique_check(hint, key_of_value_t()(nh.value()), data);
if(ret.second){
irt.inserted = true;
irt.position = iterator(this->icont().insert_unique_commit(*nh.get(), data));
nh.release();
}
else{
irt.position = ret.first;
irt.node = boost::move(nh);
}
}
else{
irt.position = this->end();
}
return BOOST_MOVE_RET(insert_return_type, irt);
}
iterator insert_equal_node(BOOST_RV_REF_BEG_IF_CXX11 node_type BOOST_RV_REF_END_IF_CXX11 nh)
{
if(nh.empty()){
return this->end();
}
else{
NodePtr const p(nh.release());
return iterator(this->icont().insert_equal(*p));
}
}
iterator insert_equal_node(const_iterator hint, BOOST_RV_REF_BEG_IF_CXX11 node_type BOOST_RV_REF_END_IF_CXX11 nh)
{
if(nh.empty()){
return this->end();
}
else{
NodePtr const p(nh.release());
return iterator(this->icont().insert_equal(hint.get(), *p));
}
}
template<class C2>
BOOST_CONTAINER_FORCEINLINE void merge_unique(tree<T, KeyOfValue, C2, Allocator, Options>& source)
{ return this->icont().merge_unique(source.icont()); }
template<class C2>
BOOST_CONTAINER_FORCEINLINE void merge_equal(tree<T, KeyOfValue, C2, Allocator, Options>& source)
{ return this->icont().merge_equal(source.icont()); }
BOOST_CONTAINER_FORCEINLINE void clear()
{ AllocHolder::clear(alloc_version()); }
// search operations. Const and non-const overloads even if no iterator is returned
// so splay implementations can to their rebalancing when searching in non-const versions
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
iterator find(const key_type& k)
{ return iterator(this->icont().find(k)); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_iterator find(const key_type& k) const
{ return const_iterator(this->non_const_icont().find(k)); }
template <class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, iterator>::type
find(const K& k)
{ return iterator(this->icont().find(k, KeyNodeCompare())); }
template <class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, const_iterator>::type
find(const K& k) const
{ return const_iterator(this->non_const_icont().find(k, KeyNodeCompare())); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
size_type count(const key_type& k) const
{ return size_type(this->icont().count(k)); }
template <class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, size_type>::type
count(const K& k) const
{ return size_type(this->icont().count(k, KeyNodeCompare())); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
bool contains(const key_type& x) const
{ return this->find(x) != this->cend(); }
template<typename K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, bool>::type
contains(const K& x) const
{ return this->find(x) != this->cend(); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
iterator lower_bound(const key_type& k)
{ return iterator(this->icont().lower_bound(k)); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_iterator lower_bound(const key_type& k) const
{ return const_iterator(this->non_const_icont().lower_bound(k)); }
template <class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, iterator>::type
lower_bound(const K& k)
{ return iterator(this->icont().lower_bound(k, KeyNodeCompare())); }
template <class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, const_iterator>::type
lower_bound(const K& k) const
{ return const_iterator(this->non_const_icont().lower_bound(k, KeyNodeCompare())); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
iterator upper_bound(const key_type& k)
{ return iterator(this->icont().upper_bound(k)); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
const_iterator upper_bound(const key_type& k) const
{ return const_iterator(this->non_const_icont().upper_bound(k)); }
template <class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, iterator>::type
upper_bound(const K& k)
{ return iterator(this->icont().upper_bound(k, KeyNodeCompare())); }
template <class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, const_iterator>::type
upper_bound(const K& k) const
{ return const_iterator(this->non_const_icont().upper_bound(k, KeyNodeCompare())); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
std::pair<iterator,iterator> equal_range(const key_type& k)
{
std::pair<iiterator, iiterator> ret = this->icont().equal_range(k);
return std::pair<iterator,iterator>(iterator(ret.first), iterator(ret.second));
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
std::pair<const_iterator, const_iterator> equal_range(const key_type& k) const
{
std::pair<iiterator, iiterator> ret =
this->non_const_icont().equal_range(k);
return std::pair<const_iterator,const_iterator>
(const_iterator(ret.first), const_iterator(ret.second));
}
template <class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, std::pair<iterator,iterator> >::type
equal_range(const K& k)
{
std::pair<iiterator, iiterator> ret =
this->icont().equal_range(k, KeyNodeCompare());
return std::pair<iterator,iterator>(iterator(ret.first), iterator(ret.second));
}
template <class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, std::pair<const_iterator, const_iterator> >::type
equal_range(const K& k) const
{
std::pair<iiterator, iiterator> ret =
this->non_const_icont().equal_range(k, KeyNodeCompare());
return std::pair<const_iterator,const_iterator>
(const_iterator(ret.first), const_iterator(ret.second));
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
std::pair<iterator,iterator> lower_bound_range(const key_type& k)
{
std::pair<iiterator, iiterator> ret =
this->icont().lower_bound_range(k);
return std::pair<iterator,iterator>(iterator(ret.first), iterator(ret.second));
}
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
std::pair<const_iterator, const_iterator> lower_bound_range(const key_type& k) const
{
std::pair<iiterator, iiterator> ret =
this->non_const_icont().lower_bound_range(k);
return std::pair<const_iterator,const_iterator>
(const_iterator(ret.first), const_iterator(ret.second));
}
template <class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, std::pair<iterator,iterator> >::type
lower_bound_range(const K& k)
{
std::pair<iiterator, iiterator> ret =
this->icont().lower_bound_range(k, KeyNodeCompare());
return std::pair<iterator,iterator>(iterator(ret.first), iterator(ret.second));
}
template <class K>
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
typename dtl::enable_if_transparent<key_compare, K, std::pair<const_iterator, const_iterator> >::type
lower_bound_range(const K& k) const
{
std::pair<iiterator, iiterator> ret =
this->non_const_icont().lower_bound_range(k, KeyNodeCompare());
return std::pair<const_iterator,const_iterator>
(const_iterator(ret.first), const_iterator(ret.second));
}
BOOST_CONTAINER_FORCEINLINE void rebalance()
{ intrusive_tree_proxy_t::rebalance(this->icont()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator==(const tree& x, const tree& y)
{ return x.size() == y.size() && ::boost::container::algo_equal(x.begin(), x.end(), y.begin()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator<(const tree& x, const tree& y)
{ return ::boost::container::algo_lexicographical_compare(x.begin(), x.end(), y.begin(), y.end()); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator!=(const tree& x, const tree& y)
{ return !(x == y); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator>(const tree& x, const tree& y)
{ return y < x; }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator<=(const tree& x, const tree& y)
{ return !(y < x); }
BOOST_CONTAINER_ATTRIBUTE_NODISCARD BOOST_CONTAINER_FORCEINLINE
friend bool operator>=(const tree& x, const tree& y)
{ return !(x < y); }
BOOST_CONTAINER_FORCEINLINE friend void swap(tree& x, tree& y)
BOOST_NOEXCEPT_IF( allocator_traits_type::is_always_equal::value
&& boost::container::dtl::is_nothrow_swappable<Compare>::value )
{ x.swap(y); }
};
} //namespace dtl {
} //namespace container {
template <class T>
struct has_trivial_destructor_after_move;
//!has_trivial_destructor_after_move<> == true_type
//!specialization for optimizations
template <class T, class KeyOfValue, class Compare, class Allocator, class Options>
struct has_trivial_destructor_after_move
<
::boost::container::dtl::tree
<T, KeyOfValue, Compare, Allocator, Options>
>
{
typedef typename ::boost::container::dtl::tree<T, KeyOfValue, Compare, Allocator, Options>::allocator_type allocator_type;
typedef typename ::boost::container::allocator_traits<allocator_type>::pointer pointer;
static const bool value = ::boost::has_trivial_destructor_after_move<allocator_type>::value &&
::boost::has_trivial_destructor_after_move<pointer>::value &&
::boost::has_trivial_destructor_after_move<Compare>::value;
};
} //namespace boost {
#include <boost/container/detail/config_end.hpp>
#endif //BOOST_CONTAINER_TREE_HPP