boost/compute/random/normal_distribution.hpp
//---------------------------------------------------------------------------//
// Copyright (c) 2013-2014 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_RANDOM_NORMAL_DISTRIBUTION_HPP
#define BOOST_COMPUTE_RANDOM_NORMAL_DISTRIBUTION_HPP
#include <limits>
#include <boost/assert.hpp>
#include <boost/type_traits.hpp>
#include <boost/compute/command_queue.hpp>
#include <boost/compute/function.hpp>
#include <boost/compute/types/fundamental.hpp>
#include <boost/compute/type_traits/make_vector_type.hpp>
namespace boost {
namespace compute {
/// \class normal_distribution
/// \brief Produces random, normally-distributed floating-point numbers.
///
/// The following example shows how to setup a normal distribution to
/// produce random \c float values centered at \c 5:
///
/// \snippet test/test_normal_distribution.cpp generate
///
/// \see default_random_engine, uniform_real_distribution
template<class RealType = float>
class normal_distribution
{
public:
typedef RealType result_type;
/// Creates a new normal distribution producing numbers with the given
/// \p mean and \p stddev.
normal_distribution(RealType mean = 0.f, RealType stddev = 1.f)
: m_mean(mean),
m_stddev(stddev)
{
}
/// Destroys the normal distribution object.
~normal_distribution()
{
}
/// Returns the mean value of the distribution.
result_type mean() const
{
return m_mean;
}
/// Returns the standard-deviation of the distribution.
result_type stddev() const
{
return m_stddev;
}
/// Returns the minimum value of the distribution.
result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const
{
return -std::numeric_limits<RealType>::infinity();
}
/// Returns the maximum value of the distribution.
result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const
{
return std::numeric_limits<RealType>::infinity();
}
/// Generates normally-distributed floating-point numbers and stores
/// them to the range [\p first, \p last).
template<class OutputIterator, class Generator>
void generate(OutputIterator first,
OutputIterator last,
Generator &generator,
command_queue &queue)
{
typedef typename make_vector_type<RealType, 2>::type RealType2;
size_t count = detail::iterator_range_size(first, last);
vector<uint_> tmp(count, queue.get_context());
generator.generate(tmp.begin(), tmp.end(), queue);
BOOST_COMPUTE_FUNCTION(RealType2, box_muller, (const uint2_ x),
{
const RealType one = 1;
const RealType two = 2;
// Use nextafter to push values down into [0,1) range; without this, floating point rounding can
// lead to have x1 = 1, but that would lead to taking the log of 0, which would result in negative
// infinities; by pushing the values off 1 towards 0, we ensure this won't happen.
const RealType x1 = nextafter(x.x / (RealType) UINT_MAX, (RealType) 0);
const RealType x2 = x.y / (RealType) UINT_MAX;
const RealType rho = sqrt(-two * log(one-x1));
const RealType z1 = rho * cos(two * M_PI_F * x2);
const RealType z2 = rho * sin(two * M_PI_F * x2);
return (RealType2)(MEAN, MEAN) + (RealType2)(z1, z2) * (RealType2)(STDDEV, STDDEV);
});
box_muller.define("MEAN", boost::lexical_cast<std::string>(m_mean));
box_muller.define("STDDEV", boost::lexical_cast<std::string>(m_stddev));
box_muller.define("RealType", type_name<RealType>());
box_muller.define("RealType2", type_name<RealType2>());
transform(
make_buffer_iterator<uint2_>(tmp.get_buffer(), 0),
make_buffer_iterator<uint2_>(tmp.get_buffer(), count / 2),
make_buffer_iterator<RealType2>(first.get_buffer(), 0),
box_muller,
queue
);
}
private:
RealType m_mean;
RealType m_stddev;
BOOST_STATIC_ASSERT_MSG(
boost::is_floating_point<RealType>::value,
"Template argument must be a floating point type"
);
};
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_RANDOM_NORMAL_DISTRIBUTION_HPP