boost/compute/container/valarray.hpp
//---------------------------------------------------------------------------//
// Copyright (c) 2013 Kyle Lutz <kyle.r.lutz@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_CONTAINER_VALARRAY_HPP
#define BOOST_COMPUTE_CONTAINER_VALARRAY_HPP
#include <cstddef>
#include <valarray>
#include <boost/static_assert.hpp>
#include <boost/type_traits.hpp>
#include <boost/compute/buffer.hpp>
#include <boost/compute/algorithm/copy.hpp>
#include <boost/compute/algorithm/fill.hpp>
#include <boost/compute/algorithm/max_element.hpp>
#include <boost/compute/algorithm/min_element.hpp>
#include <boost/compute/algorithm/transform.hpp>
#include <boost/compute/algorithm/accumulate.hpp>
#include <boost/compute/detail/buffer_value.hpp>
#include <boost/compute/functional.hpp>
#include <boost/compute/functional/bind.hpp>
#include <boost/compute/iterator/buffer_iterator.hpp>
#include <boost/compute/type_traits.hpp>
namespace boost {
namespace compute {
template<class T>
class valarray
{
public:
explicit valarray(const context &context = system::default_context())
: m_buffer(context, 0)
{
}
explicit valarray(size_t size,
const context &context = system::default_context())
: m_buffer(context, size * sizeof(T))
{
}
valarray(const T &value,
size_t size,
const context &context = system::default_context())
: m_buffer(context, size * sizeof(T))
{
fill(begin(), end(), value);
}
valarray(const T *values,
size_t size,
const context &context = system::default_context())
: m_buffer(context, size * sizeof(T))
{
copy(values, values + size, begin());
}
valarray(const valarray<T> &other)
: m_buffer(other.m_buffer.get_context(), other.size() * sizeof(T))
{
copy(other.begin(), other.end(), begin());
}
valarray(const std::valarray<T> &valarray,
const context &context = system::default_context())
: m_buffer(context, valarray.size() * sizeof(T))
{
copy(&valarray[0], &valarray[valarray.size()], begin());
}
valarray<T>& operator=(const valarray<T> &other)
{
if(this != &other){
// change to other's OpenCL context
m_buffer = buffer(other.m_buffer.get_context(), other.size() * sizeof(T));
copy(other.begin(), other.end(), begin());
}
return *this;
}
valarray<T>& operator=(const std::valarray<T> &valarray)
{
m_buffer = buffer(m_buffer.get_context(), valarray.size() * sizeof(T));
copy(&valarray[0], &valarray[valarray.size()], begin());
return *this;
}
valarray<T>& operator*=(const T&);
valarray<T>& operator/=(const T&);
valarray<T>& operator%=(const T& val);
valarray<T> operator+() const
{
// This operator can be used with any type.
valarray<T> result(size());
copy(begin(), end(), result.begin());
return result;
}
valarray<T> operator-() const
{
BOOST_STATIC_ASSERT_MSG(
is_fundamental<T>::value,
"This operator can be used with all OpenCL built-in scalar"
" and vector types"
);
valarray<T> result(size());
BOOST_COMPUTE_FUNCTION(T, unary_minus, (T x),
{
return -x;
});
transform(begin(), end(), result.begin(), unary_minus);
return result;
}
valarray<T> operator~() const
{
BOOST_STATIC_ASSERT_MSG(
is_fundamental<T>::value &&
!is_floating_point<typename scalar_type<T>::type>::value,
"This operator can be used with all OpenCL built-in scalar"
" and vector types except the built-in scalar and vector float types"
);
valarray<T> result(size());
BOOST_COMPUTE_FUNCTION(T, bitwise_not, (T x),
{
return ~x;
});
transform(begin(), end(), result.begin(), bitwise_not);
return result;
}
/// In OpenCL there cannot be memory buffer with bool type, for
/// this reason return type is valarray<char> instead of valarray<bool>.
/// 1 means true, 0 means false.
valarray<char> operator!() const
{
BOOST_STATIC_ASSERT_MSG(
is_fundamental<T>::value,
"This operator can be used with all OpenCL built-in scalar"
" and vector types"
);
valarray<char> result(size());
BOOST_COMPUTE_FUNCTION(char, logical_not, (T x),
{
return !x;
});
transform(begin(), end(), &result[0], logical_not);
return result;
}
valarray<T>& operator+=(const T&);
valarray<T>& operator-=(const T&);
valarray<T>& operator^=(const T&);
valarray<T>& operator&=(const T&);
valarray<T>& operator|=(const T&);
valarray<T>& operator<<=(const T&);
valarray<T>& operator>>=(const T&);
valarray<T>& operator*=(const valarray<T>&);
valarray<T>& operator/=(const valarray<T>&);
valarray<T>& operator%=(const valarray<T>&);
valarray<T>& operator+=(const valarray<T>&);
valarray<T>& operator-=(const valarray<T>&);
valarray<T>& operator^=(const valarray<T>&);
valarray<T>& operator&=(const valarray<T>&);
valarray<T>& operator|=(const valarray<T>&);
valarray<T>& operator<<=(const valarray<T>&);
valarray<T>& operator>>=(const valarray<T>&);
~valarray()
{
}
size_t size() const
{
return m_buffer.size() / sizeof(T);
}
void resize(size_t size, T value = T())
{
m_buffer = buffer(m_buffer.get_context(), size * sizeof(T));
fill(begin(), end(), value);
}
detail::buffer_value<T> operator[](size_t index)
{
return *(begin() + static_cast<ptrdiff_t>(index));
}
const detail::buffer_value<T> operator[](size_t index) const
{
return *(begin() + static_cast<ptrdiff_t>(index));
}
T (min)() const
{
return *(boost::compute::min_element(begin(), end()));
}
T (max)() const
{
return *(boost::compute::max_element(begin(), end()));
}
T sum() const
{
return boost::compute::accumulate(begin(), end(), T(0));
}
template<class UnaryFunction>
valarray<T> apply(UnaryFunction function) const
{
valarray<T> result(size());
transform(begin(), end(), result.begin(), function);
return result;
}
const buffer& get_buffer() const
{
return m_buffer;
}
private:
buffer_iterator<T> begin() const
{
return buffer_iterator<T>(m_buffer, 0);
}
buffer_iterator<T> end() const
{
return buffer_iterator<T>(m_buffer, size());
}
private:
buffer m_buffer;
};
/// \internal_
#define BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT(op, op_name, assert) \
template<class T> \
inline valarray<T>& \
valarray<T>::operator op##=(const T& val) \
{ \
assert \
transform(begin(), end(), begin(), \
::boost::compute::bind(op_name<T>(), placeholders::_1, val)); \
return *this; \
} \
\
template<class T> \
inline valarray<T>& \
valarray<T>::operator op##=(const valarray<T> &rhs) \
{ \
assert \
transform(begin(), end(), rhs.begin(), begin(), op_name<T>()); \
return *this; \
}
/// \internal_
#define BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_ANY(op, op_name) \
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT(op, op_name, \
BOOST_STATIC_ASSERT_MSG( \
is_fundamental<T>::value, \
"This operator can be used with all OpenCL built-in scalar" \
" and vector types" \
); \
)
/// \internal_
/// For some operators class T can't be floating point type.
/// See OpenCL specification, operators chapter.
#define BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_NO_FP(op, op_name) \
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT(op, op_name, \
BOOST_STATIC_ASSERT_MSG( \
is_fundamental<T>::value && \
!is_floating_point<typename scalar_type<T>::type>::value, \
"This operator can be used with all OpenCL built-in scalar" \
" and vector types except the built-in scalar and vector float types" \
); \
)
// defining operators
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_ANY(+, plus)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_ANY(-, minus)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_ANY(*, multiplies)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_ANY(/, divides)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_NO_FP(^, bit_xor)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_NO_FP(&, bit_and)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_NO_FP(|, bit_or)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_NO_FP(<<, shift_left)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_NO_FP(>>, shift_right)
// The remainder (%) operates on
// integer scalar and integer vector data types only.
// See OpenCL specification.
BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT(%, modulus,
BOOST_STATIC_ASSERT_MSG(
is_integral<typename scalar_type<T>::type>::value,
"This operator can be used only with OpenCL built-in integer types"
);
)
#undef BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_ANY
#undef BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT_NO_FP
#undef BOOST_COMPUTE_DEFINE_VALARRAY_COMPOUND_ASSIGNMENT
/// \internal_
/// Macro for defining binary operators for valarray
#define BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR(op, op_name, assert) \
template<class T> \
valarray<T> operator op (const valarray<T>& lhs, const valarray<T>& rhs) \
{ \
assert \
valarray<T> result(lhs.size()); \
transform(buffer_iterator<T>(lhs.get_buffer(), 0), \
buffer_iterator<T>(lhs.get_buffer(), lhs.size()), \
buffer_iterator<T>(rhs.get_buffer(), 0), \
buffer_iterator<T>(result.get_buffer(), 0), \
op_name<T>()); \
return result; \
} \
\
template<class T> \
valarray<T> operator op (const T& val, const valarray<T>& rhs) \
{ \
assert \
valarray<T> result(rhs.size()); \
transform(buffer_iterator<T>(rhs.get_buffer(), 0), \
buffer_iterator<T>(rhs.get_buffer(), rhs.size()), \
buffer_iterator<T>(result.get_buffer(), 0), \
::boost::compute::bind(op_name<T>(), val, placeholders::_1)); \
return result; \
} \
\
template<class T> \
valarray<T> operator op (const valarray<T>& lhs, const T& val) \
{ \
assert \
valarray<T> result(lhs.size()); \
transform(buffer_iterator<T>(lhs.get_buffer(), 0), \
buffer_iterator<T>(lhs.get_buffer(), lhs.size()), \
buffer_iterator<T>(result.get_buffer(), 0), \
::boost::compute::bind(op_name<T>(), placeholders::_1, val)); \
return result; \
}
/// \internal_
#define BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_ANY(op, op_name) \
BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR(op, op_name, \
BOOST_STATIC_ASSERT_MSG( \
is_fundamental<T>::value, \
"This operator can be used with all OpenCL built-in scalar" \
" and vector types" \
); \
)
/// \internal_
/// For some operators class T can't be floating point type.
/// See OpenCL specification, operators chapter.
#define BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_NO_FP(op, op_name) \
BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR(op, op_name, \
BOOST_STATIC_ASSERT_MSG( \
is_fundamental<T>::value && \
!is_floating_point<typename scalar_type<T>::type>::value, \
"This operator can be used with all OpenCL built-in scalar" \
" and vector types except the built-in scalar and vector float types" \
); \
)
// defining binary operators for valarray
BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_ANY(+, plus)
BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_ANY(-, minus)
BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_ANY(*, multiplies)
BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_ANY(/, divides)
BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_NO_FP(^, bit_xor)
BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_NO_FP(&, bit_and)
BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_NO_FP(|, bit_or)
BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_NO_FP(<<, shift_left)
BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_NO_FP(>>, shift_right)
#undef BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_ANY
#undef BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR_NO_FP
#undef BOOST_COMPUTE_DEFINE_VALARRAY_BINARY_OPERATOR
/// \internal_
/// Macro for defining valarray comparison operators.
/// For return type valarray<char> is used instead of valarray<bool> because
/// in OpenCL there cannot be memory buffer with bool type.
///
/// Note it's also used for defining binary logical operators (==, &&)
#define BOOST_COMPUTE_DEFINE_VALARRAY_COMPARISON_OPERATOR(op, op_name) \
template<class T> \
valarray<char> operator op (const valarray<T>& lhs, const valarray<T>& rhs) \
{ \
BOOST_STATIC_ASSERT_MSG( \
is_fundamental<T>::value, \
"This operator can be used with all OpenCL built-in scalar" \
" and vector types" \
); \
valarray<char> result(lhs.size()); \
transform(buffer_iterator<T>(lhs.get_buffer(), 0), \
buffer_iterator<T>(lhs.get_buffer(), lhs.size()), \
buffer_iterator<T>(rhs.get_buffer(), 0), \
buffer_iterator<char>(result.get_buffer(), 0), \
op_name<T>()); \
return result; \
} \
\
template<class T> \
valarray<char> operator op (const T& val, const valarray<T>& rhs) \
{ \
BOOST_STATIC_ASSERT_MSG( \
is_fundamental<T>::value, \
"This operator can be used with all OpenCL built-in scalar" \
" and vector types" \
); \
valarray<char> result(rhs.size()); \
transform(buffer_iterator<T>(rhs.get_buffer(), 0), \
buffer_iterator<T>(rhs.get_buffer(), rhs.size()), \
buffer_iterator<char>(result.get_buffer(), 0), \
::boost::compute::bind(op_name<T>(), val, placeholders::_1)); \
return result; \
} \
\
template<class T> \
valarray<char> operator op (const valarray<T>& lhs, const T& val) \
{ \
BOOST_STATIC_ASSERT_MSG( \
is_fundamental<T>::value, \
"This operator can be used with all OpenCL built-in scalar" \
" and vector types" \
); \
valarray<char> result(lhs.size()); \
transform(buffer_iterator<T>(lhs.get_buffer(), 0), \
buffer_iterator<T>(lhs.get_buffer(), lhs.size()), \
buffer_iterator<char>(result.get_buffer(), 0), \
::boost::compute::bind(op_name<T>(), placeholders::_1, val)); \
return result; \
}
BOOST_COMPUTE_DEFINE_VALARRAY_COMPARISON_OPERATOR(==, equal_to)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPARISON_OPERATOR(!=, not_equal_to)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPARISON_OPERATOR(>, greater)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPARISON_OPERATOR(<, less)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPARISON_OPERATOR(>=, greater_equal)
BOOST_COMPUTE_DEFINE_VALARRAY_COMPARISON_OPERATOR(<=, less_equal)
/// \internal_
/// Macro for defining binary logical operators for valarray.
///
/// For return type valarray<char> is used instead of valarray<bool> because
/// in OpenCL there cannot be memory buffer with bool type.
/// 1 means true, 0 means false.
#define BOOST_COMPUTE_DEFINE_VALARRAY_LOGICAL_OPERATOR(op, op_name) \
BOOST_COMPUTE_DEFINE_VALARRAY_COMPARISON_OPERATOR(op, op_name)
BOOST_COMPUTE_DEFINE_VALARRAY_LOGICAL_OPERATOR(&&, logical_and)
BOOST_COMPUTE_DEFINE_VALARRAY_LOGICAL_OPERATOR(||, logical_or)
#undef BOOST_COMPUTE_DEFINE_VALARRAY_LOGICAL_OPERATOR
#undef BOOST_COMPUTE_DEFINE_VALARRAY_COMPARISON_OPERATOR
} // end compute namespace
} // end boost namespace
#endif // BOOST_COMPUTE_CONTAINER_VALARRAY_HPP