boost/compute/algorithm/set_union.hpp
//---------------------------------------------------------------------------//
// Copyright (c) 2014 Roshan <thisisroshansmail@gmail.com>
//
// Distributed under the Boost Software License, Version 1.0
// See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt
//
// See http://boostorg.github.com/compute for more information.
//---------------------------------------------------------------------------//
#ifndef BOOST_COMPUTE_ALGORITHM_SET_UNION_HPP
#define BOOST_COMPUTE_ALGORITHM_SET_UNION_HPP
#include <iterator>
#include <boost/static_assert.hpp>
#include <boost/compute/algorithm/detail/balanced_path.hpp>
#include <boost/compute/algorithm/detail/compact.hpp>
#include <boost/compute/algorithm/exclusive_scan.hpp>
#include <boost/compute/algorithm/fill_n.hpp>
#include <boost/compute/container/vector.hpp>
#include <boost/compute/detail/iterator_range_size.hpp>
#include <boost/compute/detail/meta_kernel.hpp>
#include <boost/compute/system.hpp>
#include <boost/compute/type_traits/is_device_iterator.hpp>
namespace boost {
namespace compute {
namespace detail {
///
/// \brief Serial set union kernel class
///
/// Subclass of meta_kernel to perform serial set union after tiling
///
class serial_set_union_kernel : meta_kernel
{
public:
unsigned int tile_size;
serial_set_union_kernel() : meta_kernel("set_union")
{
tile_size = 4;
}
template<class InputIterator1, class InputIterator2,
class InputIterator3, class InputIterator4,
class OutputIterator1, class OutputIterator2>
void set_range(InputIterator1 first1,
InputIterator2 first2,
InputIterator3 tile_first1,
InputIterator3 tile_last1,
InputIterator4 tile_first2,
OutputIterator1 result,
OutputIterator2 counts)
{
m_count = iterator_range_size(tile_first1, tile_last1) - 1;
*this <<
"uint i = get_global_id(0);\n" <<
"uint start1 = " << tile_first1[expr<uint_>("i")] << ";\n" <<
"uint end1 = " << tile_first1[expr<uint_>("i+1")] << ";\n" <<
"uint start2 = " << tile_first2[expr<uint_>("i")] << ";\n" <<
"uint end2 = " << tile_first2[expr<uint_>("i+1")] << ";\n" <<
"uint index = i*" << tile_size << ";\n" <<
"uint count = 0;\n" <<
"while(start1<end1 && start2<end2)\n" <<
"{\n" <<
" if(" << first1[expr<uint_>("start1")] << " == " <<
first2[expr<uint_>("start2")] << ")\n" <<
" {\n" <<
result[expr<uint_>("index")] <<
" = " << first1[expr<uint_>("start1")] << ";\n" <<
" index++; count++;\n" <<
" start1++; start2++;\n" <<
" }\n" <<
" else if(" << first1[expr<uint_>("start1")] << " < " <<
first2[expr<uint_>("start2")] << ")\n" <<
" {\n" <<
result[expr<uint_>("index")] <<
" = " << first1[expr<uint_>("start1")] << ";\n" <<
" index++; count++;\n" <<
" start1++;\n" <<
" }\n" <<
" else\n" <<
" {\n" <<
result[expr<uint_>("index")] <<
" = " << first2[expr<uint_>("start2")] << ";\n" <<
" index++; count++;\n" <<
" start2++;\n" <<
" }\n" <<
"}\n" <<
"while(start1<end1)\n" <<
"{\n" <<
result[expr<uint_>("index")] <<
" = " << first1[expr<uint_>("start1")] << ";\n" <<
" index++; count++;\n" <<
" start1++;\n" <<
"}\n" <<
"while(start2<end2)\n" <<
"{\n" <<
result[expr<uint_>("index")] <<
" = " << first2[expr<uint_>("start2")] << ";\n" <<
" index++; count++;\n" <<
" start2++;\n" <<
"}\n" <<
counts[expr<uint_>("i")] << " = count;\n";
}
event exec(command_queue &queue)
{
if(m_count == 0) {
return event();
}
return exec_1d(queue, 0, m_count);
}
private:
size_t m_count;
};
} //end detail namespace
///
/// \brief Set union algorithm
///
/// Finds the union of the sorted range [first1, last1) with the sorted
/// range [first2, last2) and stores it in range starting at result
/// \return Iterator pointing to end of union
///
/// \param first1 Iterator pointing to start of first set
/// \param last1 Iterator pointing to end of first set
/// \param first2 Iterator pointing to start of second set
/// \param last2 Iterator pointing to end of second set
/// \param result Iterator pointing to start of range in which the union
/// will be stored
/// \param queue Queue on which to execute
///
/// Space complexity:
/// \Omega(2(distance(\p first1, \p last1) + distance(\p first2, \p last2)))
template<class InputIterator1, class InputIterator2, class OutputIterator>
inline OutputIterator set_union(InputIterator1 first1,
InputIterator1 last1,
InputIterator2 first2,
InputIterator2 last2,
OutputIterator result,
command_queue &queue = system::default_queue())
{
BOOST_STATIC_ASSERT(is_device_iterator<InputIterator1>::value);
BOOST_STATIC_ASSERT(is_device_iterator<InputIterator2>::value);
BOOST_STATIC_ASSERT(is_device_iterator<OutputIterator>::value);
typedef typename std::iterator_traits<InputIterator1>::value_type value_type;
int tile_size = 1024;
int count1 = detail::iterator_range_size(first1, last1);
int count2 = detail::iterator_range_size(first2, last2);
vector<uint_> tile_a((count1+count2+tile_size-1)/tile_size+1, queue.get_context());
vector<uint_> tile_b((count1+count2+tile_size-1)/tile_size+1, queue.get_context());
// Tile the sets
detail::balanced_path_kernel tiling_kernel;
tiling_kernel.tile_size = tile_size;
tiling_kernel.set_range(first1, last1, first2, last2,
tile_a.begin()+1, tile_b.begin()+1);
fill_n(tile_a.begin(), 1, 0, queue);
fill_n(tile_b.begin(), 1, 0, queue);
tiling_kernel.exec(queue);
fill_n(tile_a.end()-1, 1, count1, queue);
fill_n(tile_b.end()-1, 1, count2, queue);
vector<value_type> temp_result(count1+count2, queue.get_context());
vector<uint_> counts((count1+count2+tile_size-1)/tile_size + 1, queue.get_context());
fill_n(counts.end()-1, 1, 0, queue);
// Find individual unions
detail::serial_set_union_kernel union_kernel;
union_kernel.tile_size = tile_size;
union_kernel.set_range(first1, first2, tile_a.begin(), tile_a.end(),
tile_b.begin(), temp_result.begin(), counts.begin());
union_kernel.exec(queue);
exclusive_scan(counts.begin(), counts.end(), counts.begin(), queue);
// Compact the results
detail::compact_kernel compact_kernel;
compact_kernel.tile_size = tile_size;
compact_kernel.set_range(temp_result.begin(), counts.begin(), counts.end(), result);
compact_kernel.exec(queue);
return result + (counts.end() - 1).read(queue);
}
} //end compute namespace
} //end boost namespace
#endif // BOOST_COMPUTE_ALGORITHM_SET_UNION_HPP