Beals, Richard, and Roderick Wong. Special functions: a graduate
text. Vol. 126. Cambridge University Press, 2010.
Pearson, John W., Sheehan Olver, and Mason A. Porter. Numerical
methods for the computation of the confluent and Gauss hypergeometric
functions. Numerical Algorithms 74.3 (2017): 821-866.
Luke, Yudell L. Algorithms for Rational Approximations for
a Confluent Hypergeometric Function II. MISSOURI UNIV KANSAS
CITY DEPT OF MATHEMATICS, 1976.
Derezinski, Jan. Hypergeometric type functions and their symmetries.
Annales Henri Poincaré. Vol. 15. No. 8. Springer Basel, 2014.
Keith E. Muller Computing the confluent hypergeometric function,
M(a, b, x). Numer. Math. 90: 179-196 (2001).
Carlo Morosi, Livio Pizzocchero. On the expansion of the Kummer
function in terms of incomplete Gamma functions. Arch. Inequal.
Appl. 2 (2004), 49-72.
Jose Luis Lopez, Nico M. Temme. Asymptotics and numerics of
polynomials used in Tricomi and Buchholz expansions of Kummer functions.
Numerische Mathematik, August 2010.
Javier Sesma. The Temme's sum rule for confluent hypergeometric
functions revisited. Journal of Computational and Applied
Mathematics 163 (2004) 429-431.
Javier Segura, Nico M. Temme. Numerically satisfactory solutions
of Kummer recurrence relations. Numer. Math. (2008) 111:109-119.
Alfredo Deano, Javier Segura. Transitory Minimal Solutions
Of Hypergeometric Recursions And Pseudoconvergence of Associated Continued
Fractions. Mathematics of Computation, Volume 76, Number 258,
April 2007.
W. Gautschi. Computational aspects of three-term recurrence
relations. SIAM Review 9, no.1 (1967) 24-82.
W. Gautschi. Anomalous convergence of a continued fraction
for ratios of Kummer functions. Math. Comput., 31, no.140
(1977) 994-999.
British Association for the Advancement of Science: Bessel
functions, Part II, Mathematical Tables vol. X. Cambridge
(1952).