boost/spirit/home/karma/numeric/real_policies.hpp
// Copyright (c) 2001-2011 Hartmut Kaiser
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_SPIRIT_KARMA_REAL_POLICIES_MAR_02_2007_0936AM)
#define BOOST_SPIRIT_KARMA_REAL_POLICIES_MAR_02_2007_0936AM
#if defined(_MSC_VER)
#pragma once
#endif
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/type_traits/remove_const.hpp>
#include <boost/spirit/home/support/char_class.hpp>
#include <boost/spirit/home/karma/generator.hpp>
#include <boost/spirit/home/karma/char.hpp>
#include <boost/spirit/home/karma/numeric/int.hpp>
#include <boost/spirit/home/karma/numeric/detail/real_utils.hpp>
#include <boost/mpl/bool.hpp>
namespace boost { namespace spirit { namespace karma
{
///////////////////////////////////////////////////////////////////////////
//
// real_policies, if you need special handling of your floating
// point numbers, just overload this policy class and use it as a template
// parameter to the karma::real_generator floating point specifier:
//
// template <typename T>
// struct scientific_policy : karma::real_policies<T>
// {
// // we want the numbers always to be in scientific format
// static int floatfield(T n) { return fmtflags::scientific; }
// };
//
// typedef
// karma::real_generator<double, scientific_policy<double> >
// science_type;
//
// karma::generate(sink, science_type(), 1.0); // will output: 1.0e00
//
///////////////////////////////////////////////////////////////////////////
template <typename T>
struct real_policies
{
///////////////////////////////////////////////////////////////////////
// Expose the data type the generator is targeted at
///////////////////////////////////////////////////////////////////////
typedef T value_type;
///////////////////////////////////////////////////////////////////////
// By default the policy doesn't require any special iterator
// functionality. The floating point generator exposes its properties
// from here, so this needs to be updated in case other properties
// need to be implemented.
///////////////////////////////////////////////////////////////////////
typedef mpl::int_<generator_properties::no_properties> properties;
///////////////////////////////////////////////////////////////////////
// Specifies, which representation type to use during output
// generation.
///////////////////////////////////////////////////////////////////////
struct fmtflags
{
enum {
scientific = 0, // Generate floating-point values in scientific
// format (with an exponent field).
fixed = 1 // Generate floating-point values in fixed-point
// format (with no exponent field).
};
};
///////////////////////////////////////////////////////////////////////
// This is the main function used to generate the output for a
// floating point number. It is called by the real generator in order
// to perform the conversion. In theory all of the work can be
// implemented here, but it is the easiest to use existing
// functionality provided by the type specified by the template
// parameter `Inserter`.
//
// sink: the output iterator to use for generation
// n: the floating point number to convert
// p: the instance of the policy type used to instantiate this
// floating point generator.
///////////////////////////////////////////////////////////////////////
template <typename Inserter, typename OutputIterator, typename Policies>
static bool
call (OutputIterator& sink, T n, Policies const& p)
{
return Inserter::call_n(sink, n, p);
}
///////////////////////////////////////////////////////////////////////
// The default behavior is to not to require generating a sign. If
// 'force_sign()' returns true, then all generated numbers will
// have a sign ('+' or '-', zeros will have a space instead of a sign)
//
// n The floating point number to output. This can be used to
// adjust the required behavior depending on the value of
// this number.
///////////////////////////////////////////////////////////////////////
static bool force_sign(T)
{
return false;
}
///////////////////////////////////////////////////////////////////////
// Return whether trailing zero digits have to be emitted in the
// fractional part of the output. If set, this flag instructs the
// floating point generator to emit trailing zeros up to the required
// precision digits (as returned by the precision() function).
//
// n The floating point number to output. This can be used to
// adjust the required behavior depending on the value of
// this number.
///////////////////////////////////////////////////////////////////////
static bool trailing_zeros(T)
{
// the default behavior is not to generate trailing zeros
return false;
}
///////////////////////////////////////////////////////////////////////
// Decide, which representation type to use in the generated output.
//
// By default all numbers having an absolute value of zero or in
// between 0.001 and 100000 will be generated using the fixed format,
// all others will be generated using the scientific representation.
//
// The function trailing_zeros() can be used to force the output of
// trailing zeros in the fractional part up to the number of digits
// returned by the precision() member function. The default is not to
// generate the trailing zeros.
//
// n The floating point number to output. This can be used to
// adjust the formatting flags depending on the value of
// this number.
///////////////////////////////////////////////////////////////////////
static int floatfield(T n)
{
if (traits::test_zero(n))
return fmtflags::fixed;
T abs_n = traits::get_absolute_value(n);
return (abs_n >= 1e5 || abs_n < 1e-3)
? fmtflags::scientific : fmtflags::fixed;
}
///////////////////////////////////////////////////////////////////////
// Return the maximum number of decimal digits to generate in the
// fractional part of the output.
//
// n The floating point number to output. This can be used to
// adjust the required precision depending on the value of
// this number. If the trailing zeros flag is specified the
// fractional part of the output will be 'filled' with
// zeros, if appropriate
//
// Note: If the trailing_zeros flag is not in effect additional
// comments apply. See the comment for the fraction_part()
// function below.
///////////////////////////////////////////////////////////////////////
static unsigned precision(T)
{
// by default, generate max. 3 fractional digits
return 3;
}
///////////////////////////////////////////////////////////////////////
// Generate the integer part of the number.
//
// sink The output iterator to use for generation
// n The absolute value of the integer part of the floating
// point number to convert (always non-negative).
// sign The sign of the overall floating point number to
// convert.
// force_sign Whether a sign has to be generated even for
// non-negative numbers. Note, that force_sign will be
// set to false for zero floating point values.
///////////////////////////////////////////////////////////////////////
template <typename OutputIterator>
static bool integer_part (OutputIterator& sink, T n, bool sign
, bool force_sign)
{
return sign_inserter::call(
sink, traits::test_zero(n), sign, force_sign, force_sign) &&
int_inserter<10>::call(sink, n);
}
///////////////////////////////////////////////////////////////////////
// Generate the decimal point.
//
// sink The output iterator to use for generation
// n The fractional part of the floating point number to
// convert. Note that this number is scaled such, that
// it represents the number of units which correspond
// to the value returned from the precision() function
// earlier. I.e. a fractional part of 0.01234 is
// represented as 1234 when the 'Precision' is 5.
// precision The number of digits to emit as returned by the
// function 'precision()' above
//
// This is given to allow to decide, whether a decimal point
// has to be generated at all.
//
// Note: If the trailing_zeros flag is not in effect additional
// comments apply. See the comment for the fraction_part()
// function below.
///////////////////////////////////////////////////////////////////////
template <typename OutputIterator>
static bool dot (OutputIterator& sink, T /*n*/, unsigned /*precision*/)
{
return char_inserter<>::call(sink, '.'); // generate the dot by default
}
///////////////////////////////////////////////////////////////////////
// Generate the fractional part of the number.
//
// sink The output iterator to use for generation
// n The fractional part of the floating point number to
// convert. This number is scaled such, that it represents
// the number of units which correspond to the 'Precision'.
// I.e. a fractional part of 0.01234 is represented as 1234
// when the 'precision_' parameter is 5.
// precision_ The corrected number of digits to emit (see note
// below)
// precision The number of digits to emit as returned by the
// function 'precision()' above
//
// Note: If trailing_zeros() does not return true the 'precision_'
// parameter will have been corrected from the value the
// precision() function returned earlier (defining the maximal
// number of fractional digits) in the sense, that it takes into
// account trailing zeros. I.e. a floating point number 0.0123
// and a value of 5 returned from precision() will result in:
//
// trailing_zeros is not specified:
// n 123
// precision_ 4
//
// trailing_zeros is specified:
// n 1230
// precision_ 5
//
///////////////////////////////////////////////////////////////////////
template <typename OutputIterator>
static bool fraction_part (OutputIterator& sink, T n
, unsigned precision_, unsigned precision)
{
// allow for ADL to find the correct overload for floor and log10
using namespace std;
// The following is equivalent to:
// generate(sink, right_align(precision, '0')[ulong], n);
// but it's spelled out to avoid inter-modular dependencies.
typename remove_const<T>::type digits =
(traits::test_zero(n) ? 1 : ceil(log10(n + T(1.))));
bool r = true;
for (/**/; r && digits < precision_; digits = digits + 1)
r = char_inserter<>::call(sink, '0');
if (precision && r)
r = int_inserter<10>::call(sink, n);
return r;
}
///////////////////////////////////////////////////////////////////////
// Generate the exponential part of the number (this is called only
// if the floatfield() function returned the 'scientific' flag).
//
// sink The output iterator to use for generation
// n The (signed) exponential part of the floating point
// number to convert.
//
// The Tag template parameter is either of the type unused_type or
// describes the character class and conversion to be applied to any
// output possibly influenced by either the lower[...] or upper[...]
// directives.
///////////////////////////////////////////////////////////////////////
template <typename CharEncoding, typename Tag, typename OutputIterator>
static bool exponent (OutputIterator& sink, long n)
{
long abs_n = traits::get_absolute_value(n);
bool r = char_inserter<CharEncoding, Tag>::call(sink, 'e') &&
sign_inserter::call(sink, traits::test_zero(n)
, traits::test_negative(n), false);
// the C99 Standard requires at least two digits in the exponent
if (r && abs_n < 10)
r = char_inserter<CharEncoding, Tag>::call(sink, '0');
return r && int_inserter<10>::call(sink, abs_n);
}
///////////////////////////////////////////////////////////////////////
// Print the textual representations for non-normal floats (NaN and
// Inf)
//
// sink The output iterator to use for generation
// n The (signed) floating point number to convert.
// force_sign Whether a sign has to be generated even for
// non-negative numbers
//
// The Tag template parameter is either of the type unused_type or
// describes the character class and conversion to be applied to any
// output possibly influenced by either the lower[...] or upper[...]
// directives.
//
// Note: These functions get called only if fpclassify() returned
// FP_INFINITY or FP_NAN.
///////////////////////////////////////////////////////////////////////
template <typename CharEncoding, typename Tag, typename OutputIterator>
static bool nan (OutputIterator& sink, T n, bool force_sign)
{
return sign_inserter::call(
sink, false, traits::test_negative(n), force_sign) &&
string_inserter<CharEncoding, Tag>::call(sink, "nan");
}
template <typename CharEncoding, typename Tag, typename OutputIterator>
static bool inf (OutputIterator& sink, T n, bool force_sign)
{
return sign_inserter::call(
sink, false, traits::test_negative(n), force_sign) &&
string_inserter<CharEncoding, Tag>::call(sink, "inf");
}
};
}}}
#endif // defined(BOOST_SPIRIT_KARMA_REAL_POLICIES_MAR_02_2007_0936AM)