boost/spirit/home/karma/numeric/detail/numeric_utils.hpp
// Copyright (c) 2001-2011 Hartmut Kaiser
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#if !defined(BOOST_SPIRIT_KARMA_NUMERIC_UTILS_FEB_23_2007_0841PM)
#define BOOST_SPIRIT_KARMA_NUMERIC_UTILS_FEB_23_2007_0841PM
#if defined(_MSC_VER)
#pragma once
#endif
#include <boost/config.hpp>
#include <boost/config/no_tr1/cmath.hpp>
#include <boost/limits.hpp>
#include <boost/type_traits/is_integral.hpp>
#include <boost/spirit/home/support/char_class.hpp>
#include <boost/spirit/home/support/unused.hpp>
#include <boost/spirit/home/support/numeric_traits.hpp>
#include <boost/spirit/home/support/detail/pow10.hpp>
#include <boost/spirit/home/karma/detail/generate_to.hpp>
#include <boost/spirit/home/karma/detail/string_generate.hpp>
#include <boost/core/cmath.hpp>
///////////////////////////////////////////////////////////////////////////////
//
// The value BOOST_KARMA_NUMERICS_LOOP_UNROLL specifies, how to unroll the
// integer string generation loop (see below).
//
// Set the value to some integer in between 0 (no unrolling) and the
// largest expected generated integer string length (complete unrolling).
// If not specified, this value defaults to 6.
//
///////////////////////////////////////////////////////////////////////////////
#if !defined(BOOST_KARMA_NUMERICS_LOOP_UNROLL)
#define BOOST_KARMA_NUMERICS_LOOP_UNROLL 6
#endif
#if BOOST_KARMA_NUMERICS_LOOP_UNROLL < 0
#error "Please set the BOOST_KARMA_NUMERICS_LOOP_UNROLL to a non-negative value!"
#endif
namespace boost { namespace spirit { namespace traits
{
///////////////////////////////////////////////////////////////////////
//
// return the absolute value from a given number, avoiding over- and
// underflow
//
///////////////////////////////////////////////////////////////////////
template <typename T, typename Enable/* = void*/>
struct absolute_value
{
typedef T type;
static T call (T n)
{
// allow for ADL to find the correct overloads for fabs
using namespace std;
return fabs(n);
}
};
#define BOOST_SPIRIT_ABSOLUTE_VALUE(signedtype, unsignedtype) \
template <> \
struct absolute_value<signedtype> \
{ \
typedef unsignedtype type; \
static type call(signedtype n) \
{ \
/* implementation is well-defined for one's complement, */ \
/* two's complement, and signed magnitude architectures */ \
/* by the C++ Standard. [conv.integral] [expr.unary.op] */ \
return (n >= 0) ? static_cast<type>(n) \
: -static_cast<type>(n); \
} \
} \
/**/
#define BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsignedtype) \
template <> \
struct absolute_value<unsignedtype> \
{ \
typedef unsignedtype type; \
static type call(unsignedtype n) \
{ \
return n; \
} \
} \
/**/
#if defined(BOOST_MSVC)
# pragma warning(push)
// unary minus operator applied to unsigned type, result still unsigned
# pragma warning(disable: 4146)
#endif
BOOST_SPIRIT_ABSOLUTE_VALUE(signed char, unsigned char);
BOOST_SPIRIT_ABSOLUTE_VALUE(char, unsigned char);
BOOST_SPIRIT_ABSOLUTE_VALUE(short, unsigned short);
BOOST_SPIRIT_ABSOLUTE_VALUE(int, unsigned int);
BOOST_SPIRIT_ABSOLUTE_VALUE(long, unsigned long);
BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned char);
BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned short);
BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned int);
BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(unsigned long);
#ifdef BOOST_HAS_LONG_LONG
BOOST_SPIRIT_ABSOLUTE_VALUE(boost::long_long_type, boost::ulong_long_type);
BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED(boost::ulong_long_type);
#endif
#if defined(BOOST_MSVC)
# pragma warning(pop)
#endif
#undef BOOST_SPIRIT_ABSOLUTE_VALUE
#undef BOOST_SPIRIT_ABSOLUTE_VALUE_UNSIGNED
template <>
struct absolute_value<float>
{
typedef float type;
static type call(float n)
{
return (std::fabs)(n);
}
};
template <>
struct absolute_value<double>
{
typedef double type;
static type call(double n)
{
return (std::fabs)(n);
}
};
template <>
struct absolute_value<long double>
{
typedef long double type;
static type call(long double n)
{
return (std::fabs)(n);
}
};
// specialization for pointers
template <typename T>
struct absolute_value<T*>
{
typedef std::size_t type;
static type call (T* p)
{
return std::size_t(p);
}
};
template <typename T>
inline typename absolute_value<T>::type
get_absolute_value(T n)
{
return absolute_value<T>::call(n);
}
///////////////////////////////////////////////////////////////////////
template <typename T, typename Enable/* = void*/>
struct is_negative
{
static bool call(T n)
{
return (n < 0) ? true : false;
}
};
template <>
struct is_negative<float>
{
static bool call(float n)
{
return (core::signbit)(n) ? true : false;
}
};
template <>
struct is_negative<double>
{
static bool call(double n)
{
return (core::signbit)(n) ? true : false;
}
};
template <>
struct is_negative<long double>
{
static bool call(long double n)
{
return (core::signbit)(n) ? true : false;
}
};
template <typename T>
inline bool test_negative(T n)
{
return is_negative<T>::call(n);
}
///////////////////////////////////////////////////////////////////////
template <typename T, typename Enable/* = void*/>
struct is_zero
{
static bool call(T n)
{
return (n == 0) ? true : false;
}
};
template <>
struct is_zero<float>
{
static bool call(float n)
{
return (core::fpclassify)(n) == core::fp_zero;
}
};
template <>
struct is_zero<double>
{
static bool call(double n)
{
return (core::fpclassify)(n) == core::fp_zero;
}
};
template <>
struct is_zero<long double>
{
static bool call(long double n)
{
return (core::fpclassify)(n) == core::fp_zero;
}
};
template <typename T>
inline bool test_zero(T n)
{
return is_zero<T>::call(n);
}
///////////////////////////////////////////////////////////////////////
template <typename T, typename Enable/* = void*/>
struct is_nan
{
static bool call(T n)
{
// NaN numbers are not equal to anything
return (n != n) ? true : false;
}
};
template <>
struct is_nan<float>
{
static bool call(float n)
{
return (core::fpclassify)(n) == core::fp_nan;
}
};
template <>
struct is_nan<double>
{
static bool call(double n)
{
return (core::fpclassify)(n) == core::fp_nan;
}
};
template <>
struct is_nan<long double>
{
static bool call(long double n)
{
return (core::fpclassify)(n) == core::fp_nan;
}
};
template <typename T>
inline bool test_nan(T n)
{
return is_nan<T>::call(n);
}
///////////////////////////////////////////////////////////////////////
template <typename T, typename Enable/* = void*/>
struct is_infinite
{
static bool call(T n)
{
return std::numeric_limits<T>::has_infinity
&& n == std::numeric_limits<T>::infinity();
}
};
template <>
struct is_infinite<float>
{
static bool call(float n)
{
return (core::fpclassify)(n) == core::fp_infinite;
}
};
template <>
struct is_infinite<double>
{
static bool call(double n)
{
return (core::fpclassify)(n) == core::fp_infinite;
}
};
template <>
struct is_infinite<long double>
{
static bool call(long double n)
{
return (core::fpclassify)(n) == core::fp_infinite;
}
};
template <typename T>
inline bool test_infinite(T n)
{
return is_infinite<T>::call(n);
}
///////////////////////////////////////////////////////////////////////
struct cast_to_long
{
static long call(float n, mpl::false_)
{
return static_cast<long>(std::floor(n));
}
static long call(double n, mpl::false_)
{
return static_cast<long>(std::floor(n));
}
static long call(long double n, mpl::false_)
{
return static_cast<long>(std::floor(n));
}
template <typename T>
static long call(T n, mpl::false_)
{
// allow for ADL to find the correct overload for floor and
// lround
using namespace std;
return lround(floor(n));
}
template <typename T>
static long call(T n, mpl::true_)
{
return static_cast<long>(n);
}
template <typename T>
static long call(T n)
{
return call(n, mpl::bool_<is_integral<T>::value>());
}
};
///////////////////////////////////////////////////////////////////////
struct truncate_to_long
{
static long call(float n, mpl::false_)
{
return test_negative(n) ? static_cast<long>(std::ceil(n)) :
static_cast<long>(std::floor(n));
}
static long call(double n, mpl::false_)
{
return test_negative(n) ? static_cast<long>(std::ceil(n)) :
static_cast<long>(std::floor(n));
}
static long call(long double n, mpl::false_)
{
return test_negative(n) ? static_cast<long>(std::ceil(n)) :
static_cast<long>(std::floor(n));
}
template <typename T>
static long call(T n, mpl::false_)
{
// allow for ADL to find the correct overloads for ltrunc
using namespace std;
return ltrunc(n);
}
template <typename T>
static long call(T n, mpl::true_)
{
return static_cast<long>(n);
}
template <typename T>
static long call(T n)
{
return call(n, mpl::bool_<is_integral<T>::value>());
}
};
///////////////////////////////////////////////////////////////////////
//
// Traits class for radix specific number conversion
//
// Convert a digit from binary representation to character
// representation:
//
// static int call(unsigned n);
//
///////////////////////////////////////////////////////////////////////
namespace detail
{
template <typename CharEncoding, typename Tag, bool radix_less_than_10>
struct convert_digit
{
static int call(unsigned n)
{
if (n <= 9)
return n + '0';
using spirit::char_class::convert;
return convert<CharEncoding>::to(Tag(), n - 10 + 'a');
}
};
template <>
struct convert_digit<unused_type, unused_type, false>
{
static int call(unsigned n)
{
if (n <= 9)
return n + '0';
return n - 10 + 'a';
}
};
template <typename CharEncoding, typename Tag>
struct convert_digit<CharEncoding, Tag, true>
{
static int call(unsigned n)
{
return n + '0';
}
};
}
template <unsigned Radix, typename CharEncoding, typename Tag>
struct convert_digit
: detail::convert_digit<CharEncoding, Tag, (Radix <= 10) ? true : false>
{};
///////////////////////////////////////////////////////////////////////
template <unsigned Radix>
struct divide
{
template <typename T>
static T call(T& n, mpl::true_)
{
return n / Radix;
}
template <typename T>
static T call(T& n, mpl::false_)
{
// Allow ADL to find the correct overload for floor
using namespace std;
return floor(n / Radix);
}
template <typename T>
static T call(T& n, T const&, int)
{
return call(n, mpl::bool_<is_integral<T>::value>());
}
template <typename T>
static T call(T& n)
{
return call(n, mpl::bool_<is_integral<T>::value>());
}
};
// specialization for division by 10
template <>
struct divide<10>
{
template <typename T>
static T call(T& n, T, int, mpl::true_)
{
return n / 10;
}
template <typename T>
static T call(T, T& num, int exp, mpl::false_)
{
// Allow ADL to find the correct overload for floor
using namespace std;
return floor(num / spirit::traits::pow10<T>(exp));
}
template <typename T>
static T call(T& n, T& num, int exp)
{
return call(n, num, exp, mpl::bool_<is_integral<T>::value>());
}
template <typename T>
static T call(T& n)
{
return call(n, n, 1, mpl::bool_<is_integral<T>::value>());
}
};
///////////////////////////////////////////////////////////////////////
template <unsigned Radix>
struct remainder
{
template <typename T>
static long call(T n, mpl::true_)
{
// this cast is safe since we know the result is not larger
// than Radix
return static_cast<long>(n % Radix);
}
template <typename T>
static long call(T n, mpl::false_)
{
// Allow ADL to find the correct overload for fmod
using namespace std;
return cast_to_long::call(fmod(n, T(Radix)));
}
template <typename T>
static long call(T n)
{
return call(n, mpl::bool_<is_integral<T>::value>());
}
};
}}}
namespace boost { namespace spirit { namespace karma
{
///////////////////////////////////////////////////////////////////////////
//
// The int_inserter template takes care of the integer to string
// conversion. If specified, the loop is unrolled for better performance.
//
// Set the value BOOST_KARMA_NUMERICS_LOOP_UNROLL to some integer in
// between 0 (no unrolling) and the largest expected generated integer
// string length (complete unrolling).
// If not specified, this value defaults to 6.
//
///////////////////////////////////////////////////////////////////////////
#define BOOST_KARMA_NUMERICS_INNER_LOOP_PREFIX(z, x, data) \
if (!traits::test_zero(n)) { \
int ch_##x = radix_type::call(remainder_type::call(n)); \
n = divide_type::call(n, num, ++exp); \
/**/
#define BOOST_KARMA_NUMERICS_INNER_LOOP_SUFFIX(z, x, n_rolls_sub1) \
*sink = char(BOOST_PP_CAT(ch_, BOOST_PP_SUB(n_rolls_sub1, x))); \
++sink; \
} \
/**/
template <
unsigned Radix, typename CharEncoding = unused_type
, typename Tag = unused_type>
struct int_inserter
{
typedef traits::convert_digit<Radix, CharEncoding, Tag> radix_type;
typedef traits::divide<Radix> divide_type;
typedef traits::remainder<Radix> remainder_type;
template <typename OutputIterator, typename T>
static bool
call(OutputIterator& sink, T n, T& num, int exp)
{
// remainder_type::call returns n % Radix
int ch = radix_type::call(remainder_type::call(n));
n = divide_type::call(n, num, ++exp);
BOOST_PP_REPEAT(
BOOST_KARMA_NUMERICS_LOOP_UNROLL,
BOOST_KARMA_NUMERICS_INNER_LOOP_PREFIX, _);
if (!traits::test_zero(n))
call(sink, n, num, exp);
BOOST_PP_REPEAT(
BOOST_KARMA_NUMERICS_LOOP_UNROLL,
BOOST_KARMA_NUMERICS_INNER_LOOP_SUFFIX,
BOOST_PP_DEC(BOOST_KARMA_NUMERICS_LOOP_UNROLL));
*sink = char(ch);
++sink;
return true;
}
// Common code for integer string representations
template <typename OutputIterator, typename T>
static bool
call(OutputIterator& sink, T n)
{
return call(sink, n, n, 0);
}
private:
// helper function returning the biggest number representable either in
// a boost::long_long_type (if this does exist) or in a plain long
// otherwise
#if defined(BOOST_HAS_LONG_LONG)
typedef boost::long_long_type biggest_long_type;
#else
typedef long biggest_long_type;
#endif
static biggest_long_type max_long()
{
return (std::numeric_limits<biggest_long_type>::max)();
}
public:
// Specialization for doubles and floats, falling back to long integers
// for representable values. These specializations speed up formatting
// of floating point numbers considerably as all the required
// arithmetics will be executed using integral data types.
template <typename OutputIterator>
static bool
call(OutputIterator& sink, long double n)
{
if (std::fabs(n) < max_long())
{
biggest_long_type l((biggest_long_type)n);
return call(sink, l, l, 0);
}
return call(sink, n, n, 0);
}
template <typename OutputIterator>
static bool
call(OutputIterator& sink, double n)
{
if (std::fabs(n) < max_long())
{
biggest_long_type l((biggest_long_type)n);
return call(sink, l, l, 0);
}
return call(sink, n, n, 0);
}
template <typename OutputIterator>
static bool
call(OutputIterator& sink, float n)
{
if (std::fabs(n) < max_long())
{
biggest_long_type l((biggest_long_type)n);
return call(sink, l, l, 0);
}
return call(sink, n, n, 0);
}
};
#undef BOOST_KARMA_NUMERICS_INNER_LOOP_PREFIX
#undef BOOST_KARMA_NUMERICS_INNER_LOOP_SUFFIX
///////////////////////////////////////////////////////////////////////////
//
// The uint_inserter template takes care of the conversion of any integer
// to a string, while interpreting the number as an unsigned type.
//
///////////////////////////////////////////////////////////////////////////
template <
unsigned Radix, typename CharEncoding = unused_type
, typename Tag = unused_type>
struct uint_inserter : int_inserter<Radix, CharEncoding, Tag>
{
typedef int_inserter<Radix, CharEncoding, Tag> base_type;
// Common code for integer string representations
template <typename OutputIterator, typename T>
static bool
call(OutputIterator& sink, T const& n)
{
typedef typename traits::absolute_value<T>::type type;
type un = type(n);
return base_type::call(sink, un, un, 0);
}
};
///////////////////////////////////////////////////////////////////////////
//
// The sign_inserter template generates a sign for a given numeric value.
//
// The parameter forcesign allows to generate a sign even for positive
// numbers.
//
///////////////////////////////////////////////////////////////////////////
struct sign_inserter
{
template <typename OutputIterator>
static bool
call_noforce(OutputIterator& sink, bool is_zero, bool is_negative,
bool sign_if_zero)
{
// generate a sign for negative numbers only
if (is_negative || (is_zero && sign_if_zero)) {
*sink = '-';
++sink;
}
return true;
}
template <typename OutputIterator>
static bool
call_force(OutputIterator& sink, bool is_zero, bool is_negative,
bool sign_if_zero)
{
// generate a sign for all numbers except zero
if (!is_zero || sign_if_zero)
*sink = is_negative ? '-' : '+';
else
*sink = ' ';
++sink;
return true;
}
template <typename OutputIterator>
static bool
call(OutputIterator& sink, bool is_zero, bool is_negative
, bool forcesign, bool sign_if_zero = false)
{
return forcesign ?
call_force(sink, is_zero, is_negative, sign_if_zero) :
call_noforce(sink, is_zero, is_negative, sign_if_zero);
}
};
///////////////////////////////////////////////////////////////////////////
// These are helper functions for the real policies allowing to generate
// a single character and a string
///////////////////////////////////////////////////////////////////////////
template <typename CharEncoding = unused_type, typename Tag = unused_type>
struct char_inserter
{
template <typename OutputIterator, typename Char>
static bool call(OutputIterator& sink, Char c)
{
return detail::generate_to(sink, c, CharEncoding(), Tag());
}
};
template <typename CharEncoding = unused_type, typename Tag = unused_type>
struct string_inserter
{
template <typename OutputIterator, typename String>
static bool call(OutputIterator& sink, String str)
{
return detail::string_generate(sink, str, CharEncoding(), Tag());
}
};
}}}
#endif