boost/numeric/odeint/stepper/rosenbrock4_dense_output.hpp
/*
[auto_generated]
boost/numeric/odeint/stepper/rosenbrock4_dense_output.hpp
[begin_description]
Dense output for Rosenbrock 4.
[end_description]
Copyright 2011-2012 Karsten Ahnert
Copyright 2011-2015 Mario Mulansky
Copyright 2012 Christoph Koke
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_STEPPER_ROSENBROCK4_DENSE_OUTPUT_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_STEPPER_ROSENBROCK4_DENSE_OUTPUT_HPP_INCLUDED
#include <utility>
#include <boost/numeric/odeint/util/bind.hpp>
#include <boost/numeric/odeint/stepper/rosenbrock4_controller.hpp>
#include <boost/numeric/odeint/util/is_resizeable.hpp>
#include <boost/numeric/odeint/integrate/max_step_checker.hpp>
namespace boost {
namespace numeric {
namespace odeint {
template< class ControlledStepper >
class rosenbrock4_dense_output
{
public:
typedef ControlledStepper controlled_stepper_type;
typedef typename unwrap_reference< controlled_stepper_type >::type unwrapped_controlled_stepper_type;
typedef typename unwrapped_controlled_stepper_type::stepper_type stepper_type;
typedef typename stepper_type::value_type value_type;
typedef typename stepper_type::state_type state_type;
typedef typename stepper_type::wrapped_state_type wrapped_state_type;
typedef typename stepper_type::time_type time_type;
typedef typename stepper_type::deriv_type deriv_type;
typedef typename stepper_type::wrapped_deriv_type wrapped_deriv_type;
typedef typename stepper_type::resizer_type resizer_type;
typedef dense_output_stepper_tag stepper_category;
typedef rosenbrock4_dense_output< ControlledStepper > dense_output_stepper_type;
rosenbrock4_dense_output( const controlled_stepper_type &stepper = controlled_stepper_type() )
: m_stepper( stepper ) ,
m_x1() , m_x2() ,
m_current_state_x1( true ) ,
m_t() , m_t_old() , m_dt()
{
}
template< class StateType >
void initialize( const StateType &x0 , time_type t0 , time_type dt0 )
{
m_resizer.adjust_size( x0 , detail::bind( &dense_output_stepper_type::template resize_impl< StateType > , detail::ref( *this ) , detail::_1 ) );
get_current_state() = x0;
m_t = t0;
m_dt = dt0;
}
template< class System >
std::pair< time_type , time_type > do_step( System system )
{
unwrapped_controlled_stepper_type &stepper = m_stepper;
failed_step_checker fail_checker; // to throw a runtime_error if step size adjustment fails
controlled_step_result res = fail;
m_t_old = m_t;
do
{
res = stepper.try_step( system , get_current_state() , m_t , get_old_state() , m_dt );
fail_checker(); // check for overflow of failed steps
}
while( res == fail );
stepper.stepper().prepare_dense_output();
this->toggle_current_state();
return std::make_pair( m_t_old , m_t );
}
/*
* The two overloads are needed in order to solve the forwarding problem.
*/
template< class StateOut >
void calc_state( time_type t , StateOut &x )
{
unwrapped_controlled_stepper_type &stepper = m_stepper;
stepper.stepper().calc_state( t , x , get_old_state() , m_t_old , get_current_state() , m_t );
}
template< class StateOut >
void calc_state( time_type t , const StateOut &x )
{
unwrapped_controlled_stepper_type &stepper = m_stepper;
stepper.stepper().calc_state( t , x , get_old_state() , m_t_old , get_current_state() , m_t );
}
template< class StateType >
void adjust_size( const StateType &x )
{
unwrapped_controlled_stepper_type &stepper = m_stepper;
stepper.adjust_size( x );
resize_impl( x );
}
const state_type& current_state( void ) const
{
return get_current_state();
}
time_type current_time( void ) const
{
return m_t;
}
const state_type& previous_state( void ) const
{
return get_old_state();
}
time_type previous_time( void ) const
{
return m_t_old;
}
time_type current_time_step( void ) const
{
return m_dt;
}
private:
state_type& get_current_state( void )
{
return m_current_state_x1 ? m_x1.m_v : m_x2.m_v ;
}
const state_type& get_current_state( void ) const
{
return m_current_state_x1 ? m_x1.m_v : m_x2.m_v ;
}
state_type& get_old_state( void )
{
return m_current_state_x1 ? m_x2.m_v : m_x1.m_v ;
}
const state_type& get_old_state( void ) const
{
return m_current_state_x1 ? m_x2.m_v : m_x1.m_v ;
}
void toggle_current_state( void )
{
m_current_state_x1 = ! m_current_state_x1;
}
template< class StateIn >
bool resize_impl( const StateIn &x )
{
bool resized = false;
resized |= adjust_size_by_resizeability( m_x1 , x , typename is_resizeable<state_type>::type() );
resized |= adjust_size_by_resizeability( m_x2 , x , typename is_resizeable<state_type>::type() );
return resized;
}
controlled_stepper_type m_stepper;
resizer_type m_resizer;
wrapped_state_type m_x1 , m_x2;
bool m_current_state_x1;
time_type m_t , m_t_old , m_dt;
};
} // namespace odeint
} // namespace numeric
} // namespace boost
#endif // BOOST_NUMERIC_ODEINT_STEPPER_ROSENBROCK4_DENSE_OUTPUT_HPP_INCLUDED