boost/numeric/odeint/stepper/detail/pid_step_adjuster.hpp
/*
boost/numeric/odeint/stepper/detail/pid_step_adjuster.hpp
[begin_description]
Implementation of the stepsize controller for the controlled adams bashforth moulton stepper.
[end_description]
Copyright 2017 Valentin Noah Hartmann
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_STEPPER_DETAIL_PID_STEP_ADJUSTER_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_STEPPER_DETAIL_PID_STEP_ADJUSTER_HPP_INCLUDED
#include <boost/numeric/odeint/stepper/detail/rotating_buffer.hpp>
#include <boost/numeric/odeint/stepper/detail/pid_step_adjuster_coefficients.hpp>
#include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
#include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
#include <math.h>
namespace boost {
namespace numeric {
namespace odeint {
namespace detail {
template<
class Value = double,
class Time = double
>
struct pid_op
{
public:
typedef Value value_type;
typedef Time time_type;
const double beta1;
const double beta2;
const double beta3;
const double alpha1;
const double alpha2;
const time_type dt1;
const time_type dt2;
const time_type dt3;
const size_t m_steps;
pid_op(const size_t steps, const double _dt1, const double _dt2, const double _dt3,
const double b1 = 1, const double b2 = 0, const double b3 = 0, const double a1 = 0, const double a2 = 0)
:beta1(b1), beta2(b2), beta3(b3), alpha1(a1), alpha2(a2),
dt1(_dt1), dt2(_dt2), dt3(_dt3),
m_steps(steps)
{};
template<class T1, class T2, class T3, class T4>
void operator()(T1 &t1, const T2 &t2, const T3 &t3, const T4 &t4)
{
using std::abs;
t1 = adapted_pow(abs(t2), -beta1/(m_steps + 1)) *
adapted_pow(abs(t3), -beta2/(m_steps + 1)) *
adapted_pow(abs(t4), -beta3/(m_steps + 1)) *
adapted_pow(abs(dt1/dt2), -alpha1/(m_steps + 1))*
adapted_pow(abs(dt2/dt3), -alpha2/(m_steps + 1));
t1 = 1/t1;
};
template<class T1, class T2>
void operator()(T1 &t1, const T2 &t2)
{
using std::abs;
t1 = adapted_pow(abs(t2), -beta1/(m_steps + 1));
t1 = 1/t1;
};
private:
template<class T>
inline value_type adapted_pow(T base, double exp)
{
if(exp == 0)
{
return 1;
}
else if (exp > 0)
{
return pow(base, exp);
}
else
{
return 1/pow(base, -exp);
}
};
};
template<
class State,
class Value = double,
class Deriv = State,
class Time = double,
class Algebra = typename algebra_dispatcher< State >::algebra_type,
class Operations = typename operations_dispatcher< Deriv >::operations_type,
size_t Type = BASIC
>
struct pid_step_adjuster
{
public:
static double threshold() { return 0.9; };
typedef State state_type;
typedef Value value_type;
typedef Deriv deriv_type;
typedef Time time_type;
typedef Algebra algebra_type;
typedef Operations operations_type;
typedef rotating_buffer<state_type, 3> error_storage_type;
typedef rotating_buffer<time_type, 3> time_storage_type;
typedef pid_step_adjuster_coefficients<Type> coeff_type;
pid_step_adjuster(double abs_tol = 1e-6, double rel_tol = 1e-6, time_type dtmax = 1.0)
:m_dtmax(dtmax), m_error_storage(), m_dt_storage(), m_init(0),
m_abs_tol(abs_tol), m_rel_tol(rel_tol)
{};
time_type adjust_stepsize(const size_t steps, time_type dt, state_type &err, const state_type &x, const deriv_type &dxdt)
{
using std::abs;
m_algebra.for_each3( err , x , dxdt ,
typename operations_type::template rel_error< value_type >( m_abs_tol , m_rel_tol , 1.0 , 1.0 * abs(get_unit_value( dt )) ) );
m_error_storage[0] = err;
m_dt_storage[0] = dt;
if(m_init >= 2)
{
m_algebra.for_each4(err, m_error_storage[0], m_error_storage[1], m_error_storage[2],
pid_op<>(steps, m_dt_storage[0], m_dt_storage[1], m_dt_storage[2],
m_coeff[0], m_coeff[1], m_coeff[2], m_coeff[3], m_coeff[4]));
}
else
{
m_algebra.for_each2(err, m_error_storage[0],
pid_op<>(steps, m_dt_storage[0], m_dt_storage[1], m_dt_storage[2], 0.7));
}
value_type ratio = 1 / m_algebra.norm_inf(err);
value_type kappa = 1.0;
ratio = 1.0 + kappa*atan((ratio - 1) / kappa);
if(ratio*dt >= m_dtmax)
{
ratio = m_dtmax / dt;
}
if(ratio >= threshold())
{
m_error_storage.rotate();
m_dt_storage.rotate();
++m_init;
}
else
{
m_init = 0;
}
return dt * static_cast<time_type>(ratio);
};
private:
algebra_type m_algebra;
time_type m_dtmax;
error_storage_type m_error_storage;
time_storage_type m_dt_storage;
size_t m_init;
double m_abs_tol;
double m_rel_tol;
coeff_type m_coeff;
};
} // detail
} // odeint
} // numeric
} // boost
#endif