boost/numeric/odeint/stepper/adams_moulton.hpp
/*
[auto_generated]
boost/numeric/odeint/stepper/adams_moulton.hpp
[begin_description]
Implementation of the Adams-Moulton method. This is method is not a real stepper, it is more a helper class
which computes the corrector step in the Adams-Bashforth-Moulton method.
[end_description]
Copyright 2011-2012 Karsten Ahnert
Copyright 2011-2013 Mario Mulansky
Copyright 2012 Christoph Koke
Distributed under the Boost Software License, Version 1.0.
(See accompanying file LICENSE_1_0.txt or
copy at http://www.boost.org/LICENSE_1_0.txt)
*/
#ifndef BOOST_NUMERIC_ODEINT_STEPPER_ADAMS_MOULTON_HPP_INCLUDED
#define BOOST_NUMERIC_ODEINT_STEPPER_ADAMS_MOULTON_HPP_INCLUDED
#include <boost/numeric/odeint/util/bind.hpp>
#include <boost/numeric/odeint/algebra/range_algebra.hpp>
#include <boost/numeric/odeint/algebra/default_operations.hpp>
#include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>
#include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>
#include <boost/numeric/odeint/util/state_wrapper.hpp>
#include <boost/numeric/odeint/util/is_resizeable.hpp>
#include <boost/numeric/odeint/util/resizer.hpp>
#include <boost/numeric/odeint/stepper/stepper_categories.hpp>
#include <boost/numeric/odeint/stepper/runge_kutta4_classic.hpp>
#include <boost/numeric/odeint/stepper/detail/adams_moulton_call_algebra.hpp>
#include <boost/numeric/odeint/stepper/detail/adams_moulton_coefficients.hpp>
#include <boost/numeric/odeint/stepper/detail/rotating_buffer.hpp>
namespace boost {
namespace numeric {
namespace odeint {
/*
* Static implicit Adams-Moulton multistep-solver without step size control and without dense output.
*/
template<
size_t Steps ,
class State ,
class Value = double ,
class Deriv = State ,
class Time = Value ,
class Algebra = typename algebra_dispatcher< State >::algebra_type ,
class Operations = typename operations_dispatcher< State >::operations_type ,
class Resizer = initially_resizer
>
class adams_moulton
{
private:
public :
typedef State state_type;
typedef state_wrapper< state_type > wrapped_state_type;
typedef Value value_type;
typedef Deriv deriv_type;
typedef state_wrapper< deriv_type > wrapped_deriv_type;
typedef Time time_type;
typedef Algebra algebra_type;
typedef Operations operations_type;
typedef Resizer resizer_type;
typedef stepper_tag stepper_category;
typedef adams_moulton< Steps , State , Value , Deriv , Time , Algebra , Operations , Resizer > stepper_type;
static const size_t steps = Steps;
typedef unsigned short order_type;
static const order_type order_value = steps + 1;
typedef detail::rotating_buffer< wrapped_deriv_type , steps > step_storage_type;
adams_moulton( )
: m_coefficients() , m_dxdt() , m_resizer() ,
m_algebra_instance() , m_algebra( m_algebra_instance )
{ }
adams_moulton( algebra_type &algebra )
: m_coefficients() , m_dxdt() , m_resizer() ,
m_algebra_instance() , m_algebra( algebra )
{ }
adams_moulton& operator=( const adams_moulton &stepper )
{
m_dxdt = stepper.m_dxdt;
m_resizer = stepper.m_resizer;
m_algebra = stepper.m_algebra;
return *this;
}
order_type order( void ) const { return order_value; }
/*
* Version 1 : do_step( system , x , t , dt , buf );
*
* solves the forwarding problem
*/
template< class System , class StateInOut , class StateIn , class ABBuf >
void do_step( System system , StateInOut &x , StateIn const & pred , time_type t , time_type dt , const ABBuf &buf )
{
do_step( system , x , pred , t , x , dt , buf );
}
template< class System , class StateInOut , class StateIn , class ABBuf >
void do_step( System system , const StateInOut &x , StateIn const & pred , time_type t , time_type dt , const ABBuf &buf )
{
do_step( system , x , pred , t , x , dt , buf );
}
/*
* Version 2 : do_step( system , in , t , out , dt , buf );
*
* solves the forwarding problem
*/
template< class System , class StateIn , class PredIn , class StateOut , class ABBuf >
void do_step( System system , const StateIn &in , const PredIn &pred , time_type t , StateOut &out , time_type dt , const ABBuf &buf )
{
do_step_impl( system , in , pred , t , out , dt , buf );
}
template< class System , class StateIn , class PredIn , class StateOut , class ABBuf >
void do_step( System system , const StateIn &in , const PredIn &pred , time_type t , const StateOut &out , time_type dt , const ABBuf &buf )
{
do_step_impl( system , in , pred , t , out , dt , buf );
}
template< class StateType >
void adjust_size( const StateType &x )
{
resize_impl( x );
}
algebra_type& algebra()
{ return m_algebra; }
const algebra_type& algebra() const
{ return m_algebra; }
private:
template< class System , class StateIn , class PredIn , class StateOut , class ABBuf >
void do_step_impl( System system , const StateIn &in , const PredIn &pred , time_type t , StateOut &out , time_type dt , const ABBuf &buf )
{
typename odeint::unwrap_reference< System >::type &sys = system;
m_resizer.adjust_size( in , detail::bind( &stepper_type::template resize_impl<StateIn> , detail::ref( *this ) , detail::_1 ) );
sys( pred , m_dxdt.m_v , t );
detail::adams_moulton_call_algebra< steps , algebra_type , operations_type >()( m_algebra , in , out , m_dxdt.m_v , buf , m_coefficients , dt );
}
template< class StateIn >
bool resize_impl( const StateIn &x )
{
return adjust_size_by_resizeability( m_dxdt , x , typename is_resizeable<deriv_type>::type() );
}
const detail::adams_moulton_coefficients< value_type , steps > m_coefficients;
wrapped_deriv_type m_dxdt;
resizer_type m_resizer;
protected:
algebra_type m_algebra_instance;
algebra_type &m_algebra;
};
} // odeint
} // numeric
} // boost
#endif // BOOST_NUMERIC_ODEINT_STEPPER_ADAMS_MOULTON_HPP_INCLUDED