Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

boost/multiprecision/detail/no_et_ops.hpp

///////////////////////////////////////////////////////////////////////////////
//  Copyright 2012 John Maddock. Distributed under the Boost
//  Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#ifndef BOOST_MP_NO_ET_OPS_HPP
#define BOOST_MP_NO_ET_OPS_HPP

#ifdef BOOST_MSVC
#pragma warning(push)
#pragma warning(disable : 4714)
#endif

namespace boost {
   namespace multiprecision {

      //
      // Operators for non-expression template enabled number.
      // NOTE: this is not a complete header - really just a suffix to default_ops.hpp.
      // NOTE: these operators have to be defined after the methods in default_ops.hpp.
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator-(const number<B, et_off>& v)
      {
         static_assert(is_signed_number<B>::value, "Negating an unsigned type results in ill-defined behavior.");
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(v);
         number<B, et_off>                                                    result(v);
         result.backend().negate();
         return result;
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator~(const number<B, et_off>& v)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(v);
         number<B, et_off>                                                    result;
         eval_complement(result.backend(), v.backend());
         return result;
      }
      //
      // Addition:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator+(const number<B, et_off>& a, const number<B, et_off>& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         number<B, et_off>                                                    result;
         using default_ops::eval_add;
         eval_add(result.backend(), a.backend(), b.backend());
         return result;
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value, number<B, et_off> >::type
         operator+(const number<B, et_off>& a, const V& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         number<B, et_off>                                                    result;
         using default_ops::eval_add;
         eval_add(result.backend(), a.backend(), number<B, et_off>::canonical_value(b));
         return result;
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator+(const V& a, const number<B, et_off>& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(b, a);
         number<B, et_off>                                                    result;
         using default_ops::eval_add;
         eval_add(result.backend(), b.backend(), number<B, et_off>::canonical_value(a));
         return result;
      }
      //
      // Subtraction:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator-(const number<B, et_off>& a, const number<B, et_off>& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         number<B, et_off>                                                    result;
         using default_ops::eval_subtract;
         eval_subtract(result.backend(), a.backend(), b.backend());
         return result;
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value, number<B, et_off> >::type
         operator-(const number<B, et_off>& a, const V& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         number<B, et_off>                                                    result;
         using default_ops::eval_subtract;
         eval_subtract(result.backend(), a.backend(), number<B, et_off>::canonical_value(b));
         return result;
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator-(const V& a, const number<B, et_off>& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(b, a);
         number<B, et_off>                                                    result;
         using default_ops::eval_subtract;
         eval_subtract(result.backend(), number<B, et_off>::canonical_value(a), b.backend());
         return result;
      }
      //
      // Multiply:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator*(const number<B, et_off>& a, const number<B, et_off>& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         number<B, et_off>                                                    result;
         using default_ops::eval_multiply;
         eval_multiply(result.backend(), a.backend(), b.backend());
         return result;
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value, number<B, et_off> >::type
         operator*(const number<B, et_off>& a, const V& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         number<B, et_off>                                                    result;
         using default_ops::eval_multiply;
         eval_multiply(result.backend(), a.backend(), number<B, et_off>::canonical_value(b));
         return result;
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator*(const V& a, const number<B, et_off>& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(b, a);
         number<B, et_off>                                                    result;
         using default_ops::eval_multiply;
         eval_multiply(result.backend(), b.backend(), number<B, et_off>::canonical_value(a));
         return result;
      }
      //
      // divide:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator/(const number<B, et_off>& a, const number<B, et_off>& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         number<B, et_off>                                                    result;
         using default_ops::eval_divide;
         eval_divide(result.backend(), a.backend(), b.backend());
         return result;
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value, number<B, et_off> >::type
         operator/(const number<B, et_off>& a, const V& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         number<B, et_off>                                                    result;
         using default_ops::eval_divide;
         eval_divide(result.backend(), a.backend(), number<B, et_off>::canonical_value(b));
         return result;
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator/(const V& a, const number<B, et_off>& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(b, a);
         number<B, et_off>                                                    result;
         using default_ops::eval_divide;
         eval_divide(result.backend(), number<B, et_off>::canonical_value(a), b.backend());
         return result;
      }
      //
      // modulus:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator%(const number<B, et_off>& a, const number<B, et_off>& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         number<B, et_off>                                                    result;
         using default_ops::eval_modulus;
         eval_modulus(result.backend(), a.backend(), b.backend());
         return result;
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator%(const number<B, et_off>& a, const V& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a);
         number<B, et_off>                                                    result;
         using default_ops::eval_modulus;
         eval_modulus(result.backend(), a.backend(), number<B, et_off>::canonical_value(b));
         return result;
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer) && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator%(const V& a, const number<B, et_off>& b)
      {
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(b);
         number<B, et_off>                                                    result;
         using default_ops::eval_modulus;
         eval_modulus(result.backend(), number<B, et_off>::canonical_value(a), b.backend());
         return result;
      }
      //
      // Bitwise or:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator|(const number<B, et_off>& a, const number<B, et_off>& b)
      {
         number<B, et_off> result;
         using default_ops::eval_bitwise_or;
         eval_bitwise_or(result.backend(), a.backend(), b.backend());
         return result;
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator|(const number<B, et_off>& a, const V& b)
      {
         number<B, et_off> result;
         using default_ops::eval_bitwise_or;
         eval_bitwise_or(result.backend(), a.backend(), number<B, et_off>::canonical_value(b));
         return result;
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer) && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator|(const V& a, const number<B, et_off>& b)
      {
         number<B, et_off> result;
         using default_ops::eval_bitwise_or;
         eval_bitwise_or(result.backend(), b.backend(), number<B, et_off>::canonical_value(a));
         return result;
      }
      //
      // Bitwise xor:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator^(const number<B, et_off>& a, const number<B, et_off>& b)
      {
         number<B, et_off> result;
         using default_ops::eval_bitwise_xor;
         eval_bitwise_xor(result.backend(), a.backend(), b.backend());
         return result;
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator^(const number<B, et_off>& a, const V& b)
      {
         number<B, et_off> result;
         using default_ops::eval_bitwise_xor;
         eval_bitwise_xor(result.backend(), a.backend(), number<B, et_off>::canonical_value(b));
         return result;
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer) && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator^(const V& a, const number<B, et_off>& b)
      {
         number<B, et_off> result;
         using default_ops::eval_bitwise_xor;
         eval_bitwise_xor(result.backend(), b.backend(), number<B, et_off>::canonical_value(a));
         return result;
      }
      //
      // Bitwise and:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator&(const number<B, et_off>& a, const number<B, et_off>& b)
      {
         number<B, et_off> result;
         using default_ops::eval_bitwise_and;
         eval_bitwise_and(result.backend(), a.backend(), b.backend());
         return result;
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator&(const number<B, et_off>& a, const V& b)
      {
         number<B, et_off> result;
         using default_ops::eval_bitwise_and;
         eval_bitwise_and(result.backend(), a.backend(), number<B, et_off>::canonical_value(b));
         return result;
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer) && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator&(const V& a, const number<B, et_off>& b)
      {
         number<B, et_off> result;
         using default_ops::eval_bitwise_and;
         eval_bitwise_and(result.backend(), b.backend(), number<B, et_off>::canonical_value(a));
         return result;
      }
      //
      // shifts:
      //
      template <class B, class I>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_integral<I>::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator<<(const number<B, et_off>& a, const I& b)
      {
         number<B, et_off> result(a);
         using default_ops::eval_left_shift;
         detail::check_shift_range(b, std::integral_constant<bool, (sizeof(I) > sizeof(std::size_t))>(), std::integral_constant<bool, boost::multiprecision::detail::is_signed<I>::value>());
         eval_left_shift(result.backend(), b);
         return result;
      }
      template <class B, class I>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_integral<I>::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator>>(const number<B, et_off>& a, const I& b)
      {
         number<B, et_off> result(a);
         using default_ops::eval_right_shift;
         detail::check_shift_range(b, std::integral_constant<bool, (sizeof(I) > sizeof(std::size_t))>(), std::integral_constant<bool, boost::multiprecision::detail::is_signed<I>::value>());
         eval_right_shift(result.backend(), b);
         return result;
      }

      //
      // If we have rvalue references go all over again with rvalue ref overloads and move semantics.
      // Note that while it would be tempting to implement these so they return an rvalue reference
      // (and indeed this would be optimally efficient), this is unsafe due to users propensity to
      // write:
      //
      // const T& t = a * b;
      //
      // which would lead to a dangling reference if we didn't return by value.  Of course move
      // semantics help a great deal in return by value, so performance is still pretty good...
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator-(number<B, et_off>&& v)
      {
         static_assert(is_signed_number<B>::value, "Negating an unsigned type results in ill-defined behavior.");
         v.backend().negate();
         return std::move(v);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator~(number<B, et_off>&& v)
      {
         eval_complement(v.backend(), v.backend());
         return std::move(v);
      }
      //
      // Addition:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator+(number<B, et_off>&& a, const number<B, et_off>& b)
      {
         using default_ops::eval_add;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_add(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator+(const number<B, et_off>& a, number<B, et_off>&& b)
      {
         using default_ops::eval_add;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_add(b.backend(), a.backend());
         return std::move(b);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator+(number<B, et_off>&& a, number<B, et_off>&& b)
      {
         using default_ops::eval_add;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_add(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value, number<B, et_off> >::type
         operator+(number<B, et_off>&& a, const V& b)
      {
         using default_ops::eval_add;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_add(a.backend(), number<B, et_off>::canonical_value(b));
         return std::move(a);
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator+(const V& a, number<B, et_off>&& b)
      {
         using default_ops::eval_add;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_add(b.backend(), number<B, et_off>::canonical_value(a));
         return std::move(b);
      }
      //
      // Subtraction:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator-(number<B, et_off>&& a, const number<B, et_off>& b)
      {
         using default_ops::eval_subtract;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_subtract(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_signed_number<B>::value, number<B, et_off> >::type operator-(const number<B, et_off>& a, number<B, et_off>&& b)
      {
         using default_ops::eval_subtract;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_subtract(b.backend(), a.backend());
         b.backend().negate();
         return std::move(b);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator-(number<B, et_off>&& a, number<B, et_off>&& b)
      {
         using default_ops::eval_subtract;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_subtract(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value, number<B, et_off> >::type
         operator-(number<B, et_off>&& a, const V& b)
      {
         using default_ops::eval_subtract;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_subtract(a.backend(), number<B, et_off>::canonical_value(b));
         return std::move(a);
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<(is_compatible_arithmetic_type<V, number<B, et_off> >::value && is_signed_number<B>::value) && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator-(const V& a, number<B, et_off>&& b)
      {
         using default_ops::eval_subtract;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_subtract(b.backend(), number<B, et_off>::canonical_value(a));
         b.backend().negate();
         return std::move(b);
      }
      //
      // Multiply:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator*(number<B, et_off>&& a, const number<B, et_off>& b)
      {
         using default_ops::eval_multiply;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_multiply(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator*(const number<B, et_off>& a, number<B, et_off>&& b)
      {
         using default_ops::eval_multiply;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_multiply(b.backend(), a.backend());
         return std::move(b);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator*(number<B, et_off>&& a, number<B, et_off>&& b)
      {
         using default_ops::eval_multiply;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_multiply(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value, number<B, et_off> >::type
         operator*(number<B, et_off>&& a, const V& b)
      {
         using default_ops::eval_multiply;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_multiply(a.backend(), number<B, et_off>::canonical_value(b));
         return std::move(a);
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator*(const V& a, number<B, et_off>&& b)
      {
         using default_ops::eval_multiply;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_multiply(b.backend(), number<B, et_off>::canonical_value(a));
         return std::move(b);
      }
      //
      // divide:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR number<B, et_off> operator/(number<B, et_off>&& a, const number<B, et_off>& b)
      {
         using default_ops::eval_divide;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_divide(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value, number<B, et_off> >::type
         operator/(number<B, et_off>&& a, const V& b)
      {
         using default_ops::eval_divide;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_divide(a.backend(), number<B, et_off>::canonical_value(b));
         return std::move(a);
      }
      //
      // modulus:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator%(number<B, et_off>&& a, const number<B, et_off>& b)
      {
         using default_ops::eval_modulus;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_modulus(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator%(number<B, et_off>&& a, const V& b)
      {
         using default_ops::eval_modulus;
         detail::scoped_default_precision<multiprecision::number<B, et_off> > precision_guard(a, b);
         eval_modulus(a.backend(), number<B, et_off>::canonical_value(b));
         return std::move(a);
      }
      //
      // Bitwise or:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator|(number<B, et_off>&& a, const number<B, et_off>& b)
      {
         using default_ops::eval_bitwise_or;
         eval_bitwise_or(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator|(const number<B, et_off>& a, number<B, et_off>&& b)
      {
         using default_ops::eval_bitwise_or;
         eval_bitwise_or(b.backend(), a.backend());
         return std::move(b);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator|(number<B, et_off>&& a, number<B, et_off>&& b)
      {
         using default_ops::eval_bitwise_or;
         eval_bitwise_or(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator|(number<B, et_off>&& a, const V& b)
      {
         using default_ops::eval_bitwise_or;
         eval_bitwise_or(a.backend(), number<B, et_off>::canonical_value(b));
         return std::move(a);
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer) && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator|(const V& a, number<B, et_off>&& b)
      {
         using default_ops::eval_bitwise_or;
         eval_bitwise_or(b.backend(), number<B, et_off>::canonical_value(a));
         return std::move(b);
      }
      //
      // Bitwise xor:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator^(number<B, et_off>&& a, const number<B, et_off>& b)
      {
         using default_ops::eval_bitwise_xor;
         eval_bitwise_xor(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator^(const number<B, et_off>& a, number<B, et_off>&& b)
      {
         using default_ops::eval_bitwise_xor;
         eval_bitwise_xor(b.backend(), a.backend());
         return std::move(b);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator^(number<B, et_off>&& a, number<B, et_off>&& b)
      {
         using default_ops::eval_bitwise_xor;
         eval_bitwise_xor(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator^(number<B, et_off>&& a, const V& b)
      {
         using default_ops::eval_bitwise_xor;
         eval_bitwise_xor(a.backend(), number<B, et_off>::canonical_value(b));
         return std::move(a);
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer) && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator^(const V& a, number<B, et_off>&& b)
      {
         using default_ops::eval_bitwise_xor;
         eval_bitwise_xor(b.backend(), number<B, et_off>::canonical_value(a));
         return std::move(b);
      }
      //
      // Bitwise and:
      //
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator&(number<B, et_off>&& a, const number<B, et_off>& b)
      {
         using default_ops::eval_bitwise_and;
         eval_bitwise_and(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator&(const number<B, et_off>& a, number<B, et_off>&& b)
      {
         using default_ops::eval_bitwise_and;
         eval_bitwise_and(b.backend(), a.backend());
         return std::move(b);
      }
      template <class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<number_category<B>::value == number_kind_integer, number<B, et_off> >::type operator&(number<B, et_off>&& a, number<B, et_off>&& b)
      {
         using default_ops::eval_bitwise_and;
         eval_bitwise_and(a.backend(), b.backend());
         return std::move(a);
      }
      template <class B, class V>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator&(number<B, et_off>&& a, const V& b)
      {
         using default_ops::eval_bitwise_and;
         eval_bitwise_and(a.backend(), number<B, et_off>::canonical_value(b));
         return std::move(a);
      }
      template <class V, class B>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<is_compatible_arithmetic_type<V, number<B, et_off> >::value && (number_category<B>::value == number_kind_integer) && !is_equivalent_number_type<V, B>::value, number<B, et_off> >::type
         operator&(const V& a, number<B, et_off>&& b)
      {
         using default_ops::eval_bitwise_and;
         eval_bitwise_and(b.backend(), number<B, et_off>::canonical_value(a));
         return std::move(b);
      }
      //
      // shifts:
      //
      template <class B, class I>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_integral<I>::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator<<(number<B, et_off>&& a, const I& b)
      {
         using ui_type = typename boost::multiprecision::detail::make_unsigned<I>::type;

         using default_ops::eval_left_shift;
         eval_left_shift(a.backend(), static_cast<ui_type>(b));
         return std::move(a);
      }
      template <class B, class I>
      BOOST_MP_FORCEINLINE BOOST_MP_CXX14_CONSTEXPR typename std::enable_if<boost::multiprecision::detail::is_integral<I>::value && (number_category<B>::value == number_kind_integer), number<B, et_off> >::type
         operator>>(number<B, et_off>&& a, const I& b)
      {
         using ui_type = typename boost::multiprecision::detail::make_unsigned<I>::type;

         using default_ops::eval_right_shift;
         eval_right_shift(a.backend(), static_cast<ui_type>(b));
         return std::move(a);
      }
   }
} // namespace boost::multiprecision

#ifdef BOOST_MSVC
#pragma warning(pop)
#endif

#endif // BOOST_MP_NO_ET_OPS_HPP