boost/stl_interfaces/sequence_container_interface.hpp
// Copyright (C) 2019 T. Zachary Laine
//
// Distributed under the Boost Software License, Version 1.0. (See
// accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_STL_INTERFACES_CONTAINER_INTERFACE_HPP
#define BOOST_STL_INTERFACES_CONTAINER_INTERFACE_HPP
#include <boost/stl_interfaces/reverse_iterator.hpp>
#include <boost/assert.hpp>
#include <boost/config.hpp>
#include <algorithm>
#include <stdexcept>
#include <cstddef>
namespace boost { namespace stl_interfaces { namespace detail {
template<typename T, typename SizeType>
struct n_iter : iterator_interface<
n_iter<T, SizeType>,
std::random_access_iterator_tag,
T>
{
n_iter() : x_(nullptr), n_(0) {}
n_iter(T const & x, SizeType n) : x_(&x), n_(n) {}
T const & operator*() const { return *x_; }
constexpr std::ptrdiff_t operator-(n_iter other) const noexcept
{
return std::ptrdiff_t(n_) - std::ptrdiff_t(other.n_);
}
n_iter & operator+=(std::ptrdiff_t offset)
{
n_ += offset;
return *this;
}
private:
T const * x_;
SizeType n_;
};
template<typename T, typename SizeType>
constexpr auto make_n_iter(T const & x, SizeType n) noexcept(
noexcept(n_iter<T, SizeType>(x, n)))
{
using result_type = n_iter<T, SizeType>;
return result_type(x, SizeType(0));
}
template<typename T, typename SizeType>
constexpr auto make_n_iter_end(T const & x, SizeType n) noexcept(
noexcept(n_iter<T, SizeType>(x, n)))
{
return n_iter<T, SizeType>(x, n);
}
template<typename Container>
std::size_t fake_capacity(Container const & c)
{
return SIZE_MAX;
}
template<
typename Container,
typename Enable = decltype(
std::size_t() = std::declval<Container const &>().capacity())>
std::size_t fake_capacity(Container const & c)
{
return c.capacity();
}
}}}
namespace boost { namespace stl_interfaces { BOOST_STL_INTERFACES_NAMESPACE_V1 {
/** A CRTP template that one may derive from to make it easier to define
container types.
The template parameter `D` for `sequence_container_interface` may be
an incomplete type. Before any member of the resulting specialization
of `sequence_container_interface` other than special member functions
is referenced, `D` shall be complete; shall model
`std::derived_from<sequence_container_interface<D>>`,
`std::semiregular`, and `std::forward_range`; and shall contain all
the nested types required in Table 72: Container requirements and, for
those whose iterator nested type models `std::bidirectinal_iterator`,
those in Table 73: Reversible container requirements.
For an object `d` of type `D`, a call to `std::ranges::begin(d)` sxhall
not mutate any data members of `d`, and `d`'s destructor shall end the
lifetimes of the objects in `[std::ranges::begin(d),
std::ranges::end(d))`. */
template<
typename Derived,
element_layout Contiguity = element_layout::discontiguous
#ifndef BOOST_STL_INTERFACES_DOXYGEN
,
typename E = std::enable_if_t<
std::is_class<Derived>::value &&
std::is_same<Derived, std::remove_cv_t<Derived>>::value>
#endif
>
struct sequence_container_interface;
namespace v1_dtl {
template<typename Iter>
using in_iter = std::is_convertible<
typename std::iterator_traits<Iter>::iterator_category,
std::input_iterator_tag>;
template<typename D, typename = void>
struct clear_impl
{
static constexpr void call(D & d) noexcept {}
};
template<typename D>
struct clear_impl<D, void_t<decltype(std::declval<D>().clear())>>
{
static constexpr void call(D & d) noexcept { d.clear(); }
};
template<typename D, element_layout Contiguity>
void derived_container(sequence_container_interface<D, Contiguity> const &);
}
template<
typename Derived,
element_layout Contiguity
#ifndef BOOST_STL_INTERFACES_DOXYGEN
,
typename E
#endif
>
struct sequence_container_interface
{
#ifndef BOOST_STL_INTERFACES_DOXYGEN
private:
constexpr Derived & derived() noexcept
{
return static_cast<Derived &>(*this);
}
constexpr const Derived & derived() const noexcept
{
return static_cast<Derived const &>(*this);
}
constexpr Derived & mutable_derived() const noexcept
{
return const_cast<Derived &>(static_cast<Derived const &>(*this));
}
#endif
public:
template<typename D = Derived>
constexpr auto empty() noexcept(
noexcept(std::declval<D &>().begin() == std::declval<D &>().end()))
-> decltype(
std::declval<D &>().begin() == std::declval<D &>().end())
{
return derived().begin() == derived().end();
}
template<typename D = Derived>
constexpr auto empty() const noexcept(noexcept(
std::declval<D const &>().begin() ==
std::declval<D const &>().end()))
-> decltype(
std::declval<D const &>().begin() ==
std::declval<D const &>().end())
{
return derived().begin() == derived().end();
}
template<
typename D = Derived,
element_layout C = Contiguity,
typename Enable = std::enable_if_t<C == element_layout::contiguous>>
constexpr auto data() noexcept(noexcept(std::declval<D &>().begin()))
-> decltype(std::addressof(*std::declval<D &>().begin()))
{
return std::addressof(*derived().begin());
}
template<
typename D = Derived,
element_layout C = Contiguity,
typename Enable = std::enable_if_t<C == element_layout::contiguous>>
constexpr auto data() const
noexcept(noexcept(std::declval<D const &>().begin()))
-> decltype(std::addressof(*std::declval<D const &>().begin()))
{
return std::addressof(*derived().begin());
}
template<typename D = Derived>
constexpr auto size()
#if !BOOST_CLANG
noexcept(noexcept(
std::declval<D &>().end() - std::declval<D &>().begin()))
#endif
-> decltype(typename D::size_type(
std::declval<D &>().end() - std::declval<D &>().begin()))
{
return derived().end() - derived().begin();
}
template<typename D = Derived>
constexpr auto size() const noexcept(noexcept(
std::declval<D const &>().end() -
std::declval<D const &>().begin()))
-> decltype(typename D::size_type(
#if !BOOST_CLANG
std::declval<D const &>().end() -
std::declval<D const &>().begin()
#endif
))
{
return derived().end() - derived().begin();
}
template<typename D = Derived>
constexpr auto front() noexcept(noexcept(*std::declval<D &>().begin()))
-> decltype(*std::declval<D &>().begin())
{
return *derived().begin();
}
template<typename D = Derived>
constexpr auto front() const
noexcept(noexcept(*std::declval<D const &>().begin()))
-> decltype(*std::declval<D const &>().begin())
{
return *derived().begin();
}
template<typename D = Derived>
constexpr auto push_front(typename D::value_type const & x) noexcept(
noexcept(std::declval<D &>().emplace_front(x)))
-> decltype((void)std::declval<D &>().emplace_front(x))
{
derived().emplace_front(x);
}
template<typename D = Derived>
constexpr auto push_front(typename D::value_type && x) noexcept(
noexcept(std::declval<D &>().emplace_front(std::move(x))))
-> decltype((void)std::declval<D &>().emplace_front(std::move(x)))
{
derived().emplace_front(std::move(x));
}
template<typename D = Derived>
constexpr auto pop_front() noexcept -> decltype(
std::declval<D &>().emplace_front(
std::declval<typename D::value_type &>()),
(void)std::declval<D &>().erase(std::declval<D &>().begin()))
{
derived().erase(derived().begin());
}
template<
typename D = Derived,
typename Enable = std::enable_if_t<
v1_dtl::decrementable_sentinel<D>::value &&
v1_dtl::common_range<D>::value>>
constexpr auto
back() noexcept(noexcept(*std::prev(std::declval<D &>().end())))
-> decltype(*std::prev(std::declval<D &>().end()))
{
return *std::prev(derived().end());
}
template<
typename D = Derived,
typename Enable = std::enable_if_t<
v1_dtl::decrementable_sentinel<D>::value &&
v1_dtl::common_range<D>::value>>
constexpr auto back() const
noexcept(noexcept(*std::prev(std::declval<D const &>().end())))
-> decltype(*std::prev(std::declval<D const &>().end()))
{
return *std::prev(derived().end());
}
template<typename D = Derived>
constexpr auto push_back(typename D::value_type const & x) noexcept(
noexcept(std::declval<D &>().emplace_back(x)))
-> decltype((void)std::declval<D &>().emplace_back(x))
{
derived().emplace_back(x);
}
template<typename D = Derived>
constexpr auto push_back(typename D::value_type && x) noexcept(
noexcept(std::declval<D &>().emplace_back(std::move(x))))
-> decltype((void)std::declval<D &>().emplace_back(std::move(x)))
{
derived().emplace_back(std::move(x));
}
template<typename D = Derived>
constexpr auto pop_back() noexcept -> decltype(
std::declval<D &>().emplace_back(
std::declval<typename D::value_type>()),
(void)std::declval<D &>().erase(
std::prev(std::declval<D &>().end())))
{
derived().erase(std::prev(derived().end()));
}
template<typename D = Derived>
constexpr auto operator[](typename D::size_type n) noexcept(
noexcept(std::declval<D &>().begin()[n]))
-> decltype(std::declval<D &>().begin()[n])
{
return derived().begin()[n];
}
template<typename D = Derived>
constexpr auto operator[](typename D::size_type n) const
noexcept(noexcept(std::declval<D const &>().begin()[n]))
-> decltype(std::declval<D const &>().begin()[n])
{
return derived().begin()[n];
}
template<typename D = Derived>
constexpr auto at(typename D::size_type i)
-> decltype(std::declval<D &>().size(), std::declval<D &>()[i])
{
if (derived().size() <= i) {
throw std::out_of_range(
"Bounds check failed in sequence_container_interface::at()");
}
return derived()[i];
}
template<typename D = Derived>
constexpr auto at(typename D::size_type i) const -> decltype(
std::declval<D const &>().size(), std::declval<D const &>()[i])
{
if (derived().size() <= i) {
throw std::out_of_range(
"Bounds check failed in sequence_container_interface::at()");
}
return derived()[i];
}
template<typename D = Derived, typename Iter = typename D::const_iterator>
constexpr Iter begin() const
noexcept(noexcept(std::declval<D &>().begin()))
{
return Iter(mutable_derived().begin());
}
template<typename D = Derived, typename Iter = typename D::const_iterator>
constexpr Iter end() const noexcept(noexcept(std::declval<D &>().end()))
{
return Iter(mutable_derived().end());
}
template<typename D = Derived>
constexpr auto cbegin() const
noexcept(noexcept(std::declval<D const &>().begin()))
-> decltype(std::declval<D const &>().begin())
{
return derived().begin();
}
template<typename D = Derived>
constexpr auto cend() const
noexcept(noexcept(std::declval<D const &>().end()))
-> decltype(std::declval<D const &>().end())
{
return derived().end();
}
template<
typename D = Derived,
typename Enable = std::enable_if_t<v1_dtl::common_range<D>::value>>
constexpr auto rbegin() noexcept(noexcept(
stl_interfaces::make_reverse_iterator(std::declval<D &>().end())))
{
return stl_interfaces::make_reverse_iterator(derived().end());
}
template<
typename D = Derived,
typename Enable = std::enable_if_t<v1_dtl::common_range<D>::value>>
constexpr auto rend() noexcept(noexcept(
stl_interfaces::make_reverse_iterator(std::declval<D &>().begin())))
{
return stl_interfaces::make_reverse_iterator(derived().begin());
}
template<typename D = Derived>
constexpr auto rbegin() const
noexcept(noexcept(std::declval<D &>().rbegin()))
{
return
typename D::const_reverse_iterator(mutable_derived().rbegin());
}
template<typename D = Derived>
constexpr auto rend() const
noexcept(noexcept(std::declval<D &>().rend()))
{
return typename D::const_reverse_iterator(mutable_derived().rend());
}
template<typename D = Derived>
constexpr auto crbegin() const
noexcept(noexcept(std::declval<D const &>().rbegin()))
-> decltype(std::declval<D const &>().rbegin())
{
return derived().rbegin();
}
template<typename D = Derived>
constexpr auto crend() const
noexcept(noexcept(std::declval<D const &>().rend()))
-> decltype(std::declval<D const &>().rend())
{
return derived().rend();
}
template<typename D = Derived>
constexpr auto insert(
typename D::const_iterator pos,
typename D::value_type const &
x) noexcept(noexcept(std::declval<D &>().emplace(pos, x)))
-> decltype(std::declval<D &>().emplace(pos, x))
{
return derived().emplace(pos, x);
}
template<typename D = Derived>
constexpr auto insert(
typename D::const_iterator pos,
typename D::value_type &&
x) noexcept(noexcept(std::declval<D &>()
.emplace(pos, std::move(x))))
-> decltype(std::declval<D &>().emplace(pos, std::move(x)))
{
return derived().emplace(pos, std::move(x));
}
template<typename D = Derived>
constexpr auto insert(
typename D::const_iterator pos,
typename D::size_type n,
typename D::value_type const & x)
// If you see an error in this noexcept() expression, that's
// because this function is not properly constrained. In other
// words, Derived does not have a "range" insert like
// insert(position, first, last). If that is the case, this
// function should be removed via SFINAE from overload resolution.
// However, both the trailing decltype code below and a
// std::enable_if in the template parameters do not work. Sorry
// about that. See below for details.
noexcept(noexcept(std::declval<D &>().insert(
pos, detail::make_n_iter(x, n), detail::make_n_iter_end(x, n))))
// This causes the compiler to infinitely recurse into this function's
// declaration, even though the call below does not match the
// signature of this function.
#if 0
-> decltype(std::declval<D &>().insert(
pos, detail::make_n_iter(x, n), detail::make_n_iter_end(x, n)))
#endif
{
return derived().insert(
pos, detail::make_n_iter(x, n), detail::make_n_iter_end(x, n));
}
template<typename D = Derived>
constexpr auto insert(
typename D::const_iterator pos,
std::initializer_list<typename D::value_type>
il) noexcept(noexcept(std::declval<D &>()
.insert(pos, il.begin(), il.end())))
-> decltype(std::declval<D &>().insert(pos, il.begin(), il.end()))
{
return derived().insert(pos, il.begin(), il.end());
}
template<typename D = Derived>
constexpr auto erase(typename D::const_iterator pos) noexcept
-> decltype(std::declval<D &>().erase(pos, std::next(pos)))
{
return derived().erase(pos, std::next(pos));
}
template<
typename InputIterator,
typename D = Derived,
typename Enable =
std::enable_if_t<v1_dtl::in_iter<InputIterator>::value>>
constexpr auto assign(InputIterator first, InputIterator last) noexcept(
noexcept(std::declval<D &>().insert(
std::declval<D &>().begin(), first, last)))
-> decltype(
std::declval<D &>().erase(
std::declval<D &>().begin(), std::declval<D &>().end()),
(void)std::declval<D &>().insert(
std::declval<D &>().begin(), first, last))
{
auto out = derived().begin();
auto const out_last = derived().end();
for (; out != out_last && first != last; ++first, ++out) {
*out = *first;
}
if (out != out_last)
derived().erase(out, out_last);
if (first != last)
derived().insert(derived().end(), first, last);
}
template<typename D = Derived>
constexpr auto assign(
typename D::size_type n,
typename D::value_type const &
x) noexcept(noexcept(std::declval<D &>()
.insert(
std::declval<D &>().begin(),
detail::make_n_iter(x, n),
detail::make_n_iter_end(x, n))))
-> decltype(
std::declval<D &>().size(),
std::declval<D &>().erase(
std::declval<D &>().begin(), std::declval<D &>().end()),
(void)std::declval<D &>().insert(
std::declval<D &>().begin(),
detail::make_n_iter(x, n),
detail::make_n_iter_end(x, n)))
{
if (detail::fake_capacity(derived()) < n) {
Derived temp(n, x);
derived().swap(temp);
} else {
auto const min_size =
std::min<std::ptrdiff_t>(n, derived().size());
auto const fill_end =
std::fill_n(derived().begin(), min_size, x);
if (min_size < (std::ptrdiff_t)derived().size()) {
derived().erase(fill_end, derived().end());
} else {
n -= min_size;
derived().insert(
derived().begin(),
detail::make_n_iter(x, n),
detail::make_n_iter_end(x, n));
}
}
}
template<typename D = Derived>
constexpr auto
assign(std::initializer_list<typename D::value_type> il) noexcept(
noexcept(std::declval<D &>().assign(il.begin(), il.end())))
-> decltype((void)std::declval<D &>().assign(il.begin(), il.end()))
{
derived().assign(il.begin(), il.end());
}
template<typename D = Derived>
constexpr auto
operator=(std::initializer_list<typename D::value_type> il) noexcept(
noexcept(std::declval<D &>().assign(il.begin(), il.end())))
-> decltype(
std::declval<D &>().assign(il.begin(), il.end()),
std::declval<D &>())
{
derived().assign(il.begin(), il.end());
return *this;
}
template<typename D = Derived>
constexpr auto clear() noexcept
-> decltype((void)std::declval<D &>().erase(
std::declval<D &>().begin(), std::declval<D &>().end()))
{
derived().erase(derived().begin(), derived().end());
}
};
/** Implementation of free function `swap()` for all containers derived
from `sequence_container_interface`. */
template<typename ContainerInterface>
constexpr auto swap(
ContainerInterface & lhs,
ContainerInterface & rhs) noexcept(noexcept(lhs.swap(rhs)))
-> decltype(v1_dtl::derived_container(lhs), lhs.swap(rhs))
{
return lhs.swap(rhs);
}
/** Implementation of `operator==()` for all containers derived from
`sequence_container_interface`. */
template<typename ContainerInterface>
constexpr auto
operator==(ContainerInterface const & lhs, ContainerInterface const & rhs) noexcept(
noexcept(lhs.size() == rhs.size()) &&
noexcept(*lhs.begin() == *rhs.begin()))
-> decltype(
v1_dtl::derived_container(lhs),
lhs.size() == rhs.size(),
*lhs.begin() == *rhs.begin(),
true)
{
return lhs.size() == rhs.size() &&
std::equal(lhs.begin(), lhs.end(), rhs.begin());
}
/** Implementation of `operator!=()` for all containers derived from
`sequence_container_interface`. */
template<typename ContainerInterface>
constexpr auto operator!=(
ContainerInterface const & lhs,
ContainerInterface const & rhs) noexcept(noexcept(lhs == rhs))
-> decltype(v1_dtl::derived_container(lhs), lhs == rhs)
{
return !(lhs == rhs);
}
/** Implementation of `operator<()` for all containers derived from
`sequence_container_interface`. */
template<typename ContainerInterface>
constexpr auto operator<(
ContainerInterface const & lhs,
ContainerInterface const &
rhs) noexcept(noexcept(*lhs.begin() < *rhs.begin()))
-> decltype(
v1_dtl::derived_container(lhs), *lhs.begin() < *rhs.begin(), true)
{
auto it1 = lhs.begin();
auto const last1 = lhs.end();
auto it2 = rhs.begin();
auto const last2 = rhs.end();
for (; it1 != last1 && it2 != last2; ++it1, ++it2) {
if (*it1 < *it2)
return true;
if (*it2 < *it1)
return false;
}
return it1 == last1 && it2 != last2;
}
/** Implementation of `operator<=()` for all containers derived from
`sequence_container_interface`. */
template<typename ContainerInterface>
constexpr auto operator<=(
ContainerInterface const & lhs,
ContainerInterface const & rhs) noexcept(noexcept(lhs < rhs))
-> decltype(v1_dtl::derived_container(lhs), lhs < rhs)
{
return !(rhs < lhs);
}
/** Implementation of `operator>()` for all containers derived from
`sequence_container_interface`. */
template<typename ContainerInterface>
constexpr auto operator>(
ContainerInterface const & lhs,
ContainerInterface const & rhs) noexcept(noexcept(lhs < rhs))
-> decltype(v1_dtl::derived_container(lhs), lhs < rhs)
{
return rhs < lhs;
}
/** Implementation of `operator>=()` for all containers derived from
`sequence_container_interface`. */
template<typename ContainerInterface>
constexpr auto operator>=(
ContainerInterface const & lhs,
ContainerInterface const & rhs) noexcept(noexcept(lhs < rhs))
-> decltype(v1_dtl::derived_container(lhs), lhs < rhs)
{
return !(lhs < rhs);
}
}}}
#if defined(BOOST_STL_INTERFACES_DOXYGEN) || BOOST_STL_INTERFACES_USE_CONCEPTS
namespace boost { namespace stl_interfaces { BOOST_STL_INTERFACES_NAMESPACE_V2 {
namespace v2_dtl {
// This needs to become an exposition-only snake-case template alias
// when standardized.
template<typename T>
using container_size_t = typename T::size_type;
template<typename T, typename I>
// clang-format off
concept range_insert =
requires (T t, std::ranges::iterator_t<T> t_it, I it) {
t.template insert<I>(t_it, it, it);
// clang-format on
};
template<typename T>
using n_iter_t =
detail::n_iter<std::ranges::range_value_t<T>, container_size_t<T>>;
}
// clang-format off
/** A CRTP template that one may derive from to make it easier to define
container types.
The template parameter `D` for `sequence_container_interface` may be
an incomplete type. Before any member of the resulting specialization
of `sequence_container_interface` other than special member functions
is referenced, `D` shall be complete; shall model
`std::derived_from<sequence_container_interface<D>>`,
`std::semiregular`, and `std::forward_range`; and shall contain all
the nested types required in Table 72: Container requirements and, for
those whose iterator nested type models `std::bidirectinal_iterator`,
those in Table 73: Reversible container requirements.
For an object `d` of type `D`, a call to `std::ranges::begin(d)` shall
not mutate any data members of `d`, and `d`'s destructor shall end the
lifetimes of the objects in `[std::ranges::begin(d),
std::ranges::end(d))`.
The `Contiguity` template parameter is not needed, and is unused. It
only exists to make the transition from `namespace v1` to `namespace
v2` seamless. */
template<typename D,
element_layout Contiguity = element_layout::discontiguous>
requires std::is_class_v<D> && std::same_as<D, std::remove_cv_t<D>>
struct sequence_container_interface
{
private:
constexpr D& derived() noexcept {
return static_cast<D&>(*this);
}
constexpr const D& derived() const noexcept {
return static_cast<const D&>(*this);
}
constexpr D & mutable_derived() const noexcept {
return const_cast<D&>(static_cast<const D&>(*this));
}
static constexpr void clear_impl(D& d) noexcept {}
static constexpr void clear_impl(D& d) noexcept
requires requires { d.clear(); }
{ d.clear(); }
public:
constexpr bool empty() const {
return std::ranges::begin(derived()) == std::ranges::end(derived());
}
constexpr auto data() requires std::contiguous_iterator<std::ranges::iterator_t<D>> {
return std::to_address(std::ranges::begin(derived()));
}
constexpr auto data() const requires std::contiguous_iterator<std::ranges::iterator_t<const D>> {
return std::to_address(std::ranges::begin(derived()));
}
template<typename C = D>
constexpr v2_dtl::container_size_t<C> size() const
requires std::sized_sentinel_for<std::ranges::sentinel_t<const C>, std::ranges::iterator_t<const C>> {
return v2_dtl::container_size_t<C>(
std::ranges::end(derived()) - std::ranges::begin(derived()));
}
constexpr decltype(auto) front() {
BOOST_ASSERT(!empty());
return *std::ranges::begin(derived());
}
constexpr decltype(auto) front() const {
BOOST_ASSERT(!empty());
return *std::ranges::begin(derived());
}
template<typename C = D>
constexpr void push_front(const std::ranges::range_value_t<C>& x)
requires requires (D d) { d.emplace_front(x); } {
derived().emplace_front(x);
}
template<typename C = D>
constexpr void push_front(std::ranges::range_value_t<C>&& x)
requires requires (D d) { d.emplace_front(std::move(x)); } {
derived().emplace_front(std::move(x));
}
constexpr void pop_front() noexcept
requires requires (D d, const std::ranges::range_value_t<D>& x, std::ranges::iterator_t<D> position) {
d.emplace_front(x);
d.erase(position);
} {
return derived().erase(std::ranges::begin(derived()));
}
constexpr decltype(auto) back()
requires std::ranges::bidirectional_range<D> && std::ranges::common_range<D> {
BOOST_ASSERT(!empty());
return *std::ranges::prev(std::ranges::end(derived()));
}
constexpr decltype(auto) back() const
requires std::ranges::bidirectional_range<const D> && std::ranges::common_range<const D> {
BOOST_ASSERT(!empty());
return *std::ranges::prev(std::ranges::end(derived()));
}
template<std::ranges::bidirectional_range C = D>
constexpr void push_back(const std::ranges::range_value_t<C>& x)
requires std::ranges::common_range<C> && requires (D d) { d.emplace_back(x); } {
derived().emplace_back(x);
}
template<std::ranges::bidirectional_range C = D>
constexpr void push_back(std::ranges::range_value_t<C>&& x)
requires std::ranges::common_range<C> && requires (D d) { d.emplace_back(std::move(x)); } {
derived().emplace_back(std::move(x));
}
constexpr void pop_back() noexcept
requires std::ranges::bidirectional_range<D> && std::ranges::common_range<D> &&
requires (D d, std::ranges::range_value_t<D> x, std::ranges::iterator_t<D> position) {
d.emplace_back(std::move(x));
d.erase(position);
} {
return derived().erase(std::ranges::prev(std::ranges::end(derived())));
}
template<std::ranges::random_access_range C = D>
constexpr decltype(auto) operator[](v2_dtl::container_size_t<C> n) {
return std::ranges::begin(derived())[n];
}
template<std::ranges::random_access_range C = const D>
constexpr decltype(auto) operator[](v2_dtl::container_size_t<C> n) const {
return std::ranges::begin(derived())[n];
}
template<std::ranges::random_access_range C = D>
constexpr decltype(auto) at(v2_dtl::container_size_t<C> n) {
if (derived().size() <= n)
throw std::out_of_range("Bounds check failed in sequence_container_interface::at()");
return std::ranges::begin(derived())[n];
}
template<std::ranges::random_access_range C = const D>
constexpr decltype(auto) at(v2_dtl::container_size_t<C> n) const {
if (derived().size() <= n)
throw std::out_of_range("Bounds check failed in sequence_container_interface::at()");
return std::ranges::begin(derived())[n];
}
constexpr auto begin() const {
return typename D::const_iterator(mutable_derived().begin());
}
constexpr auto end() const {
return typename D::const_iterator(mutable_derived().end());
}
constexpr auto cbegin() const { return derived().begin(); }
constexpr auto cend() const { return derived().end(); }
constexpr auto rbegin()
requires std::ranges::bidirectional_range<D> && std::ranges::common_range<D> {
return std::reverse_iterator(std::ranges::end(derived()));
}
constexpr auto rend()
requires std::ranges::bidirectional_range<D> && std::ranges::common_range<D> {
return std::reverse_iterator(std::ranges::begin(derived()));
}
constexpr auto rbegin() const
requires std::ranges::bidirectional_range<const D> &&
std::ranges::common_range<const D> {
return std::reverse_iterator(std::ranges::iterator_t<const D>(
mutable_derived().end()));
}
constexpr auto rend() const
requires std::ranges::bidirectional_range<const D> &&
std::ranges::common_range<const D> {
return std::reverse_iterator(std::ranges::iterator_t<const D>(
mutable_derived().begin()));
}
constexpr auto crbegin() const
requires std::ranges::bidirectional_range<const D> &&
std::ranges::common_range<const D> {
return std::reverse_iterator(std::ranges::iterator_t<const D>(
mutable_derived().end()));
}
constexpr auto crend() const
requires std::ranges::bidirectional_range<const D> &&
std::ranges::common_range<const D> {
return std::reverse_iterator(std::ranges::iterator_t<const D>(
mutable_derived().begin()));
}
template<typename C = D>
constexpr auto insert(std::ranges::iterator_t<const C> position,
const std::ranges::range_value_t<C>& x)
requires requires (D d) { d.emplace(position, x); } {
return derived().emplace(position, x);
}
template<typename C = D>
constexpr auto insert(std::ranges::iterator_t<const C> position,
std::ranges::range_value_t<C>&& x)
requires requires (D d) { d.emplace(position, std::move(x)); } {
return derived().emplace(position, std::move(x));
}
template<typename C = D>
constexpr auto insert(std::ranges::iterator_t<const C> position,
v2_dtl::container_size_t<C> n,
const std::ranges::range_value_t<C>& x)
requires v2_dtl::range_insert<C, v2_dtl::n_iter_t<C>> {
auto first = detail::make_n_iter(x, n);
auto last = detail::make_n_iter_end(x, n);
return derived().insert(
position, detail::make_n_iter(x, n), detail::make_n_iter_end(x, n));
}
template<typename C = D>
constexpr auto insert(std::ranges::iterator_t<const C> position,
std::initializer_list<std::ranges::range_value_t<C>> il)
requires requires (D d) {
d.template insert<decltype(position), decltype(il)>(
position, il.begin(), il.end()); } {
return derived().insert(position, il.begin(), il.end());
}
template<typename C = D>
constexpr void erase(typename C::const_iterator position)
requires requires (D d) { d.erase(position, std::ranges::next(position)); } {
derived().erase(position, std::ranges::next(position));
}
template<std::input_iterator Iter, typename C = D>
constexpr void assign(Iter first, Iter last)
requires requires (D d) {
d.erase(std::ranges::begin(d), std::ranges::end(d));
d.insert(std::ranges::begin(d), first, last); } {
auto out = derived().begin();
auto const out_last = derived().end();
for (; out != out_last && first != last; ++first, ++out) {
*out = *first;
}
if (out != out_last)
derived().erase(out, out_last);
if (first != last)
derived().insert(derived().end(), first, last);
}
template<typename C = D>
constexpr void assign(v2_dtl::container_size_t<C> n,
const std::ranges::range_value_t<C>& x)
requires requires (D d) {
{ d.size() } -> std::convertible_to<std::size_t>;
d.erase(std::ranges::begin(d), std::ranges::end(d));
d.insert(std::ranges::begin(d),
detail::make_n_iter(x, n),
detail::make_n_iter_end(x, n)); } {
if (detail::fake_capacity(derived()) < n) {
C temp(n, x);
derived().swap(temp);
} else {
auto const min_size = std::min<std::ptrdiff_t>(n, derived().size());
auto const fill_end = std::fill_n(derived().begin(), min_size, x);
if (min_size < (std::ptrdiff_t)derived().size()) {
derived().erase(fill_end, derived().end());
} else {
n -= min_size;
derived().insert(
derived().begin(),
detail::make_n_iter(x, n),
detail::make_n_iter_end(x, n));
}
}
}
template<typename C = D>
constexpr void assign(std::initializer_list<std::ranges::range_value_t<C>> il)
requires requires (D d) { d.assign(il.begin(), il.end()); } {
derived().assign(il.begin(), il.end());
}
constexpr void clear() noexcept
requires requires (D d) {
d.erase(std::ranges::begin(d), std::ranges::end(d)); } {
derived().erase(std::ranges::begin(derived()), std::ranges::end(derived()));
}
template<typename C = D>
constexpr decltype(auto) operator=(
std::initializer_list<std::ranges::range_value_t<C>> il)
requires requires (D d) { d.assign(il.begin(), il.end()); } {
derived().assign(il.begin(), il.end());
return *this;
}
friend constexpr void swap(D& lhs, D& rhs) requires requires { lhs.swap(rhs); } {
return lhs.swap(rhs);
}
friend constexpr bool operator==(const D& lhs, const D& rhs)
requires std::ranges::sized_range<const D> &&
requires { std::ranges::equal(lhs, rhs); } {
return lhs.size() == rhs.size() && std::ranges::equal(lhs, rhs);
}
#if 0 // TODO: This appears to work, but as of this writing (and using GCC
// 10), op<=> is not yet being used to evaluate op==, op<, etc.
friend constexpr std::compare_three_way_result_t<std::ranges::range_reference_t<const D>>
operator<=>(const D& lhs, const D& rhs)
requires std::three_way_comparable<std::ranges::range_reference_t<const D>> {
return std::lexicographical_compare_three_way(lhs.begin(), lhs.end(),
rhs.begin(), rhs.end());
}
#else
friend constexpr bool operator!=(const D& lhs, const D& rhs)
requires requires { lhs == rhs; } {
return !(lhs == rhs);
}
friend constexpr bool operator<(D lhs, D rhs)
requires std::totally_ordered<std::ranges::range_reference_t<D>> {
return std::ranges::lexicographical_compare(lhs, rhs);
}
friend constexpr bool operator<=(D lhs, D rhs)
requires std::totally_ordered<std::ranges::range_reference_t<D>> {
return lhs == rhs || lhs < rhs;
}
friend constexpr bool operator>(D lhs, D rhs)
requires std::totally_ordered<std::ranges::range_reference_t<D>> {
return !(lhs <= rhs);
}
friend constexpr bool operator>=(D lhs, D rhs)
requires std::totally_ordered<std::ranges::range_reference_t<D>> {
return rhs <= lhs;
}
#endif
};
// clang-format on
}}}
#endif
#endif