boost/math/distributions/laplace.hpp
// Copyright Thijs van den Berg, 2008.
// Copyright John Maddock 2008.
// Copyright Paul A. Bristow 2008, 2014.
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
// This module implements the Laplace distribution.
// Weisstein, Eric W. "Laplace Distribution." From MathWorld--A Wolfram Web Resource.
// http://mathworld.wolfram.com/LaplaceDistribution.html
// http://en.wikipedia.org/wiki/Laplace_distribution
//
// Abramowitz and Stegun 1972, p 930
// http://www.math.sfu.ca/~cbm/aands/page_930.htm
#ifndef BOOST_STATS_LAPLACE_HPP
#define BOOST_STATS_LAPLACE_HPP
#include <boost/math/distributions/detail/common_error_handling.hpp>
#include <boost/math/distributions/complement.hpp>
#include <boost/math/constants/constants.hpp>
#include <limits>
namespace boost{ namespace math{
#ifdef _MSC_VER
# pragma warning(push)
# pragma warning(disable:4127) // conditional expression is constant
#endif
template <class RealType = double, class Policy = policies::policy<> >
class laplace_distribution
{
public:
// ----------------------------------
// public Types
// ----------------------------------
using value_type = RealType;
using policy_type = Policy;
// ----------------------------------
// Constructor(s)
// ----------------------------------
explicit laplace_distribution(RealType l_location = 0, RealType l_scale = 1)
: m_location(l_location), m_scale(l_scale)
{
RealType result;
check_parameters("boost::math::laplace_distribution<%1%>::laplace_distribution()", &result);
}
// ----------------------------------
// Public functions
// ----------------------------------
RealType location() const
{
return m_location;
}
RealType scale() const
{
return m_scale;
}
bool check_parameters(const char* function, RealType* result) const
{
if(false == detail::check_scale(function, m_scale, result, Policy())) return false;
if(false == detail::check_location(function, m_location, result, Policy())) return false;
return true;
}
private:
RealType m_location;
RealType m_scale;
}; // class laplace_distribution
//
// Convenient type synonym for double.
using laplace = laplace_distribution<double>;
#ifdef __cpp_deduction_guides
template <class RealType>
laplace_distribution(RealType)->laplace_distribution<typename boost::math::tools::promote_args<RealType>::type>;
template <class RealType>
laplace_distribution(RealType,RealType)->laplace_distribution<typename boost::math::tools::promote_args<RealType>::type>;
#endif
//
// Non-member functions.
template <class RealType, class Policy>
inline std::pair<RealType, RealType> range(const laplace_distribution<RealType, Policy>&)
{
if (std::numeric_limits<RealType>::has_infinity)
{ // Can use infinity.
return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
}
else
{ // Can only use max_value.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
}
}
template <class RealType, class Policy>
inline std::pair<RealType, RealType> support(const laplace_distribution<RealType, Policy>&)
{
if (std::numeric_limits<RealType>::has_infinity)
{ // Can Use infinity.
return std::pair<RealType, RealType>(-std::numeric_limits<RealType>::infinity(), std::numeric_limits<RealType>::infinity()); // - to + infinity.
}
else
{ // Can only use max_value.
using boost::math::tools::max_value;
return std::pair<RealType, RealType>(-max_value<RealType>(), max_value<RealType>()); // - to + max value.
}
}
template <class RealType, class Policy>
inline RealType pdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std functions
// Checking function argument
RealType result = 0;
const char* function = "boost::math::pdf(const laplace_distribution<%1%>&, %1%))";
// Check scale and location.
if (false == dist.check_parameters(function, &result)) return result;
// Special pdf values.
if((boost::math::isinf)(x))
{
return 0; // pdf + and - infinity is zero.
}
if (false == detail::check_x(function, x, &result, Policy())) return result;
// General case
RealType scale( dist.scale() );
RealType location( dist.location() );
RealType exponent = x - location;
if (exponent>0) exponent = -exponent;
exponent /= scale;
result = exp(exponent);
result /= 2 * scale;
return result;
} // pdf
template <class RealType, class Policy>
inline RealType logpdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // for ADL of std functions
// Checking function argument
RealType result = -std::numeric_limits<RealType>::infinity();
const char* function = "boost::math::logpdf(const laplace_distribution<%1%>&, %1%))";
// Check scale and location.
if (false == dist.check_parameters(function, &result))
{
return result;
}
// Special pdf values.
if((boost::math::isinf)(x))
{
return result; // pdf + and - infinity is zero so logpdf is -INF
}
if (false == detail::check_x(function, x, &result, Policy()))
{
return result;
}
const RealType mu = dist.scale();
const RealType b = dist.location();
// if b is 0 avoid divde by 0 error
if(abs(b) < std::numeric_limits<RealType>::epsilon())
{
result = log(pdf(dist, x));
}
else
{
// General case
const RealType log2 = boost::math::constants::ln_two<RealType>();
result = -abs(x-mu)/b - log(b) - log2;
}
return result;
} // logpdf
template <class RealType, class Policy>
inline RealType cdf(const laplace_distribution<RealType, Policy>& dist, const RealType& x)
{
BOOST_MATH_STD_USING // For ADL of std functions.
RealType result = 0;
// Checking function argument.
const char* function = "boost::math::cdf(const laplace_distribution<%1%>&, %1%)";
// Check scale and location.
if (false == dist.check_parameters(function, &result)) return result;
// Special cdf values:
if((boost::math::isinf)(x))
{
if(x < 0) return 0; // -infinity.
return 1; // + infinity.
}
if (false == detail::check_x(function, x, &result, Policy())) return result;
// General cdf values
RealType scale( dist.scale() );
RealType location( dist.location() );
if (x < location)
{
result = exp( (x-location)/scale )/2;
}
else
{
result = 1 - exp( (location-x)/scale )/2;
}
return result;
} // cdf
template <class RealType, class Policy>
inline RealType quantile(const laplace_distribution<RealType, Policy>& dist, const RealType& p)
{
BOOST_MATH_STD_USING // for ADL of std functions.
// Checking function argument
RealType result = 0;
const char* function = "boost::math::quantile(const laplace_distribution<%1%>&, %1%)";
if (false == dist.check_parameters(function, &result)) return result;
if(false == detail::check_probability(function, p, &result, Policy())) return result;
// Extreme values of p:
if(p == 0)
{
result = policies::raise_overflow_error<RealType>(function,
"probability parameter is 0, but must be > 0!", Policy());
return -result; // -inf
}
if(p == 1)
{
result = policies::raise_overflow_error<RealType>(function,
"probability parameter is 1, but must be < 1!", Policy());
return result; // inf
}
// Calculate Quantile
RealType scale( dist.scale() );
RealType location( dist.location() );
if (p - 0.5 < 0.0)
result = location + scale*log( static_cast<RealType>(p*2) );
else
result = location - scale*log( static_cast<RealType>(-p*2 + 2) );
return result;
} // quantile
template <class RealType, class Policy>
inline RealType cdf(const complemented2_type<laplace_distribution<RealType, Policy>, RealType>& c)
{
// Calculate complement of cdf.
BOOST_MATH_STD_USING // for ADL of std functions
RealType scale = c.dist.scale();
RealType location = c.dist.location();
RealType x = c.param;
RealType result = 0;
// Checking function argument.
const char* function = "boost::math::cdf(const complemented2_type<laplace_distribution<%1%>, %1%>&)";
// Check scale and location.
if (false == c.dist.check_parameters(function, &result)) return result;
// Special cdf values.
if((boost::math::isinf)(x))
{
if(x < 0) return 1; // cdf complement -infinity is unity.
return 0; // cdf complement +infinity is zero.
}
if(false == detail::check_x(function, x, &result, Policy()))return result;
// Cdf interval value.
if (-x < -location)
{
result = exp( (-x+location)/scale )/2;
}
else
{
result = 1 - exp( (-location+x)/scale )/2;
}
return result;
} // cdf complement
template <class RealType, class Policy>
inline RealType quantile(const complemented2_type<laplace_distribution<RealType, Policy>, RealType>& c)
{
BOOST_MATH_STD_USING // for ADL of std functions.
// Calculate quantile.
RealType scale = c.dist.scale();
RealType location = c.dist.location();
RealType q = c.param;
RealType result = 0;
// Checking function argument.
const char* function = "quantile(const complemented2_type<laplace_distribution<%1%>, %1%>&)";
if (false == c.dist.check_parameters(function, &result)) return result;
// Extreme values.
if(q == 0)
{
return std::numeric_limits<RealType>::infinity();
}
if(q == 1)
{
return -std::numeric_limits<RealType>::infinity();
}
if(false == detail::check_probability(function, q, &result, Policy())) return result;
if (0.5 - q < 0.0)
result = location + scale*log( static_cast<RealType>(-q*2 + 2) );
else
result = location - scale*log( static_cast<RealType>(q*2) );
return result;
} // quantile
template <class RealType, class Policy>
inline RealType mean(const laplace_distribution<RealType, Policy>& dist)
{
return dist.location();
}
template <class RealType, class Policy>
inline RealType standard_deviation(const laplace_distribution<RealType, Policy>& dist)
{
return constants::root_two<RealType>() * dist.scale();
}
template <class RealType, class Policy>
inline RealType mode(const laplace_distribution<RealType, Policy>& dist)
{
return dist.location();
}
template <class RealType, class Policy>
inline RealType median(const laplace_distribution<RealType, Policy>& dist)
{
return dist.location();
}
template <class RealType, class Policy>
inline RealType skewness(const laplace_distribution<RealType, Policy>& /*dist*/)
{
return 0;
}
template <class RealType, class Policy>
inline RealType kurtosis(const laplace_distribution<RealType, Policy>& /*dist*/)
{
return 6;
}
template <class RealType, class Policy>
inline RealType kurtosis_excess(const laplace_distribution<RealType, Policy>& /*dist*/)
{
return 3;
}
template <class RealType, class Policy>
inline RealType entropy(const laplace_distribution<RealType, Policy> & dist)
{
using std::log;
return log(2*dist.scale()*constants::e<RealType>());
}
#ifdef _MSC_VER
# pragma warning(pop)
#endif
} // namespace math
} // namespace boost
// This include must be at the end, *after* the accessors
// for this distribution have been defined, in order to
// keep compilers that support two-phase lookup happy.
#include <boost/math/distributions/detail/derived_accessors.hpp>
#endif // BOOST_STATS_LAPLACE_HPP