boost/poly_collection/detail/allocator_adaptor.hpp
/* Copyright 2018 Joaquin M Lopez Munoz.
* Distributed under the Boost Software License, Version 1.0.
* (See accompanying file LICENSE_1_0.txt or copy at
* http://www.boost.org/LICENSE_1_0.txt)
*
* See http://www.boost.org/libs/poly_collection for library home page.
*/
#ifndef BOOST_POLY_COLLECTION_DETAIL_ALLOCATOR_ADAPTOR_HPP
#define BOOST_POLY_COLLECTION_DETAIL_ALLOCATOR_ADAPTOR_HPP
#if defined(_MSC_VER)
#pragma once
#endif
#include <boost/mp11/function.hpp>
#include <boost/mp11/integer_sequence.hpp>
#include <boost/poly_collection/detail/is_constructible.hpp>
#include <new>
#include <memory>
#include <tuple>
#include <type_traits>
#include <utility>
namespace boost{
namespace poly_collection{
namespace detail{
/* [container.requirements.general]/3 state that containers must use the
* allocator's construct/destroy member functions to construct/destroy
* elements and *not at all* for any other type. Since poly_collection is
* implemented as a multi-level structure of container and container-like
* objects, we need to use an adaptor for the user-provided Allocator that
* prevents intermediate entities from calling Allocator::[construct|destroy].
* allocator_adaptor<Allocator> does this by taking advantage of the fact that
* elements are ultimately held within a value_holder:
* - construct(value_holder<T>*,...) uses placement new construction and
* passes the wrapped Allocator object for value_holder<T> to use for
* its inner construction of T.
* - For the rest of types, construct uses placement new construction and
* passes down the adaptor object itself as an argument following an
* approach analogous to that of std::scoped_allocator_adaptor.
* - destroy(value_holder<T>) resorts to Allocator::destroy to destroy the
* contained T element.
* - For the rest of types, destroy(T) calls ~T directly.
*
* Code has been ripped and adapted from libc++'s implementation of
* std::scoped_allocator_adaptor.
*/
template<typename T>
class value_holder_base;
template<typename T>
class value_holder;
template<typename T,typename Allocator,typename... Args>
struct uses_alloc_ctor_impl
{
using RawAllocator=typename std::remove_cv<
typename std::remove_reference<Allocator>::type
>::type;
static const bool ua=std::uses_allocator<T,RawAllocator>::value;
static const int ic=is_constructible<
T,std::allocator_arg_t,Allocator,Args...>::value?1:0;
static const int value=ua?2-ic:0;
};
template<typename T,typename Allocator,typename... Args>
struct uses_alloc_ctor:
std::integral_constant<int,uses_alloc_ctor_impl<T,Allocator,Args...>::value>
{};
template<typename Allocator,typename=void>
struct allocator_is_always_equal:std::is_empty<Allocator>{};
template<typename Allocator>
struct allocator_is_always_equal<
Allocator,
mp11::mp_void<
typename std::allocator_traits<Allocator>::is_always_equal
>
>:std::allocator_traits<Allocator>::is_always_equal{};
template<typename Allocator>
struct allocator_adaptor:Allocator
{
using traits=std::allocator_traits<Allocator>;
using value_type=typename traits::value_type;
using size_type=typename traits::size_type;
using difference_type=typename traits::difference_type;
using pointer=typename traits::pointer;
using const_pointer=typename traits::const_pointer;
using void_pointer=typename traits::void_pointer;
using const_void_pointer=typename traits::const_void_pointer;
using propagate_on_container_copy_assignment=
typename traits::propagate_on_container_copy_assignment;
using propagate_on_container_move_assignment=
typename traits::propagate_on_container_move_assignment;
using propagate_on_container_swap=
typename traits::propagate_on_container_swap;
using is_always_equal=typename allocator_is_always_equal<Allocator>::type;
template<typename U>
struct rebind
{
using other=allocator_adaptor<typename traits::template rebind_alloc<U>>;
};
allocator_adaptor()=default;
allocator_adaptor(const allocator_adaptor&)=default;
template<
typename Allocator2,
typename std::enable_if<
is_constructible<Allocator,const Allocator2&>::value
>::type* =nullptr
>
allocator_adaptor(const Allocator2& x)noexcept:Allocator{x}{}
template<
typename Allocator2,
typename std::enable_if<
is_constructible<Allocator,const Allocator2&>::value
>::type* =nullptr
>
allocator_adaptor(const allocator_adaptor<Allocator2>& x)noexcept:
Allocator{x.allocator()}{}
allocator_adaptor& operator=(const allocator_adaptor&)=default;
Allocator& allocator()noexcept{return *this;}
const Allocator& allocator()const noexcept{return *this;}
template<typename T,typename... Args>
void construct(T* p,Args&&... args)
{
construct_(
uses_alloc_ctor<T,allocator_adaptor&,Args...>{},
p,std::forward<Args>(args)...);
}
template<typename T,typename... Args>
void construct(value_holder<T>* p,Args&&... args)
{
::new ((void*)p) value_holder<T>(allocator(),std::forward<Args>(args)...);
}
template<typename T1,typename T2,typename... Args1,typename... Args2>
void construct(
std::pair<T1,T2>* p,std::piecewise_construct_t,
std::tuple<Args1...> x,std::tuple<Args2...> y)
{
::new ((void*)p) std::pair<T1,T2>(
std::piecewise_construct,
transform_tuple(
uses_alloc_ctor<T1,allocator_adaptor&,Args1...>{},
std::move(x),
mp11::make_index_sequence<sizeof...(Args1)>{}),
transform_tuple(
uses_alloc_ctor<T2,allocator_adaptor&,Args2...>{},
std::move(y),
mp11::make_index_sequence<sizeof...(Args2)>{})
);
}
template<typename T1,typename T2>
void construct(std::pair<T1,T2>* p)
{
construct(p,std::piecewise_construct,std::tuple<>{},std::tuple<>{});
}
template<typename T1,typename T2,typename U,typename V>
void construct(std::pair<T1,T2>* p,U&& x,V&& y)
{
construct(
p,std::piecewise_construct,
std::forward_as_tuple(std::forward<U>(x)),
std::forward_as_tuple(std::forward<V>(y)));
}
template<typename T1,typename T2,typename U,typename V>
void construct(std::pair<T1,T2>* p,const std::pair<U,V>& x)
{
construct(
p,std::piecewise_construct,
std::forward_as_tuple(x.first),std::forward_as_tuple(x.second));
}
template<typename T1,typename T2,typename U,typename V>
void construct(std::pair<T1,T2>* p,std::pair<U,V>&& x)
{
construct(
p,std::piecewise_construct,
std::forward_as_tuple(std::forward<U>(x.first)),
std::forward_as_tuple(std::forward<V>(x.second)));
}
template<typename T>
void destroy(T* p)
{
p->~T();
}
template<typename T>
void destroy(value_holder<T>* p)
{
traits::destroy(
allocator(),
reinterpret_cast<T*>(static_cast<value_holder_base<T>*>(p)));
}
allocator_adaptor
select_on_container_copy_construction()const noexcept
{
return traits::select_on_container_copy_construction(allocator());
}
private:
template<typename T,typename... Args>
void construct_(
std::integral_constant<int,0>, /* doesn't use allocator */
T* p,Args&&... args)
{
::new ((void*)p) T(std::forward<Args>(args)...);
}
template<typename T,typename... Args>
void construct_(
std::integral_constant<int,1>, /* with std::allocator_arg */
T* p,Args&&... args)
{
::new ((void*)p) T(std::allocator_arg,*this,std::forward<Args>(args)...);
}
template<typename T,typename... Args>
void construct_(
std::integral_constant<int,2>, /* allocator at the end */
T* p,Args&&... args)
{
::new ((void*)p) T(std::forward<Args>(args)...,*this);
}
template<typename... Args,std::size_t... I>
std::tuple<Args&&...> transform_tuple(
std::integral_constant<int,0>, /* doesn't use allocator */
std::tuple<Args...>&& t,mp11::index_sequence<I...>)
{
return std::tuple<Args&&...>(std::get<I>(std::move(t))...);
}
template<typename... Args,std::size_t... I>
std::tuple<std::allocator_arg_t,allocator_adaptor&,Args&&...>
transform_tuple(
std::integral_constant<int,1>, /* with std::allocator_arg */
std::tuple<Args...>&& t,mp11::index_sequence<I...>)
{
return std::tuple<
std::allocator_arg_t,allocator_adaptor&,Args&&...>(
std::allocator_arg,*this,std::get<I>(std::move(t))...);
}
template<typename... Args,std::size_t... I>
std::tuple<Args&&...,allocator_adaptor&>
transform_tuple(
std::integral_constant<int,2>, /* allocator at the end */
std::tuple<Args...>&& t,mp11::index_sequence<I...>)
{
return std::tuple<Args&&...,allocator_adaptor&>(
std::get<I>(std::move(t))...,*this);
}
};
template<typename Allocator1,typename Allocator2>
bool operator==(
const allocator_adaptor<Allocator1>& x,
const allocator_adaptor<Allocator2>& y)noexcept
{
return x.allocator()==y.allocator();
}
template<typename Allocator1,typename Allocator2>
bool operator!=(
const allocator_adaptor<Allocator1>& x,
const allocator_adaptor<Allocator2>& y)noexcept
{
return !(x==y);
}
} /* namespace poly_collection::detail */
} /* namespace poly_collection */
} /* namespace boost */
#endif