boost/pfr/io_fields.hpp
// Copyright (c) 2016-2022 Antony Polukhin
//
// Distributed under the Boost Software License, Version 1.0. (See accompanying
// file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_PFR_IO_FIELDS_HPP
#define BOOST_PFR_IO_FIELDS_HPP
#pragma once
#include <boost/pfr/detail/config.hpp>
#include <boost/pfr/detail/core.hpp>
#include <type_traits>
#include <utility> // metaprogramming stuff
#include <boost/pfr/detail/sequence_tuple.hpp>
#include <boost/pfr/detail/io.hpp>
#include <boost/pfr/detail/make_integer_sequence.hpp>
#include <boost/pfr/tuple_size.hpp>
/// \file boost/pfr/io_fields.hpp
/// Contains IO manupulator \forcedlink{io_fields} to read/write \aggregate `value` field-by-field.
///
/// \b Example:
/// \code
/// struct my_struct {
/// int i;
/// short s;
/// };
///
/// std::ostream& operator<<(std::ostream& os, const my_struct& x) {
/// return os << boost::pfr::io_fields(x); // Equivalent to: os << "{ " << x.i << " ," << x.s << " }"
/// }
///
/// std::istream& operator>>(std::istream& is, my_struct& x) {
/// return is >> boost::pfr::io_fields(x); // Equivalent to: is >> "{ " >> x.i >> " ," >> x.s >> " }"
/// }
/// \endcode
///
/// \podops for other ways to define operators and more details.
///
/// \b Synopsis:
namespace boost { namespace pfr {
namespace detail {
template <class T>
struct io_fields_impl {
T value;
};
template <class Char, class Traits, class T>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& out, io_fields_impl<const T&>&& x) {
const T& value = x.value;
constexpr std::size_t fields_count_val = boost::pfr::detail::fields_count<T>();
out << '{';
#if BOOST_PFR_USE_CPP17 || BOOST_PFR_USE_LOOPHOLE
detail::print_impl<0, fields_count_val>::print(out, detail::tie_as_tuple(value));
#else
::boost::pfr::detail::for_each_field_dispatcher(
value,
[&out](const auto& val) {
// We can not reuse `fields_count_val` in lambda because compilers had issues with
// passing constexpr variables into lambdas. Computing is again is the most portable solution.
constexpr std::size_t fields_count_val_lambda = boost::pfr::detail::fields_count<T>();
detail::print_impl<0, fields_count_val_lambda>::print(out, val);
},
detail::make_index_sequence<fields_count_val>{}
);
#endif
return out << '}';
}
template <class Char, class Traits, class T>
std::basic_ostream<Char, Traits>& operator<<(std::basic_ostream<Char, Traits>& out, io_fields_impl<T>&& x) {
return out << io_fields_impl<const std::remove_reference_t<T>&>{x.value};
}
template <class Char, class Traits, class T>
std::basic_istream<Char, Traits>& operator>>(std::basic_istream<Char, Traits>& in, io_fields_impl<T&>&& x) {
T& value = x.value;
constexpr std::size_t fields_count_val = boost::pfr::detail::fields_count<T>();
const auto prev_exceptions = in.exceptions();
in.exceptions( typename std::basic_istream<Char, Traits>::iostate(0) );
const auto prev_flags = in.flags( typename std::basic_istream<Char, Traits>::fmtflags(0) );
char parenthis = {};
in >> parenthis;
if (parenthis != '{') in.setstate(std::basic_istream<Char, Traits>::failbit);
#if BOOST_PFR_USE_CPP17 || BOOST_PFR_USE_LOOPHOLE
detail::read_impl<0, fields_count_val>::read(in, detail::tie_as_tuple(value));
#else
::boost::pfr::detail::for_each_field_dispatcher(
value,
[&in](const auto& val) {
// We can not reuse `fields_count_val` in lambda because compilers had issues with
// passing constexpr variables into lambdas. Computing is again is the most portable solution.
constexpr std::size_t fields_count_val_lambda = boost::pfr::detail::fields_count<T>();
detail::read_impl<0, fields_count_val_lambda>::read(in, val);
},
detail::make_index_sequence<fields_count_val>{}
);
#endif
in >> parenthis;
if (parenthis != '}') in.setstate(std::basic_istream<Char, Traits>::failbit);
in.flags(prev_flags);
in.exceptions(prev_exceptions);
return in;
}
template <class Char, class Traits, class T>
std::basic_istream<Char, Traits>& operator>>(std::basic_istream<Char, Traits>& in, io_fields_impl<const T&>&& ) {
static_assert(sizeof(T) && false, "====================> Boost.PFR: Attempt to use istream operator on a boost::pfr::io_fields wrapped type T with const qualifier.");
return in;
}
template <class Char, class Traits, class T>
std::basic_istream<Char, Traits>& operator>>(std::basic_istream<Char, Traits>& in, io_fields_impl<T>&& ) {
static_assert(sizeof(T) && false, "====================> Boost.PFR: Attempt to use istream operator on a boost::pfr::io_fields wrapped temporary of type T.");
return in;
}
} // namespace detail
/// IO manupulator to read/write \aggregate `value` field-by-field.
///
/// \b Example:
/// \code
/// struct my_struct {
/// int i;
/// short s;
/// };
///
/// std::ostream& operator<<(std::ostream& os, const my_struct& x) {
/// return os << boost::pfr::io_fields(x); // Equivalent to: os << "{ " << x.i << " ," << x.s << " }"
/// }
///
/// std::istream& operator>>(std::istream& is, my_struct& x) {
/// return is >> boost::pfr::io_fields(x); // Equivalent to: is >> "{ " >> x.i >> " ," >> x.s >> " }"
/// }
/// \endcode
///
/// Input and output streaming operators for `boost::pfr::io_fields` are symmetric, meaning that you get the original value by streaming it and
/// reading back if each fields streaming operator is symmetric.
///
/// \customio
template <class T>
auto io_fields(T&& value) noexcept {
return detail::io_fields_impl<T>{std::forward<T>(value)};
}
}} // namespace boost::pfr
#endif // BOOST_PFR_IO_FIELDS_HPP