boost/math/special_functions/ellint_2.hpp
// Copyright (c) 2006 Xiaogang Zhang
// Copyright (c) 2006 John Maddock
// Use, modification and distribution are subject to the
// Boost Software License, Version 1.0. (See accompanying file
// LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
//
// History:
// XZ wrote the original of this file as part of the Google
// Summer of Code 2006. JM modified it to fit into the
// Boost.Math conceptual framework better, and to ensure
// that the code continues to work no matter how many digits
// type T has.
#ifndef BOOST_MATH_ELLINT_2_HPP
#define BOOST_MATH_ELLINT_2_HPP
#ifdef _MSC_VER
#pragma once
#endif
#include <boost/math/special_functions/math_fwd.hpp>
#include <boost/math/special_functions/ellint_rf.hpp>
#include <boost/math/special_functions/ellint_rd.hpp>
#include <boost/math/special_functions/ellint_rg.hpp>
#include <boost/math/constants/constants.hpp>
#include <boost/math/policies/error_handling.hpp>
#include <boost/math/tools/workaround.hpp>
#include <boost/math/special_functions/round.hpp>
// Elliptic integrals (complete and incomplete) of the second kind
// Carlson, Numerische Mathematik, vol 33, 1 (1979)
namespace boost { namespace math {
template <class T1, class T2, class Policy>
typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi, const Policy& pol);
namespace detail{
template <typename T, typename Policy>
T ellint_e_imp(T k, const Policy& pol, const std::integral_constant<int, 0>&);
template <typename T, typename Policy>
T ellint_e_imp(T k, const Policy& pol, const std::integral_constant<int, 1>&);
template <typename T, typename Policy>
T ellint_e_imp(T k, const Policy& pol, const std::integral_constant<int, 2>&);
// Elliptic integral (Legendre form) of the second kind
template <typename T, typename Policy>
T ellint_e_imp(T phi, T k, const Policy& pol)
{
BOOST_MATH_STD_USING
using namespace boost::math::tools;
using namespace boost::math::constants;
bool invert = false;
if (phi == 0)
return 0;
if(phi < 0)
{
phi = fabs(phi);
invert = true;
}
T result;
if(phi >= tools::max_value<T>())
{
// Need to handle infinity as a special case:
result = policies::raise_overflow_error<T>("boost::math::ellint_e<%1%>(%1%,%1%)", nullptr, pol);
}
else if(phi > 1 / tools::epsilon<T>())
{
typedef std::integral_constant<int,
std::is_floating_point<T>::value&& std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 54) ? 0 :
std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 64) ? 1 : 2
> precision_tag_type;
// Phi is so large that phi%pi is necessarily zero (or garbage),
// just return the second part of the duplication formula:
result = 2 * phi * ellint_e_imp(k, pol, precision_tag_type()) / constants::pi<T>();
}
else if(k == 0)
{
return invert ? T(-phi) : phi;
}
else if(fabs(k) == 1)
{
//
// For k = 1 ellipse actually turns to a line and every pi/2 in phi is exactly 1 in arc length
// Periodicity though is in pi, curve follows sin(pi) for 0 <= phi <= pi/2 and then
// 2 - sin(pi- phi) = 2 + sin(phi - pi) for pi/2 <= phi <= pi, so general form is:
//
// 2n + sin(phi - n * pi) ; |phi - n * pi| <= pi / 2
//
T m = boost::math::round(phi / boost::math::constants::pi<T>());
T remains = phi - m * boost::math::constants::pi<T>();
T value = 2 * m + sin(remains);
// negative arc length for negative phi
return invert ? -value : value;
}
else
{
// Carlson's algorithm works only for |phi| <= pi/2,
// use the integrand's periodicity to normalize phi
//
// Xiaogang's original code used a cast to long long here
// but that fails if T has more digits than a long long,
// so rewritten to use fmod instead:
//
T rphi = boost::math::tools::fmod_workaround(phi, T(constants::half_pi<T>()));
T m = boost::math::round((phi - rphi) / constants::half_pi<T>());
int s = 1;
if(boost::math::tools::fmod_workaround(m, T(2)) > 0.5)
{
m += 1;
s = -1;
rphi = constants::half_pi<T>() - rphi;
}
T k2 = k * k;
if(boost::math::pow<3>(rphi) * k2 / 6 < tools::epsilon<T>() * fabs(rphi))
{
// See http://functions.wolfram.com/EllipticIntegrals/EllipticE2/06/01/03/0001/
result = s * rphi;
}
else
{
// http://dlmf.nist.gov/19.25#E10
T sinp = sin(rphi);
if (k2 * sinp * sinp >= 1)
{
return policies::raise_domain_error<T>("boost::math::ellint_2<%1%>(%1%, %1%)", "The parameter k is out of range, got k = %1%", k, pol);
}
T cosp = cos(rphi);
T c = 1 / (sinp * sinp);
T cm1 = cosp * cosp / (sinp * sinp); // c - 1
result = s * ((1 - k2) * ellint_rf_imp(cm1, T(c - k2), c, pol) + k2 * (1 - k2) * ellint_rd(cm1, c, T(c - k2), pol) / 3 + k2 * sqrt(cm1 / (c * (c - k2))));
}
if (m != 0)
{
typedef std::integral_constant<int,
std::is_floating_point<T>::value&& std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 54) ? 0 :
std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 64) ? 1 : 2
> precision_tag_type;
result += m * ellint_e_imp(k, pol, precision_tag_type());
}
}
return invert ? T(-result) : result;
}
// Complete elliptic integral (Legendre form) of the second kind
template <typename T, typename Policy>
T ellint_e_imp(T k, const Policy& pol, std::integral_constant<int, 2> const&)
{
BOOST_MATH_STD_USING
using namespace boost::math::tools;
if (abs(k) > 1)
{
return policies::raise_domain_error<T>("boost::math::ellint_e<%1%>(%1%)",
"Got k = %1%, function requires |k| <= 1", k, pol);
}
if (abs(k) == 1)
{
return static_cast<T>(1);
}
T x = 0;
T t = k * k;
T y = 1 - t;
T z = 1;
T value = 2 * ellint_rg_imp(x, y, z, pol);
return value;
}
//
// Special versions for double and 80-bit long double precision,
// double precision versions use the coefficients from:
// "Fast computation of complete elliptic integrals and Jacobian elliptic functions",
// Celestial Mechanics and Dynamical Astronomy, April 2012.
//
// Higher precision coefficients for 80-bit long doubles can be calculated
// using for example:
// Table[N[SeriesCoefficient[ EllipticE [ m ], { m, 875/1000, i} ], 20], {i, 0, 24}]
// and checking the value of the first neglected term with:
// N[SeriesCoefficient[ EllipticE [ m ], { m, 875/1000, 24} ], 20] * (2.5/100)^24
//
// For m > 0.9 we don't use the method of the paper above, but simply call our
// existing routines.
//
template <typename T, typename Policy>
BOOST_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant<int, 0> const&)
{
using std::abs;
using namespace boost::math::tools;
T m = k * k;
switch (static_cast<int>(20 * m))
{
case 0:
case 1:
//if (m < 0.1)
{
constexpr T coef[] =
{
1.550973351780472328,
-0.400301020103198524,
-0.078498619442941939,
-0.034318853117591992,
-0.019718043317365499,
-0.013059507731993309,
-0.009442372874146547,
-0.007246728512402157,
-0.005807424012956090,
-0.004809187786009338,
-0.004086399233255150
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.05);
}
case 2:
case 3:
//else if (m < 0.2)
{
constexpr T coef[] =
{
1.510121832092819728,
-0.417116333905867549,
-0.090123820404774569,
-0.043729944019084312,
-0.027965493064761785,
-0.020644781177568105,
-0.016650786739707238,
-0.014261960828842520,
-0.012759847429264803,
-0.011799303775587354,
-0.011197445703074968
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.15);
}
case 4:
case 5:
//else if (m < 0.3)
{
constexpr T coef[] =
{
1.467462209339427155,
-0.436576290946337775,
-0.105155557666942554,
-0.057371843593241730,
-0.041391627727340220,
-0.034527728505280841,
-0.031495443512532783,
-0.030527000890325277,
-0.030916984019238900,
-0.032371395314758122,
-0.034789960386404158
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.25);
}
case 6:
case 7:
//else if (m < 0.4)
{
constexpr T coef[] =
{
1.422691133490879171,
-0.459513519621048674,
-0.125250539822061878,
-0.078138545094409477,
-0.064714278472050002,
-0.062084339131730311,
-0.065197032815572477,
-0.072793895362578779,
-0.084959075171781003,
-0.102539850131045997,
-0.127053585157696036,
-0.160791120691274606
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.35);
}
case 8:
case 9:
//else if (m < 0.5)
{
constexpr T coef[] =
{
1.375401971871116291,
-0.487202183273184837,
-0.153311701348540228,
-0.111849444917027833,
-0.108840952523135768,
-0.122954223120269076,
-0.152217163962035047,
-0.200495323642697339,
-0.276174333067751758,
-0.393513114304375851,
-0.575754406027879147,
-0.860523235727239756,
-1.308833205758540162
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.45);
}
case 10:
case 11:
//else if (m < 0.6)
{
constexpr T coef[] =
{
1.325024497958230082,
-0.521727647557566767,
-0.194906430482126213,
-0.171623726822011264,
-0.202754652926419141,
-0.278798953118534762,
-0.420698457281005762,
-0.675948400853106021,
-1.136343121839229244,
-1.976721143954398261,
-3.531696773095722506,
-6.446753640156048150,
-11.97703130208884026
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.55);
}
case 12:
case 13:
//else if (m < 0.7)
{
constexpr T coef[] =
{
1.270707479650149744,
-0.566839168287866583,
-0.262160793432492598,
-0.292244173533077419,
-0.440397840850423189,
-0.774947641381397458,
-1.498870837987561088,
-3.089708310445186667,
-6.667595903381001064,
-14.89436036517319078,
-34.18120574251449024,
-80.15895841905397306,
-191.3489480762984920,
-463.5938853480342030,
-1137.380822169360061
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.65);
}
case 14:
case 15:
//else if (m < 0.8)
{
constexpr T coef[] =
{
1.211056027568459525,
-0.630306413287455807,
-0.387166409520669145,
-0.592278235311934603,
-1.237555584513049844,
-3.032056661745247199,
-8.181688221573590762,
-23.55507217389693250,
-71.04099935893064956,
-221.8796853192349888,
-712.1364793277635425,
-2336.125331440396407,
-7801.945954775964673,
-26448.19586059191933,
-90799.48341621365251,
-315126.0406449163424,
-1104011.344311591159
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.75);
}
case 16:
//else if (m < 0.85)
{
constexpr T coef[] =
{
1.161307152196282836,
-0.701100284555289548,
-0.580551474465437362,
-1.243693061077786614,
-3.679383613496634879,
-12.81590924337895775,
-49.25672530759985272,
-202.1818735434090269,
-869.8602699308701437,
-3877.005847313289571,
-17761.70710170939814,
-83182.69029154232061,
-396650.4505013548170,
-1920033.413682634405
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.825);
}
case 17:
//else if (m < 0.90)
{
constexpr T coef[] =
{
1.124617325119752213,
-0.770845056360909542,
-0.844794053644911362,
-2.490097309450394453,
-10.23971741154384360,
-49.74900546551479866,
-267.0986675195705196,
-1532.665883825229947,
-9222.313478526091951,
-57502.51612140314030,
-368596.1167416106063,
-2415611.088701091428,
-16120097.81581656797,
-109209938.5203089915,
-749380758.1942496220,
-5198725846.725541393,
-36409256888.12139973
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.875);
}
default:
//
// All cases where m > 0.9
// including all error handling:
//
return ellint_e_imp(k, pol, std::integral_constant<int, 2>());
}
}
template <typename T, typename Policy>
BOOST_FORCEINLINE T ellint_e_imp(T k, const Policy& pol, std::integral_constant<int, 1> const&)
{
using std::abs;
using namespace boost::math::tools;
T m = k * k;
switch (static_cast<int>(20 * m))
{
case 0:
case 1:
//if (m < 0.1)
{
constexpr T coef[] =
{
1.5509733517804723277L,
-0.40030102010319852390L,
-0.078498619442941939212L,
-0.034318853117591992417L,
-0.019718043317365499309L,
-0.013059507731993309191L,
-0.0094423728741465473894L,
-0.0072467285124021568126L,
-0.0058074240129560897940L,
-0.0048091877860093381762L,
-0.0040863992332551506768L,
-0.0035450302604139562644L,
-0.0031283511188028336315L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.05L);
}
case 2:
case 3:
//else if (m < 0.2)
{
constexpr T coef[] =
{
1.5101218320928197276L,
-0.41711633390586754922L,
-0.090123820404774568894L,
-0.043729944019084311555L,
-0.027965493064761784548L,
-0.020644781177568105268L,
-0.016650786739707238037L,
-0.014261960828842519634L,
-0.012759847429264802627L,
-0.011799303775587354169L,
-0.011197445703074968018L,
-0.010850368064799902735L,
-0.010696133481060989818L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.15L);
}
case 4:
case 5:
//else if (m < 0.3L)
{
constexpr T coef[] =
{
1.4674622093394271555L,
-0.43657629094633777482L,
-0.10515555766694255399L,
-0.057371843593241729895L,
-0.041391627727340220236L,
-0.034527728505280841188L,
-0.031495443512532782647L,
-0.030527000890325277179L,
-0.030916984019238900349L,
-0.032371395314758122268L,
-0.034789960386404158240L,
-0.038182654612387881967L,
-0.042636187648900252525L,
-0.048302272505241634467
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.25L);
}
case 6:
case 7:
//else if (m < 0.4L)
{
constexpr T coef[] =
{
1.4226911334908791711L,
-0.45951351962104867394L,
-0.12525053982206187849L,
-0.078138545094409477156L,
-0.064714278472050001838L,
-0.062084339131730310707L,
-0.065197032815572476910L,
-0.072793895362578779473L,
-0.084959075171781003264L,
-0.10253985013104599679L,
-0.12705358515769603644L,
-0.16079112069127460621L,
-0.20705400012405941376L,
-0.27053164884730888948L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.35L);
}
case 8:
case 9:
//else if (m < 0.5L)
{
constexpr T coef[] =
{
1.3754019718711162908L,
-0.48720218327318483652L,
-0.15331170134854022753L,
-0.11184944491702783273L,
-0.10884095252313576755L,
-0.12295422312026907610L,
-0.15221716396203504746L,
-0.20049532364269733857L,
-0.27617433306775175837L,
-0.39351311430437585139L,
-0.57575440602787914711L,
-0.86052323572723975634L,
-1.3088332057585401616L,
-2.0200280559452241745L,
-3.1566019548237606451L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.45L);
}
case 10:
case 11:
//else if (m < 0.6L)
{
constexpr T coef[] =
{
1.3250244979582300818L,
-0.52172764755756676713L,
-0.19490643048212621262L,
-0.17162372682201126365L,
-0.20275465292641914128L,
-0.27879895311853476205L,
-0.42069845728100576224L,
-0.67594840085310602110L,
-1.1363431218392292440L,
-1.9767211439543982613L,
-3.5316967730957225064L,
-6.4467536401560481499L,
-11.977031302088840261L,
-22.581360948073964469L,
-43.109479829481450573L,
-83.186290908288807424L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.55L);
}
case 12:
case 13:
//else if (m < 0.7L)
{
constexpr T coef[] =
{
1.2707074796501497440L,
-0.56683916828786658286L,
-0.26216079343249259779L,
-0.29224417353307741931L,
-0.44039784085042318909L,
-0.77494764138139745824L,
-1.4988708379875610880L,
-3.0897083104451866665L,
-6.6675959033810010645L,
-14.894360365173190775L,
-34.181205742514490240L,
-80.158958419053973056L,
-191.34894807629849204L,
-463.59388534803420301L,
-1137.3808221693600606L,
-2820.7073786352269339L,
-7061.1382244658715621L,
-17821.809331816437058L,
-45307.849987201897801L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.65L);
}
case 14:
case 15:
//else if (m < 0.8L)
{
constexpr T coef[] =
{
1.2110560275684595248L,
-0.63030641328745580709L,
-0.38716640952066914514L,
-0.59227823531193460257L,
-1.2375555845130498445L,
-3.0320566617452471986L,
-8.1816882215735907624L,
-23.555072173896932503L,
-71.040999358930649565L,
-221.87968531923498875L,
-712.13647932776354253L,
-2336.1253314403964072L,
-7801.9459547759646726L,
-26448.195860591919335L,
-90799.483416213652512L,
-315126.04064491634241L,
-1.1040113443115911589e6L,
-3.8998018348056769095e6L,
-1.3876249116223745041e7L,
-4.9694982823537861149e7L,
-1.7900668836197342979e8L,
-6.4817399873722371964e8L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.75L);
}
case 16:
//else if (m < 0.85L)
{
constexpr T coef[] =
{
1.1613071521962828360L,
-0.70110028455528954752L,
-0.58055147446543736163L,
-1.2436930610777866138L,
-3.6793836134966348789L,
-12.815909243378957753L,
-49.256725307599852720L,
-202.18187354340902693L,
-869.86026993087014372L,
-3877.0058473132895713L,
-17761.707101709398174L,
-83182.690291542320614L,
-396650.45050135481698L,
-1.9200334136826344054e6L,
-9.4131321779500838352e6L,
-4.6654858837335370627e7L,
-2.3343549352617609390e8L,
-1.1776928223045913454e9L,
-5.9850851892915740401e9L,
-3.0614702984618644983e10L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.825L);
}
case 17:
//else if (m < 0.90L)
{
constexpr T coef[] =
{
1.1246173251197522132L,
-0.77084505636090954218L,
-0.84479405364491136236L,
-2.4900973094503944527L,
-10.239717411543843601L,
-49.749005465514798660L,
-267.09866751957051961L,
-1532.6658838252299468L,
-9222.3134785260919507L,
-57502.516121403140303L,
-368596.11674161060626L,
-2.4156110887010914281e6L,
-1.6120097815816567971e7L,
-1.0920993852030899148e8L,
-7.4938075819424962198e8L,
-5.1987258467255413931e9L,
-3.6409256888121399726e10L,
-2.5711802891217393544e11L,
-1.8290904062978796996e12L,
-1.3096838781743248404e13L,
-9.4325465851415135118e13L,
-6.8291980829471896669e14L
};
return boost::math::tools::evaluate_polynomial(coef, m - 0.875L);
}
default:
//
// All cases where m > 0.9
// including all error handling:
//
return ellint_e_imp(k, pol, std::integral_constant<int, 2>());
}
}
template <typename T, typename Policy>
BOOST_FORCEINLINE typename tools::promote_args<T>::type ellint_2(T k, const Policy& pol, const std::true_type&)
{
typedef typename tools::promote_args<T>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
typedef std::integral_constant<int,
std::is_floating_point<T>::value&& std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 54) ? 0 :
std::is_floating_point<T>::value && std::numeric_limits<T>::digits && (std::numeric_limits<T>::digits <= 64) ? 1 : 2
> precision_tag_type;
return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_e_imp(static_cast<value_type>(k), pol, precision_tag_type()), "boost::math::ellint_2<%1%>(%1%)");
}
// Elliptic integral (Legendre form) of the second kind
template <class T1, class T2>
BOOST_FORCEINLINE typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi, const std::false_type&)
{
return boost::math::ellint_2(k, phi, policies::policy<>());
}
} // detail
// Complete elliptic integral (Legendre form) of the second kind
template <typename T>
BOOST_FORCEINLINE typename tools::promote_args<T>::type ellint_2(T k)
{
return ellint_2(k, policies::policy<>());
}
// Elliptic integral (Legendre form) of the second kind
template <class T1, class T2>
BOOST_FORCEINLINE typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi)
{
typedef typename policies::is_policy<T2>::type tag_type;
return detail::ellint_2(k, phi, tag_type());
}
template <class T1, class T2, class Policy>
BOOST_FORCEINLINE typename tools::promote_args<T1, T2>::type ellint_2(T1 k, T2 phi, const Policy& pol)
{
typedef typename tools::promote_args<T1, T2>::type result_type;
typedef typename policies::evaluation<result_type, Policy>::type value_type;
return policies::checked_narrowing_cast<result_type, Policy>(detail::ellint_e_imp(static_cast<value_type>(phi), static_cast<value_type>(k), pol), "boost::math::ellint_2<%1%>(%1%,%1%)");
}
}} // namespaces
#endif // BOOST_MATH_ELLINT_2_HPP