Boost C++ Libraries

...one of the most highly regarded and expertly designed C++ library projects in the world. Herb Sutter and Andrei Alexandrescu, C++ Coding Standards

This is the documentation for an old version of Boost. Click here to view this page for the latest version.

libs/math/example/color_maps_example.cpp

//  (C) Copyright Nick Thompson 2021.
//  (C) Copyright Matt Borland 2022.
//  Use, modification and distribution are subject to the
//  Boost Software License, Version 1.0. (See accompanying file
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)

#include <cmath>
#include <cstdint>
#include <array>
#include <complex>
#include <tuple>
#include <iostream>
#include <vector>
#include <limits>
#include <boost/math/tools/color_maps.hpp>

#if !__has_include("lodepng.h")
 #error "lodepng.h is required to run this example."
#endif
#include "lodepng.h"
#include <iostream>
#include <string>
#include <vector>


// In lodepng, the vector is expected to be row major, with the top row
// specified first. Note that this is a bit confusing sometimes as it's more
// natural to let y increase moving *up*.
unsigned write_png(const std::string &filename,
                   const std::vector<std::uint8_t> &img, std::size_t width,
                   std::size_t height) {
  unsigned error = lodepng::encode(filename, img, width, height,
                                   LodePNGColorType::LCT_RGBA, 8);
  if (error) {
    std::cerr << "Error encoding png: " << lodepng_error_text(error) << "\n";
  }
  return error;
}


// Computes ab - cd.
// See: https://pharr.org/matt/blog/2019/11/03/difference-of-floats.html
template <typename Real>
inline Real difference_of_products(Real a, Real b, Real c, Real d)
{
    Real cd = c * d;
    Real err = std::fma(-c, d, cd);
    Real dop = std::fma(a, b, -cd);
    return dop + err;
}

template<typename Real>
auto fifth_roots(std::complex<Real> z)
{
    std::complex<Real> v = std::pow(z,4);
    std::complex<Real> dw = Real(5)*v;
    std::complex<Real> w = v*z - Real(1);
    return std::make_pair(w, dw);
}

template<typename Real>
auto g(std::complex<Real> z)
{
    std::complex<Real> z2 = z*z;
    std::complex<Real> z3 = z*z2;
    std::complex<Real> z4 = z2*z2;
    std::complex<Real> w = z4*(z4 + Real(15)) - Real(16);
    std::complex<Real> dw = Real(4)*z3*(Real(2)*z4 + Real(15));
    return std::make_pair(w, dw);
}

template<typename Real>
std::complex<Real> complex_newton(std::function<std::pair<std::complex<Real>,std::complex<Real>>(std::complex<Real>)> f, std::complex<Real> z)
{
    // f(x(1+e)) = f(x) + exf'(x)
    bool close = false;
    do
    {
        auto [y, dy] = f(z);
        z -= y/dy;
        close = (abs(y) <= 1.4*std::numeric_limits<Real>::epsilon()*abs(z*dy));
    } while(!close);
    return z;
}

template<typename Real>
class plane_pixel_map
{
public:
    plane_pixel_map(int64_t image_width, int64_t image_height, Real xmin, Real ymin)
    {
        image_width_ = image_width;
        image_height_ = image_height;
        xmin_ = xmin;
        ymin_ = ymin;
    }

    std::complex<Real> to_complex(int64_t i, int64_t j) const {
        Real x = xmin_ + 2*abs(xmin_)*Real(i)/Real(image_width_ - 1);
        Real y = ymin_ + 2*abs(ymin_)*Real(j)/Real(image_height_ - 1);
        return std::complex<Real>(x,y);
    }

    std::pair<int64_t, int64_t> to_pixel(std::complex<Real> z) const {
        Real x = z.real();
        Real y = z.imag();
        Real ii = (image_width_ - 1)*(x - xmin_)/(2*abs(xmin_));
        Real jj = (image_height_ - 1)*(y - ymin_)/(2*abs(ymin_));

        return std::make_pair(std::round(ii), std::round(jj));
    }

private:
    int64_t image_width_;
    int64_t image_height_;
    Real xmin_;
    Real ymin_;
};

int main(int argc, char** argv)
{
    using Real = double;
    using boost::math::tools::viridis;
    using std::sqrt;

    std::function<std::array<Real, 3>(Real)> color_map = viridis<Real>;
    std::string requested_color_map = "viridis";
    if (argc == 2) {
       requested_color_map = std::string(argv[1]);
       if (requested_color_map == "smooth_cool_warm") {
          color_map = boost::math::tools::smooth_cool_warm<Real>;
       }
       else if (requested_color_map == "plasma") {
          color_map = boost::math::tools::plasma<Real>;
       }
       else if (requested_color_map == "black_body") {
          color_map = boost::math::tools::black_body<Real>;
       }
       else if (requested_color_map == "inferno") {
          color_map = boost::math::tools::inferno<Real>;
       }
       else if (requested_color_map == "kindlmann") {
          color_map = boost::math::tools::kindlmann<Real>;
       }
       else if (requested_color_map == "extended_kindlmann") {
          color_map = boost::math::tools::extended_kindlmann<Real>;
       }
       else {
          std::cerr << "Could not recognize color map " << argv[1] << ".";
          return 1;
       }
    }
    constexpr int64_t image_width = 1024;
    constexpr int64_t image_height = 1024;
    constexpr const Real two_pi = 6.28318530718;

    std::vector<std::uint8_t> img(4*image_width*image_height, 0);
    plane_pixel_map<Real> map(image_width, image_height, Real(-2), Real(-2));

    for (int64_t j = 0; j < image_height; ++j)
    {
        std::cout << "j = " << j << "\n";
        for (int64_t i = 0; i < image_width; ++i)
        {
            std::complex<Real> z0 = map.to_complex(i,j);
            auto rt = complex_newton<Real>(g<Real>, z0);
            // The root is one of exp(2*pi*ij/5). Therefore, it can be classified by angle.
            Real theta = std::atan2(rt.imag(), rt.real());
            // Now theta in [-pi,pi]. Get it into [0,2pi]:
            if (theta < 0) {
                theta += two_pi;
            }
            theta /= two_pi;
            if (std::isnan(theta)) {
                std::cerr << "Theta is a nan!\n";
            }
            auto c = boost::math::tools::to_8bit_rgba(color_map(theta));
            int64_t idx = 4 * image_width * (image_height - 1 - j) + 4 * i;
            img[idx + 0] = c[0];
            img[idx + 1] = c[1];
            img[idx + 2] = c[2];
            img[idx + 3] = c[3];
        }
    }

    std::array<std::complex<Real>, 8> roots;
    roots[0] = -Real(1);
    roots[1] = Real(1);
    roots[2] = {Real(0), Real(1)};
    roots[3] = {Real(0), -Real(1)};
    roots[4] = {sqrt(Real(2)), sqrt(Real(2))};
    roots[5] = {sqrt(Real(2)), -sqrt(Real(2))};
    roots[6] = {-sqrt(Real(2)), -sqrt(Real(2))};
    roots[7] = {-sqrt(Real(2)), sqrt(Real(2))};

    for (int64_t k = 0; k < 8; ++k)
    {
        auto [ic, jc] = map.to_pixel(roots[k]);

        int64_t r = 7;
        for (int64_t i = ic - r; i < ic + r; ++i)
        {
            for (int64_t j = jc - r; j < jc + r; ++j)
            {
                if ((i-ic)*(i-ic) + (j-jc)*(j-jc) > r*r)
                {
                    continue;
                }
                int64_t idx = 4 * image_width * (image_height - 1 - j) + 4 * i;
                img[idx + 0] = 0;
                img[idx + 1] = 0;
                img[idx + 2] = 0;
                img[idx + 3] = 0xff;
            }
        }
    }

    // Requires lodepng.h
    // See: https://github.com/lvandeve/lodepng for download and compilation instructions
    write_png(requested_color_map + "_newton_fractal.png", img, image_width, image_height);
}