
The Spreadsort High-Performance General-Case
Sorting Algorithm

Steven J. Ross
P. O. Box 513

Clinton, NY 13323

Abstract
A high-performance nearly in-place general-case sorting algorithm named SpreadSort is
demonstrated. It is approximately 4X as fast as Quicksort in normal cases, and up to 18X as fast
with distributions of limited variation (much like Bucketsort). The technique is mixed
distributional and comparison-based, merging many of the advantages of both techniques.
Spreadsort can operate recursively, but is O(n) for continuous integrable functions, and has
better than O(nlog(n)) worst-case performance when used with distributions where the keys have
finite length, so recursion past the second iteration is rare. This algorithm can be modified to be
in-place with a modest speed loss.
Keywords: Sorting, Quicksort, In-place, Algorithm, Bucketsort, Radixsort

1. Introduction
“Sorting represents one of the most basic
operations in computer science”[1] as it is the
ordering of a set in ascending or descending
order, an operation with broad applicability.
Along with significant theoretical interest, it
has enormous practical application, using
approximately 20 percent of computing
resources today[2]. It is time-critical for
applications varying from Databases[3] to
Data Compression and web searches[4]. Prof.
Knuth argues that θ(nlog(n)) performance is
the best to be expected of general-case
sorting, depending on comparison-based
methods in his proof[5].
 Knuth was wrong about sorting. His
proof is correct, based on his assumptions,
but his assumptions and therefore
conclusions are wrong. A sorting algorithm
does not need to be purely comparison-based
to perform well in all cases. Additionally, a
comparison is not always a constant-time
operation. The Spreadsort sorting algorithm
described here will work on any problem
with a total ordering (including ones with
duplicates), which Knuth has stated as a
requirement to consider the problem
sorting[5]. It will also perform faster, with
better than or equal average case and worst
case computational order as opposed to

comparison-based sorting for all
distributions. In this paper, the weaknesses
in Knuth’s assumptions are identified and
discussed. Then, the Spreadsort algorithm is
described. Finally, an analysis is made of the
relative performance of Spreadsort and
comparison-based sorting, including such
techniques as Quicksort and Mergesort.

1.1 Sorting Assumptions 1:
Comparison as a Constant Time
Operation
One implicit assumption that is common in
the field of sorting is that a comparison is a
constant-time operation. This assumption is
made in [5], in the discussion of Shellsort,
algorithm D, when O(nlog(n)2) comparisons
are considered equivalent to O(nlog(n)2)
running time. Knuth avoids stating this
assumption explicitly[5]. It is an assumption
that is used when O(nlog(n)2) comparisons
are considered equivalent to O(nlog(n)2)
operations during a sort, where n is the
number of items being sorted.
 A comparison does not take constant
time in the worst case. A comparison is an
attempt to determine which of two variables
is greater, or if they are equal. It will not stop
until one of these results is determined.
There is only a finite length of the keys that
can be compared at one time, without shifting

memory to load in another section. On a
modern microprocessor, this usually
corresponds to the bus width. Thus a 32-bit
processor can only compare 4 bytes in one
operation; it needs at least one more
operation to compare 8 bytes if the first four
bytes are equal and the end hasn’t been
reached. This comes down to a worst-case

performance of O
b
w







 where b is the length

in bits of the key and w is the width in bits of
the maximum section the processor can
handle at a time. In the case of long strings
that differ at a random point in their length,
this worst-case performance will be achieved.
This means that a comparison-based
algorithm that takes O(n log(n)) comparisons

takes O
nblog n()

w




 




  time.

1.2 Sorting Assumptions 2: General-
case sorting must be Comparison-
based
“Now if we set N = n!, we get a lower bound
for the average number of comparisons in
any sorting scheme. Asymptotically
speaking, this lower bound is

lg n!+O 1()= nlg n −
n

ln2
+ O log n()().” [5]

pg. 193.
The above quotation assumes that a

purely comparison-based algorithm obtains
the minimum number of comparisons. It may
seem necessary to assume that an algorithm
be purely comparison based to evaluate its
relative performance, but if it uses a small
constant number of O(n) operations, it does
not add to the computational order of the
comparisons. Spreadsort can obtain
significantly superior average-case
performance by splitting up a problem for
easier comparison sorting.
“Studies of the inherent complexity of sorting
have usually been directed towards
minimizing the number of times we make
comparisons between keys while sorting n
items.” [5] pg. 181.
 Partially due to the above logic, it is
common to assume that algorithms having

any distributional basis are not useful in the
general case[5]. While this is clearly true of
Bucketsort, where the number of memory
locations goes up exponentially with the
length of the key in bytes, that does not make
the assumption true in general.

For example, Radixsort, takes O(nb)
time, but can be used on any distribution. If
log(n) is comparable in size to the bit width
w, then Radixsort will have comparable
worst-case performance to a comparison-
based technique, and it can be even faster for
very large n. Radixsort is a high-
performance general-case distributional
sorting algorithm that is usually slower than
the best know comparison-based algorithm
Quicksort[6], but not badly so[7]. It is thus a
general-case distributional sorting algorithm
that refutes the common assumption.
Spreadsort, described below, is a mixed
distributional and comparison-based
algorithm that has high average-case
performance and excellent worst-case
performance. The code used in testing
exhibits is fully generalized with a user-
defined value() method, much like
Quicksort’s compare() method. The value()
method must take in an object and return its
corresponding integer value. For large byte
widths, a position must also be passed in, and
there must be a method to return the length in
bytes of an object.

2 SpreadSort
Most modern comparison-based algorithms
are based on some variant of the divide and
conquer technique, where the list is
recursively split in half until each of the
pieces is small enough to be quickly sorted,
and then the list is reformed fully sorted.
Mergesort implements this process in reverse,
but the same logarithmic progression is
apparent. One question rarely asked about
these splittings is: why divide by two, and not
by 3, 4, or some much larger number? What
is the optimal number of pieces to split into at
each step? It is easiest to implement splitting
by factors of two, but that doesn't necessarily
correlate with the best performance.
Spreadsort uses the theory that the optimum
number of bins is a fraction of n. This

optimum number is determined by
minimizing the sum of the average bin
overhead time and the average bin subsorting
time, both of these times being functions of
the number of bins. This bin count has been
empirically found to be in the range of n/4 to
n/8 on most systems.
 The Spreadsort algorithm is a
different divide and conquer algorithm,
dividing by a fraction of n instead of by 2. It
is a recursive algorithm, as with other divide
and conquer algorithms. The recursive part
begins by calculating the maximum and
minimum values of the distribution (a quick
O(n) task), then evenly splitting up the
distribution of possible key values (m) in
between these values into (n/c) bins, where c
is a small positive integer. Note that a similar
technique can be used on keys of
indeterminate length, if the key is assumed to
be followed by an infinite succession of
minimum values. Each item's key value is
then divided by a previously calculated factor
(m/(n/c)) to decide which bin to put it in. n
items are thus mapped to (n/c) bins in an
O(n) operation. By doing this, the
distribution size for each bin is cut by (n/c),
and the average number of items per bin is c.
Then a series of tests is applied: If the
number of bins is greater than or equal to the
range of keys, then the data is already sorted
(see Bucketsort), and no bin-by-bin tests are
necessary. If the bins aren’t already fully
sorted, then the comparison below is
checked:

log n2()()2

2
< log m2()

If this comparison is true, then the worst case
for the recursive application of Spreadsort
(assuming constant-time comparisons for the
moment) is worse than the normal case for
Quicksort, so Quicksort is selected for the
bin. Otherwise, recursive application of
Spreadsort can continue cutting up the
problem both in terms of key size and
concentration. This recursive application has
a worst case performance that can be
calculated using the assumption of the

branching tree structure, with a division into
two equal-sized pieces per recursive
operation:

x is the number of Spreadsort recursive
operations necessary to sort a list in worst
case.
x is the smallest integer such that

m
n

c20 ⋅ n
c21 ⋅ ...⋅ n

c2 x









≤1

Taking the case where the sides are equal and
multiplying the series, x can be solved for.

m= nx

cx2 x x−1()()

log2 m()= xlog2 n()− x x −1()log2 2()− xlog2 c()
−x2 + x log2 n()−1−log2 c()()−log2 m()=0

−x2 + x log2
n
c







 −1









 −log2 m()=0

x =
− log2

n
c







 −1









 ± log2

n
c







 −1











2

−4log2 m()

−2

x =
log2

n
c







 −1









 − log2

n
c







 −1











2

−4log2 m()

2
This requires:

log2
n
c







 −1











2

≥ 4log2 m()

It is notable that if this condition is true, x is
always less than log2(n), as by inspection:

log2
n
c







 −1











2
< log2 n()

 As long as

log2
n
c







 −1











2

≥ 4log2 m() is true, then the

data is fastest sorted by Spreadsort. When it
is not true, Quicksort is used. Another
algorithm, such as Mergesort can be used
instead of Quicksort if strict O(nlog(n))
comparisons performance is considered
necessary. The decision stop because the

data is already sorted, continue with
Spreadsort, or stop and use Quicksort is made
with every bin created. This gives Spreadsort
the same absolute worst-case performance as
the comparison-based algorithm it is used
with. Distributions where

log2
n
c







 −1











2

> 4log2 m(), which are

relatively common, have a better worst-case
performance than O(nlog(n)) comparisons:

x =
log2

n
c







 −1









 − log2

n
c







 −1











2

−4log2 m()

2

x = log2
n
c







 −1











1− 1−
4log2 m()

log2
n
c







 −1











2

2





























x ≈
log2 m()

log2
n
c







 −1











Using the approximation that the square root
of 1 minus a small value is 1 minus half that
value. It is notable that if the small value
equals 1, the below result is still correct.
The number of operations is n plus n times
the number of recursive calls x:
O n + nx()
O n + n logn m()()

The major advantage of Spreadsort is
that each separation takes only O(n) time and
splits the problem into θ(n) pieces. If the
distribution is random, then the bins can be
sorted separately with a net O(n) time,
assuming a generally small constant number
of items , c, per bin. If the distribution is
Gaussian, then it will actually operate much
like a simple random distribution for this
case, as the tails of a Gaussian taper off
rapidly, limiting the total size of the
distribution being cut up. For the more spiky
distributions, the large spikes can be

recursively cut down in key size to the point
that they are fully distributionally sorted.
Additionally, unless the spike has a
discontinuous shape, the first iteration will
turn each spike into its own bin, which is then
sorted normally. With distributions of
signification size (1MB+), no recursive calls
after the second are usually necessary on high
peaks.
 Worst case performance occurs for
Spreadsort when the key size is large and the
distribution branches with each application of
the sort into just a few branches (two, worst
case), and each of these branches are at the
edges of the previous distribution bin. This
will limit each recursive distribution size cut,
forcing many recursive calls. With a large
enough key size and relatively small n, this
type of problem will force Spreadsort to fall
back on an O(nlog(n)) comparisons
technique.

3 Other Algorithms:
A description of the main types of sorting
algorithms currently in use can be found in
reference 5. Short descriptions of the
primary algorithms pertinent to Spreadsort
are provided in Appendix A. These include
Quicksort, Mergesort, Bucketsort, and
Radixsort. On an Altivec processor, only
Bucketsort was capable of outperforming
Spreadsort under any circumstances, and that
being when the range of possible keys is
smaller than the number of items being
sorted. Mergesort is capable of operations on
serial media, but there is a high-performance
version of Spreadsort that also works with
serial media and is much faster than
Mergesort.

4 Performance Comparison:
Spreadsort reduces most sorting problems to
one or two distribution-based steps, followed
by comparison-based sorting of small
subbins, taking about 4 comparisons per item.
In contrast a comparison-based algorithm
will take 20 to 30 operations per item for a
list of a few million items, but only the first
few operations will be in main memory and
the rest will move onto the cache. The net

effect of this difference in number of
operations is to give a factor of four to six
times speed advantage to the Spreadsort
algorithm over Quicksort, for large key
ranges. This advantage is maximized for
distributions that consist of only evenly
spread (random) numbers and large, thin
clumps. It is smaller for distributions with
more mixed groupings of medium-sized
clumps and empty sections. In cases where
the range of key values is comparable to or
less than the number of items being sorted,
the Spreadsort speed ranges between seven
and eighteen times as fast as Quicksort.
 The latest version of Spreadsort uses
about 20% more memory than Quicksort, to
hold bin information. By increasing the bin
size from 8-16 (a good average size) to 32-
64, and more complex rearranging of
elements, the speed degrades about 10%, but
the memory usage becomes less than 1.05n,
only a minor increase over Quicksort. If
truly in-place sorting is desired, using bin
counts that are between the 3/4 and 9/10
power of the number of items works well.
The test shown in Figure 1 for semirandom
data sets of variable size illustrates this speed

performance advantage with tests that include
read, sort, and write time on a Pentium II
266MHz running LINUX with 64MB of
RAM. The spikes leading upwards are where
the computer ran out of memory, noticeably
early with the simple Spreadsort due to its
memory requirements. Many of the
algorithms slow down significantly on virtual
memory right before running out of memory.
It should be noted that the file I/O time for

SpreadSort and Quicksort in these examples
is an equal .4s/MB. In the interest of using
exact data, this compensation was not
included in Figure 1, but makes the speed
improvement for Spreadsort more visible in
Figure 2. It should be noted that the file I/O
time for the commercial application being
tested against is unknown, but “sorting” time
is nearly identical for already sorted data, and
that the out of memory algorithm is
dependent on hard drive speed.

A limited ANSI C version of
SpreadSort is up to 5.2X as fast as Quicksort
for sorting on an Altivec, but uses a little
more than twice the memory necessary to
hold the data. Figure 3 shows the results for
the fully-optimized nearly in-place (up to
1.2n memory) SpreadSort operating on an
Altivec, as the key range varies. The
transition from a bitlength of 24 to 23 is due
to the onset of bucketsorting. The transition
at bitlength 31 is probably an anomaly due to
the start of the test. It is notable that on the
Altivec Spreadsort never drops below 4X as
fast as Quicksort.

Figure 3: Relative Algorithm Performance for 250MB on a 400MHz Altivec

0

50

100

150

200

250

300

350

400

450

500

0 5 10 15 20 25 30

Bitlength(bits)

0

2

4

6

8

10

12

14

16

18

20

Qsort Time(s)
SpreadSort Time (s)
Ratio

 Spreadsort defeats the θ(nlog(n))

Figure 1: SpreadSort Speed Comparison

1

10

100

1000

4 8 16 32 64 128 256

File Size log(MB)

Quicksort
Best Commercial
Simple Spreadsort
Out of Memory Spreadso

Figure 2: Algorithm Comparison Compensated for File I/O

0.1

1

10

100

1000

4 8 16 32 64 128 256 512

File Size log(MB)

Quicksort
Best Commercial
Simple Spreadsort
Out of Memory Spreadso

comparison-based limit by combining two
aspects of the problem, the distribution and
the bin size. By solving both problems
simultaneously, it keeps cutting down until
one or the other is ready for a quick O(n)
solution. With most distributions, this should
be just one or two iterations, which has been
proven for a similar technique[8]. The
simple generalization of Quicksort is
obtained for Spreadsort by using a value
function that returns a value for a key. This
ends up bringing Spreadsort to the point
where it can solve the vast majority of sorting
problems within 2 iterations plus the time it
takes to comparison-sort an 8 item bin.

5 Conclusion
Spreadsort is a practical general-case sorting
algorithm with θ(n) average-case
performance and good worst-case
performance, being O(nlog(n)) in
comparisons and O(nlogn(m)) in time. It can
be used in any situation where a definite
ordering can be applied to all possible values,
even values of infinite key length. Because
the core Spreadsort technique divides the
problem both distributionally and
numerically (smaller bucket sizes), it makes
the problem simpler to solve for both
subsidiary comparison-based and
distributionally-based algorithms. Each
splitting operation takes O(n) time, but will
cut the remaining key length by a fraction of
n, while cutting the bucket size. With all
distributions, each operation will divide the
distribution into multiple pieces, commonly a
large number. If the distribution is not cut
into many pieces, then it is well set up for
recursive application and eventual final
distributional sorting. If the distribution is
cut into many pieces, then a comparison-
based sort can easily sort the small subsidiary
bins.

 This improved divide-and-conquer
technique provides a significant real
performance enhancement over conventional
θ(nlog(n)) techniques, such as Quicksort.
This performance enhancement is gained by
using a normally constant number of time-
consuming operations instead of a log(n)
number of quick operations. In practical
applications processor caches and memory
consumption influence speed, but Spreadsort
shows a clear improvement. This
improvement has been verified by
experiment, and shows a general-case
distributional algorithm that has superior
performance to Quicksort.

References
[1] J. D. Bright, G. F. Sullivan, and G. M.
Masson, “A Formally Verified Sorting Certifier,”
IEEE Transactions on Computers, Vol 46, No. 12,
December 1997.
[2] M. H. Nodine and J. S. Vitter, “Large-
Scale Sorting in Parallel Memories,” 3rd ACM
Symp. On Parallel Algorithms and Architectures,
pp. 29-39, 1991.
[3] V. Markl and R. Bayer, “A Cost
Function for Uniformly Partitioned UB-Trees”,
Database Engineering and Applications
Symposium, 2000, pp 410-416.
[4] K. Sadakane, “A Fast Algorithm for
Making Suffix Arrays and for Burrows-Wheeler
Transformation,” Data Compression Conference
1998. pp 129-138.
[5] Donald E. Knuth, The Art of Computer
Programming -- Sorting and Searching, vol. 3,
1997.
[6] C.A.R. Hoare, “Quicksort,” Computer J.,
vol. 6, no. 1, pp. 10-15, 1962.
[7] A. Andersson and S. Nilsson. A New
Efficient Radix Sort. In 35th Symp. On
Foundations of Computer Science, pp. 714-721,
1994.
[8] Markku Tamminen, “Two Levels are as
Good as Any” J. Algorithms 6, pp. 138-144, 1985

