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Abstract 
A high-performance nearly in-place general-case sorting algorithm named SpreadSort is 
demonstrated.  It is approximately 4X as fast as Quicksort in normal cases, and up to 18X as fast 
with distributions of limited variation (much like Bucketsort).  The technique is mixed 
distributional and comparison-based, merging many of the advantages of both techniques.  
Spreadsort can operate recursively, but is O(n) for continuous integrable functions, and has 
better than O(nlog(n)) worst-case performance when used with distributions where the keys have 
finite length, so recursion past the second iteration is rare.  This algorithm can be modified to be 
in-place with a modest speed loss.  
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1. Introduction 
“Sorting represents one of the most basic 
operations in computer science”[1] as it is the 
ordering of a set in ascending or descending 
order, an operation with broad applicability.  
Along with significant theoretical interest, it 
has enormous practical application, using 
approximately 20 percent of computing 
resources today[2].  It is time-critical for 
applications varying from Databases[3] to 
Data Compression and web searches[4]. Prof. 
Knuth argues that θ(nlog(n)) performance is 
the best to be expected of general-case 
sorting, depending on comparison-based 
methods in his proof[5]. 
 Knuth was wrong about sorting.  His 
proof is correct, based on his assumptions, 
but his assumptions and therefore 
conclusions are wrong.  A sorting algorithm 
does not need to be purely comparison-based 
to perform well in all cases.  Additionally, a 
comparison is not always a constant-time 
operation.  The Spreadsort sorting algorithm 
described here will work on any problem 
with a total ordering (including ones with 
duplicates), which Knuth has stated as a 
requirement to consider the problem 
sorting[5].  It will also perform faster, with 
better than or equal average case and worst 
case computational order as opposed to 

comparison-based sorting for all 
distributions.  In this paper, the weaknesses 
in Knuth’s assumptions are identified and 
discussed.  Then, the Spreadsort algorithm is 
described.  Finally, an analysis is made of the 
relative performance of Spreadsort and 
comparison-based sorting, including such 
techniques as Quicksort and Mergesort. 
 
1.1 Sorting Assumptions 1: 
Comparison as a Constant Time 
Operation 
One implicit assumption that is common in 
the field of sorting is that a comparison is a 
constant-time operation.  This assumption is 
made in [5], in the discussion of Shellsort, 
algorithm D, when O(nlog(n)2) comparisons 
are considered equivalent to O(nlog(n)2) 
running time.  Knuth avoids stating this 
assumption explicitly[5].  It is an assumption 
that is used when O(nlog(n)2) comparisons 
are considered equivalent to O(nlog(n)2) 
operations during a sort, where n is the 
number of items being sorted. 
 A comparison does not take constant 
time in the worst case. A comparison is an 
attempt to determine which of two variables 
is greater, or if they are equal.  It will not stop 
until one of these results is determined.  
There is only a finite length of the keys that 
can be compared at one time, without shifting 



memory to load in another section.  On a 
modern microprocessor, this usually 
corresponds to the bus width.  Thus a 32-bit 
processor can only compare 4 bytes in one 
operation; it needs at least one more 
operation to compare 8 bytes if the first four 
bytes are equal and the end hasn’t been 
reached.  This comes down to a worst-case 

performance of O
b
w
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 
 
 where b is the length 

in bits of the key and w is the width in bits of 
the maximum section the processor can 
handle at a time.  In the case of long strings 
that differ at a random point in their length, 
this worst-case performance will be achieved.  
This means that a comparison-based 
algorithm that takes O(n log(n)) comparisons 

takes O
nblog n( )
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1.2 Sorting Assumptions 2: General-
case sorting must be Comparison-
based 
“Now if we set N = n!, we get a lower bound 
for the average number of comparisons in 
any sorting scheme.  Asymptotically 
speaking, this lower bound is 

lg n!+O 1( )= nlg n −
n

ln2
+ O log n( )( ).”  [5] 

pg. 193. 
The above quotation assumes that a 

purely comparison-based algorithm obtains 
the minimum number of comparisons.  It may 
seem necessary to assume that an algorithm 
be purely comparison based to evaluate its 
relative performance, but if it uses a small 
constant number of O(n) operations, it does 
not add to the computational order of the 
comparisons. Spreadsort can obtain 
significantly superior average-case 
performance by splitting up a problem for 
easier comparison sorting. 
“Studies of the inherent complexity of sorting 
have usually been directed towards 
minimizing the number of times we make 
comparisons between keys while sorting n 
items.” [5] pg. 181. 
 Partially due to the above logic, it is 
common to assume that algorithms having 

any distributional basis are not useful in the 
general case[5]. While this is clearly true of 
Bucketsort, where the number of memory 
locations goes up exponentially with the 
length of the key in bytes, that does not make 
the assumption true in general.   

For example, Radixsort, takes O(nb) 
time, but can be used on any distribution.  If 
log(n) is comparable in size to the bit width 
w, then Radixsort will have comparable 
worst-case performance to a comparison-
based technique, and it can be even faster for 
very large n.  Radixsort is a high-
performance general-case distributional 
sorting algorithm that is usually slower than 
the best know comparison-based algorithm 
Quicksort[6], but not badly so[7].  It is thus a 
general-case distributional sorting algorithm 
that refutes the common assumption.  
Spreadsort, described below, is a mixed 
distributional and comparison-based 
algorithm that has high average-case 
performance and excellent worst-case 
performance. The code used in testing 
exhibits is fully generalized with a user-
defined value() method, much like 
Quicksort’s compare() method.  The value() 
method must  take in an object and return its 
corresponding integer value.  For large byte 
widths, a position must also be passed in, and 
there must be a method to return the length in 
bytes of an object. 
 
2 SpreadSort 
Most modern comparison-based algorithms 
are based on some variant of the divide and 
conquer technique, where the list is 
recursively split in half until each of the 
pieces is small enough to be quickly sorted, 
and then the list is reformed fully sorted.  
Mergesort implements this process in reverse, 
but the same logarithmic progression is 
apparent.  One question rarely asked about 
these splittings is: why divide by two, and not 
by 3, 4, or some much larger number?  What 
is the optimal number of pieces to split into at 
each step?  It is easiest to implement splitting 
by factors of two, but that doesn't necessarily 
correlate with the best performance. 
Spreadsort uses the theory that the optimum 
number of bins is a fraction of n.  This 



optimum number is determined by 
minimizing the sum of the average bin 
overhead time and the average bin subsorting 
time, both of these times being functions of 
the number of bins.  This bin count has been 
empirically found to be in the range of n/4 to 
n/8 on most systems. 
 The Spreadsort algorithm is a 
different divide and conquer algorithm, 
dividing by a fraction of n instead of by 2.  It 
is a recursive algorithm, as with other divide 
and conquer algorithms.  The recursive part 
begins by calculating the maximum and 
minimum values of the distribution (a quick 
O(n) task), then evenly splitting up the 
distribution of possible key values (m) in 
between these values into (n/c) bins, where c 
is a small positive integer.  Note that a similar 
technique can be used on keys of 
indeterminate length, if the key is assumed to 
be followed by an infinite succession of 
minimum values.  Each item's key value is 
then divided by a previously calculated factor 
(m/(n/c)) to decide which bin to put it in.  n 
items are thus mapped to (n/c) bins in an 
O(n) operation.   By doing this, the 
distribution size for each bin is cut by (n/c), 
and the average number of items per bin is c.  
Then a series of tests is applied: If the 
number of bins is greater than or equal to the 
range of keys, then the data is already sorted 
(see Bucketsort), and no bin-by-bin tests are 
necessary.  If the bins aren’t already fully 
sorted, then the comparison below is 
checked: 
  

log n2( )( )2

2
< log m2( ) 

 
If this comparison is true, then the worst case 
for the recursive application of Spreadsort 
(assuming constant-time comparisons for the 
moment) is worse than the normal case for 
Quicksort, so Quicksort is selected for the 
bin.  Otherwise, recursive application of 
Spreadsort can continue cutting up the 
problem both in terms of key size and 
concentration.  This recursive application has 
a worst case performance that can be 
calculated using the assumption of the 

branching tree structure, with a division into 
two equal-sized pieces per recursive 
operation: 
 
x is the number of Spreadsort recursive 
operations necessary to sort a list in worst 
case. 
x is the smallest integer such that 

m
n

c20 ⋅ n
c21 ⋅ ...⋅ n

c2 x
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 

 
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≤1 

Taking the case where the sides are equal and 
multiplying the series, x can be solved for. 

m= nx

cx2 x x−1( )( )

log2 m( )= xlog2 n( )− x x −1( )log2 2( )− xlog2 c( )
−x2 + x log2 n( )−1−log2 c( )( )−log2 m( )=0
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It is notable that if this condition is true, x is 
always less than log2(n), as by inspection: 

log2
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log2
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≥ 4log2 m( ) is true, then the 

data is fastest sorted by Spreadsort.  When it 
is not true, Quicksort is used. Another 
algorithm, such as Mergesort can be used 
instead of Quicksort if strict O(nlog(n)) 
comparisons performance is considered 
necessary.  The decision stop because the 



data is already sorted, continue with 
Spreadsort, or stop and use Quicksort is made 
with every bin created. This gives Spreadsort 
the same absolute worst-case performance as 
the comparison-based algorithm it is used 
with.  Distributions where 
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> 4log2 m( ), which are 

relatively common, have a better worst-case 
performance than O(nlog(n)) comparisons: 
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Using the approximation that the square root 
of 1 minus a small value is 1 minus half that 
value. It is notable that if the small value 
equals 1, the below result is still correct. 
The number of operations is n plus n times 
the number of recursive calls x: 
O n + nx( )
O n + n logn m( )( )

  

The major advantage of Spreadsort is 
that each separation takes only O(n) time and 
splits the problem into θ(n) pieces.  If the 
distribution is random, then the bins can be 
sorted separately with a net O(n) time, 
assuming a generally small constant number 
of items , c, per bin.    If the distribution is 
Gaussian, then it will actually operate much 
like a simple random distribution for this 
case, as the tails of a Gaussian taper off 
rapidly, limiting the total size of the 
distribution being cut up.  For the more spiky 
distributions, the large spikes can be 

recursively cut down in key size to the point 
that they are fully distributionally sorted.  
Additionally, unless the spike has a 
discontinuous shape, the first iteration will 
turn each spike into its own bin, which is then 
sorted normally. With distributions of 
signification size (1MB+), no recursive calls 
after the second are usually necessary on high 
peaks. 
 Worst case performance occurs for 
Spreadsort when the key size is large and the 
distribution branches with each application of 
the sort into just a few branches (two, worst 
case), and each of these branches are at the 
edges of the previous distribution bin.  This 
will limit each recursive distribution size cut, 
forcing many recursive calls.  With a large 
enough key size and relatively small n, this 
type of problem will force Spreadsort to fall 
back on an O(nlog(n)) comparisons 
technique. 
 
3 Other Algorithms: 
A description of the main types of sorting 
algorithms currently in use can be found in 
reference 5.  Short descriptions of the 
primary algorithms pertinent to Spreadsort 
are provided in Appendix A.  These include 
Quicksort, Mergesort, Bucketsort, and 
Radixsort.  On an Altivec processor, only 
Bucketsort was capable of outperforming 
Spreadsort under any circumstances, and that 
being when the range of possible keys is 
smaller than the number of items being 
sorted. Mergesort is capable of operations on 
serial media, but there is a high-performance 
version of Spreadsort that also works with 
serial media and is much faster than 
Mergesort. 
 
4 Performance Comparison: 
Spreadsort reduces most sorting problems to 
one or two distribution-based steps, followed 
by comparison-based sorting of small 
subbins, taking about 4 comparisons per item.  
In contrast a comparison-based algorithm 
will take 20 to 30 operations per item for a 
list of a few million items, but only the first 
few operations will be in main memory and 
the rest will move onto the cache.  The net 



effect of this difference in number of 
operations is to give a factor of four to six 
times speed advantage to the Spreadsort 
algorithm over Quicksort, for large key 
ranges.  This advantage is maximized for 
distributions that consist of only evenly 
spread (random) numbers and large, thin 
clumps.  It is smaller for distributions with 
more mixed groupings of medium-sized 
clumps and empty sections.  In cases where 
the range of key values is comparable to or 
less than the number of items being sorted, 
the Spreadsort speed ranges between seven 
and eighteen times as fast as Quicksort. 
 The latest version of Spreadsort uses 
about 20% more memory than Quicksort, to 
hold bin information.  By increasing the bin 
size from 8-16 (a good average size) to 32-
64, and more complex rearranging of 
elements, the speed degrades about 10%, but 
the memory usage becomes less than 1.05n, 
only a minor increase over Quicksort.  If 
truly in-place sorting is desired, using bin 
counts that are between the 3/4 and 9/10 
power of the number of items works well.  
The test shown in Figure 1 for semirandom 
data sets of variable size illustrates this speed 

performance advantage with tests that include 
read, sort, and write time on a Pentium II 
266MHz running LINUX with 64MB of 
RAM.  The spikes leading upwards are where 
the computer ran out of memory, noticeably 
early with the simple Spreadsort due to its 
memory requirements.  Many of the 
algorithms slow down significantly on virtual 
memory right before running out of memory.  
It should be noted that the file I/O time for 

SpreadSort and Quicksort in these examples 
is an equal .4s/MB.  In the interest of using 
exact data, this compensation was not 
included in Figure 1, but makes the speed 
improvement for Spreadsort more visible in 
Figure 2.  It should be noted that the file I/O 
time for the commercial application being 
tested against is unknown, but “sorting” time 
is nearly identical for already sorted data, and 
that the out of memory algorithm is 
dependent on hard drive speed.   

A limited ANSI C version of 
SpreadSort is up to 5.2X as fast as Quicksort 
for sorting on an Altivec, but uses a little 
more than twice the memory necessary to 
hold the data.  Figure 3 shows the results for 
the fully-optimized nearly in-place (up to 
1.2n memory) SpreadSort operating on an 
Altivec, as the key range varies.  The 
transition from a bitlength of 24 to 23 is due 
to the onset of bucketsorting.  The transition 
at bitlength 31 is probably an anomaly due to 
the start of the test. It is notable that on the 
Altivec Spreadsort never drops below 4X as 
fast as Quicksort. 

Figure 3: Relative Algorithm Performance for 250MB on a 400MHz Altivec          
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comparison-based limit by combining two 
aspects of the problem, the distribution and 
the bin size.  By solving both problems 
simultaneously, it keeps cutting down until 
one or the other is ready for a quick O(n) 
solution.  With most distributions, this should 
be just one or two iterations, which has been 
proven for a similar technique[8].  The 
simple generalization of Quicksort is 
obtained for Spreadsort by using a value 
function that returns a value for a key.  This 
ends up bringing Spreadsort to the point 
where it can solve the vast majority of sorting 
problems within 2 iterations plus the time it 
takes to comparison-sort an 8 item bin. 
 
5 Conclusion 
Spreadsort is a practical general-case sorting 
algorithm with θ(n) average-case 
performance and good worst-case 
performance, being O(nlog(n)) in 
comparisons and O(nlogn(m)) in time.  It can 
be used in any situation where a definite 
ordering can be applied to all possible values, 
even values of infinite key length.  Because 
the core Spreadsort technique divides the 
problem both distributionally and 
numerically (smaller bucket sizes), it makes 
the problem simpler to solve for both 
subsidiary comparison-based and 
distributionally-based algorithms.  Each 
splitting operation takes O(n) time, but will 
cut the remaining key length by a fraction of 
n, while cutting the bucket size.  With all 
distributions, each operation will divide the 
distribution into multiple pieces, commonly a 
large number.  If the distribution is not cut 
into many pieces, then it is well set up for 
recursive application and eventual final 
distributional sorting.  If the distribution is 
cut into many pieces, then a comparison-
based sort can easily sort the small subsidiary 
bins. 

 This improved divide-and-conquer 
technique provides a significant real 
performance enhancement over conventional 
θ(nlog(n)) techniques, such as Quicksort. 
This performance enhancement is gained by 
using a normally constant number of time-
consuming operations instead of a log(n) 
number of quick operations.  In practical 
applications processor caches and memory 
consumption influence speed, but Spreadsort 
shows a clear improvement.  This 
improvement has been verified by 
experiment, and shows a general-case 
distributional algorithm that has superior 
performance to Quicksort. 
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